Algorithms and Data Structures CS-CO-412

David Vernon
Professor of Informatics
University of Skövde
Sweden

david@vernon.eu www.vernon.eu

- Motivation & Preview
 - The importance of algorithms & data structures
- Complexity of algorithms
 - Performance of algorithms
 - Time and space tradeoff
 - Worst case and average case performance
 - Big O notation
 - Recurrence relationships
 - Analysis of complexity of iterative and recursive algorithms
 - Tractable and intractable algorithmic complexity

- Simple searching algorithms
 - Linear search
 - Binary search
- Simple sorting algorithms
 - Bubblesort
 - Quicksort
- Abstract Data Types (ADTs)

- Lists, stacks, and queues
 - ADT specification
 - Array implementation
 - Linked-list implementations

Trees

- Binary trees
- Binary search trees
- Depth-first traversals
- Applications of trees (e.g. Huffman coding)
- Height-balanced trees (e.g. AVL Trees, Red-Black Trees)

Priority queues

- Priority queue data structure
- Binary heap
- Heapsort

Graphs

- Graph data structure
- Breadth-first search traversal
- Depth-first search traversal
- Minimum spanning tree (e.g. Prim's and Kruskal's algorithms)
- Shortest-path algorithms (e.g. Dijkstra's and Floyd's algorithms)
- Topological sort

- Algorithmic strategies
 - Brute-force
 - Divide-and-conquer
 - Greedy
 - Dynamic programming
 - Combinatorial Search & Backtracking
 - Combinatorics: subsets and permutations
 - All paths in a graphs
 - Branch-and-bound

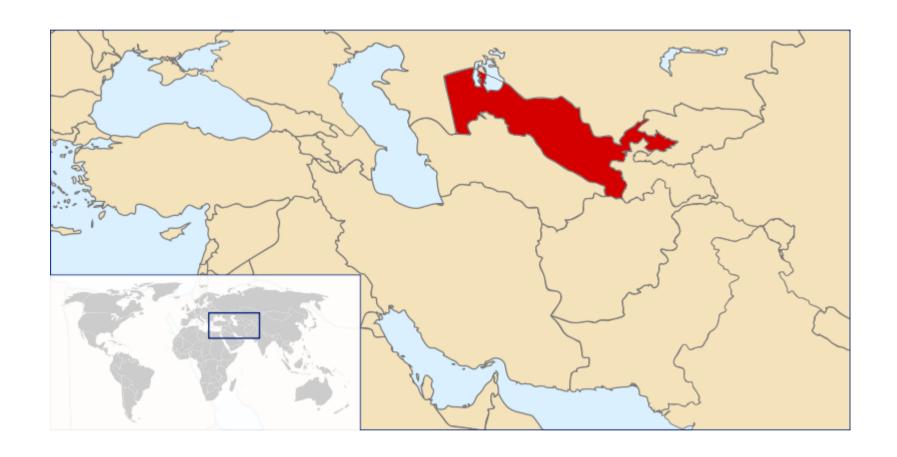
Motivation & Preview

The Importance of Algorithms & Data Structures

Muḥammad ibn Mūsā al-Khwārizmī

محمد بن موسى الخوارزمي Born approximately 780, died between 835 and 850 Persian mathematician and astronomer from the Khorasan province of present-day Uzbekistan

The word *algorithm* is derived from his name



Algorithms + Data Structures = Programs

Niklaus Wirth, 1976

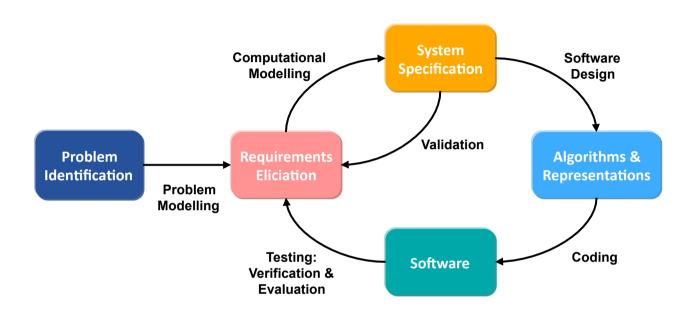
Inventor of Pascal and Modula programming languages
Winner of Turing Award 1984

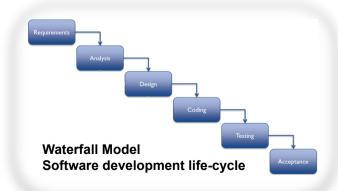
1969



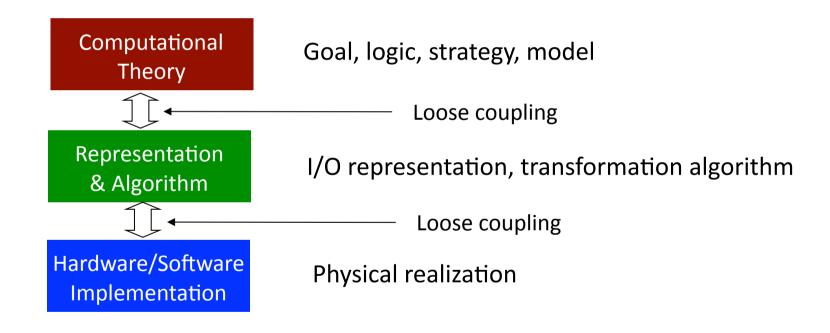
Information Processing: Representation & Transformation

The Software Development Process





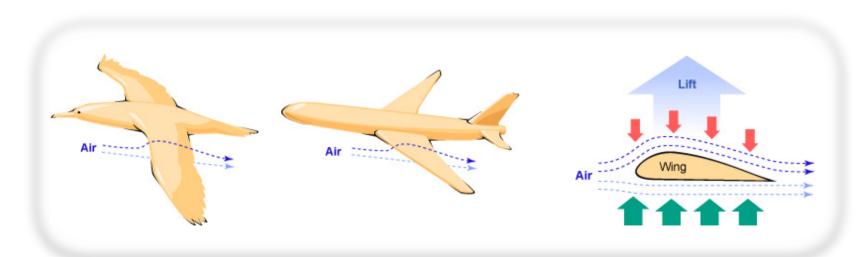
Marr's Hierarchy of Abstraction / Levels of Understanding Framework



Marr's Hierarchy of Abstraction / Levels of Understanding Framework

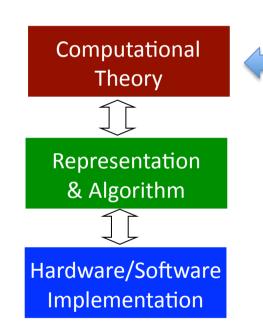
"Trying to understand perception by studying only neurons is like trying to understand bird flight by studying only feathers: it just cannot be done. In order to understand bird flight, we have to understand aerodynamics; only then do the structure of feathers and the different shapes of birds' wings make sense"

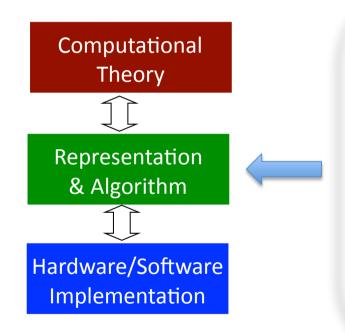
Marr, D. Vision, Freeman, 1982.



Given a sequence of n keys a_1, \dots, a_n

Find the permutation (reordering) such that $a_i \le a_j$ $1 \le i, j \le n$





Sorting a List

Bubble Sort

Insertion Sort

Quick Sort

Merge Sort, ...

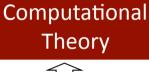
Key point: different computational efficiency

Computational Theory

Representation & Algorithm

Hardware/Software Implementation

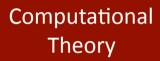
Sorting a List



Representation & Algorithm

Hardware/Software Implementation

INSERTIONSORT
INSERTIONSORT
INSERTIONSORT
EINSRTIONSORT
EINRSTIONSORT
EINRSTIONSORT
EIINRSTIONSORT
EIINRSTONSORT
EIINORSTNSORT
EIINNORSTSORT
EIINNORSTRT



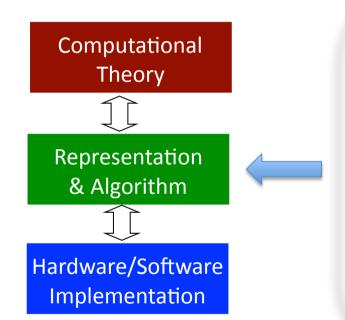
Representation & Algorithm

Hardware/Software Implementation

Fourier Transform

$$\mathcal{F}(f(x,y)) = \mathsf{F}(\omega_x, \omega_y)$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i(\omega_x x + \omega_y y)} \mathrm{d}x \mathrm{d}y$$

$$\begin{split} \mathcal{F}\left(f(x,y)\right) &=& \mathsf{F}(\omega_x,\omega_y) \\ &=& \mathsf{F}(\omega_x\Delta_{\omega_x},\omega_y\Delta_{\omega_y}) \\ &=& \sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-i(\frac{\omega_xx}{M}+\frac{\omega_yy}{N})} \end{split}$$



Fourier Transform

DFT: Discrete Fourier Transform

FFT: Fast Fourier Transform

FFTW: Fasted Fourier Transform in the West

Key point: different computational efficiency

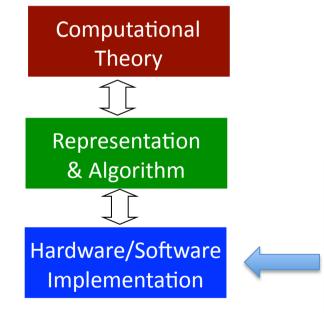
Computational Theory

Representation & Algorithm

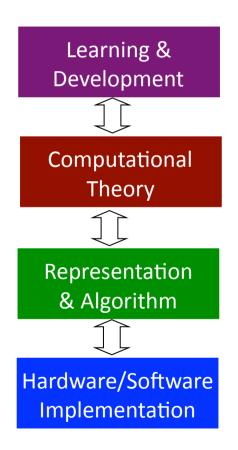
Hardware/Software Implementation

Fourier Transform

```
main()
        unsigned long i;
       int isign;
       float *data1, *data2, *fft1, *fft2;
       data1=vector(1,N);
       data2=vector(1,N);
       fft1=vector(1,N2);
        fft2=vector(1,N2);
        for (i=1;i<=N;i++) {
                data1[i]=floor(0.5+cos(i*2.0*PI/PER));
                data2[i]=floor(0.5+sin(i*2.0*PI/PER));
        twofft(data1,data2,fft1,fft2,N);
       printf("Fourier transform of first function:\n");
       prntft(fft1,N);
       printf("Fourier transform of second function:\n");
       prntft(fft2,N);
        /* Invert transform */
       isign = -1;
        four1(fft1,N,isign);
       printf("inverted transform = first function:\n");
       prntft(fft1,N);
       four1(fft2,N,isign);
       printf("inverted transform = second function:\n");
        prntft(fft2,N);
       free vector(fft2,1,N2);
       free_vector(fft1,1,N2);
       free_vector(data2,1,N);
        free_vector(data1,1,N);
        return 0;
```



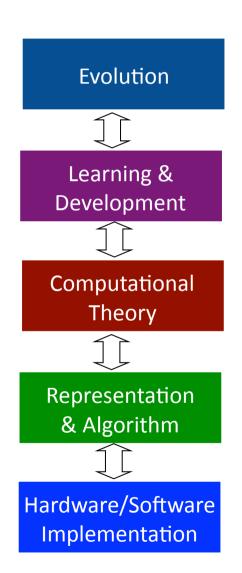
Marr's Levels of Understanding Framework updated 2012 by T. Poggio



Calibrating & improving the model

CS-AI-421 Artificial Cognitive Systems CS-AI-422 Machine Learning

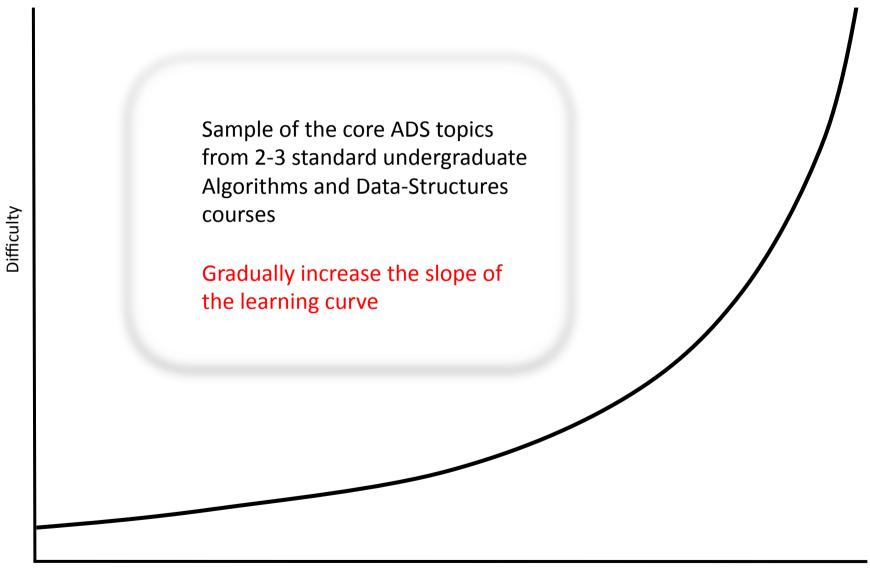
Marr's Levels of Understanding Framework updated 2012 by T. Poggio



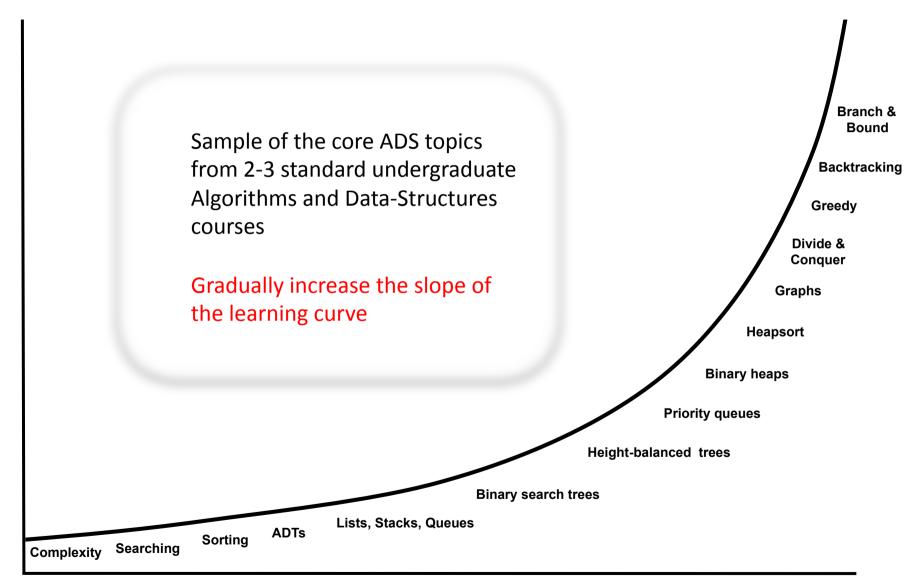
Generating new models

Calibrating & improving the model

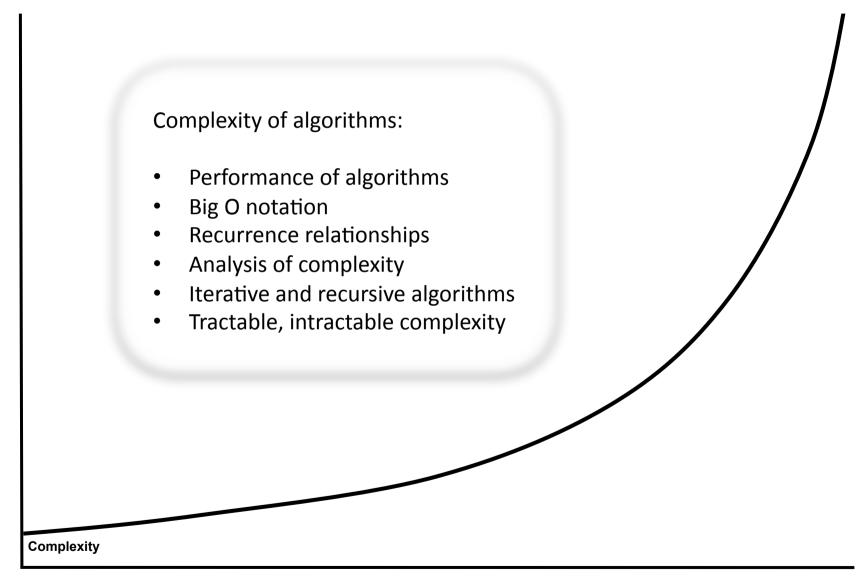
Algorithms and Data-Structures Strategy

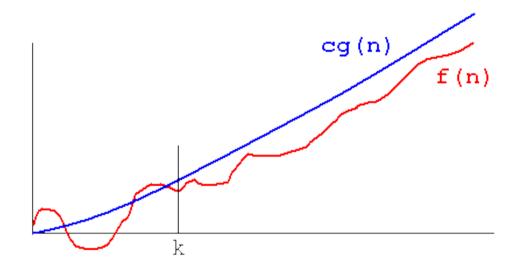


Algorithms and Data-Structures Topics

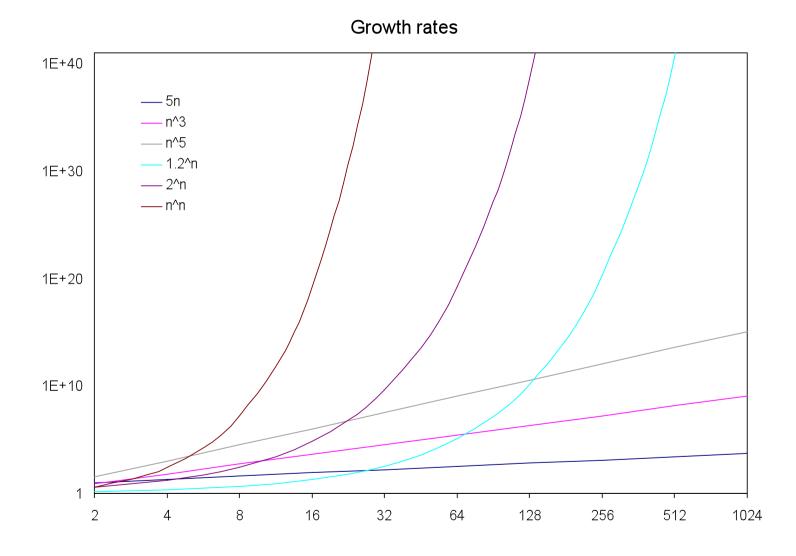


Algorithms and Data-Structures Topics

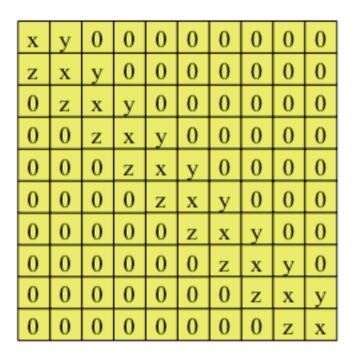




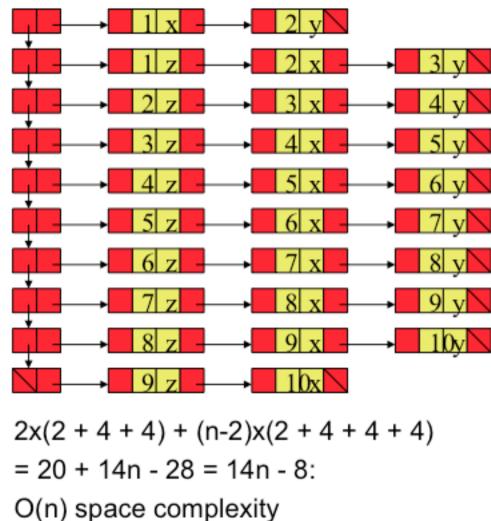
Use Big O notation to determine an upper bound function g(n) that characterizes how the complexity grows with the size of the data set ... O(g(n)) e.g. $O(n \log_2 n)$



Polynomial	function/ n	10	20	50	100	300
	n ²	1/10,000 second	1/2,500 second	1/400 second	1/100 second	9/100 second
	n ⁵	1/10 second	3.2 seconds	5.2 minutes	2.8 hours	28.1 days
Exponential	2 <i>n</i>	1/1000 second	1 second	35.7 years	400 trillion centuries	a 75 digit- number of centuries
	n ⁿ	2.8 hours	3.3 trillion years	a 70 digit- number of centuries	a 185 digit- number of centuries	a 728 digit- number of centuries



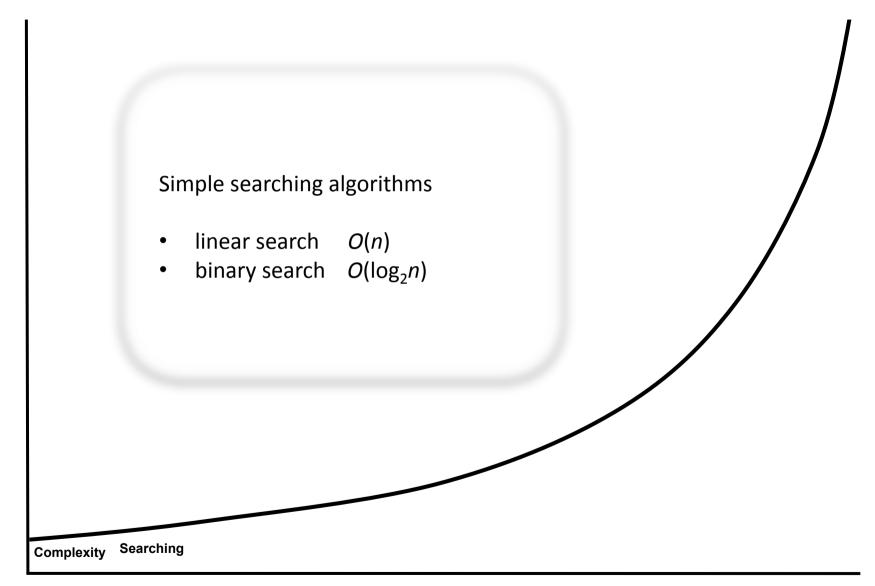
n x n matrix: O(n²) space complexity



$$2x(2 + 4 + 4) + (n-2)x(2 + 4 + 4 + 4)$$

= 20 + 14n - 28 = 14n - 8:
O(n) space complexity

Algorithms and Data-Structures Topics



A B D F G J K M O P R

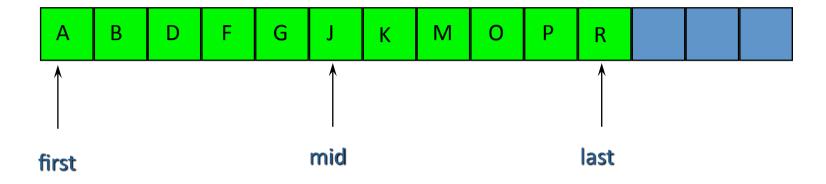
first:

last:

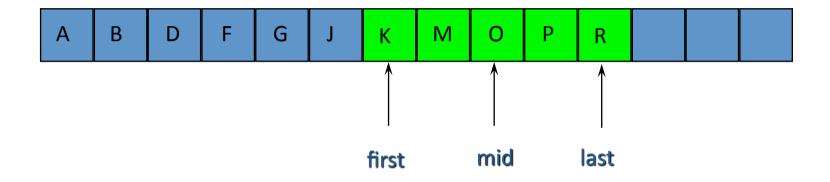
mid:

list[mid]:

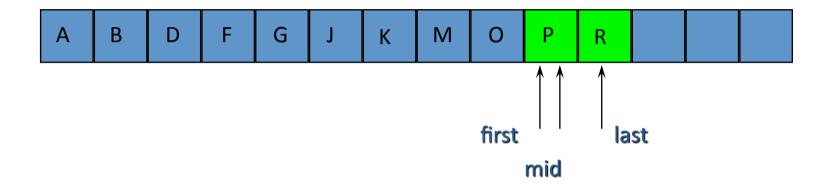
key: F



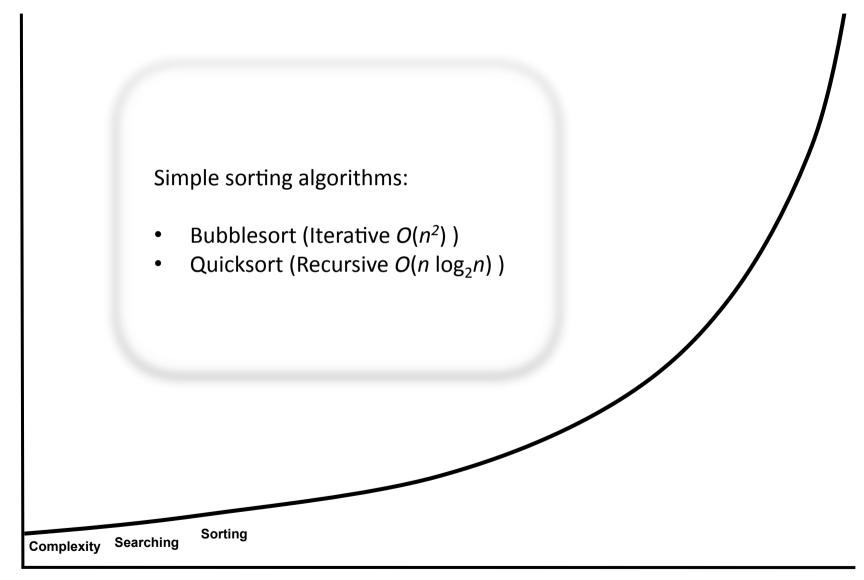
first: 1
last: 11
mid: 6
list[mid]: J
key: P



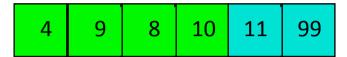
```
first: 1 7
last: 11 11
mid: 6 9
list[mid]: J 0
key: P P
```



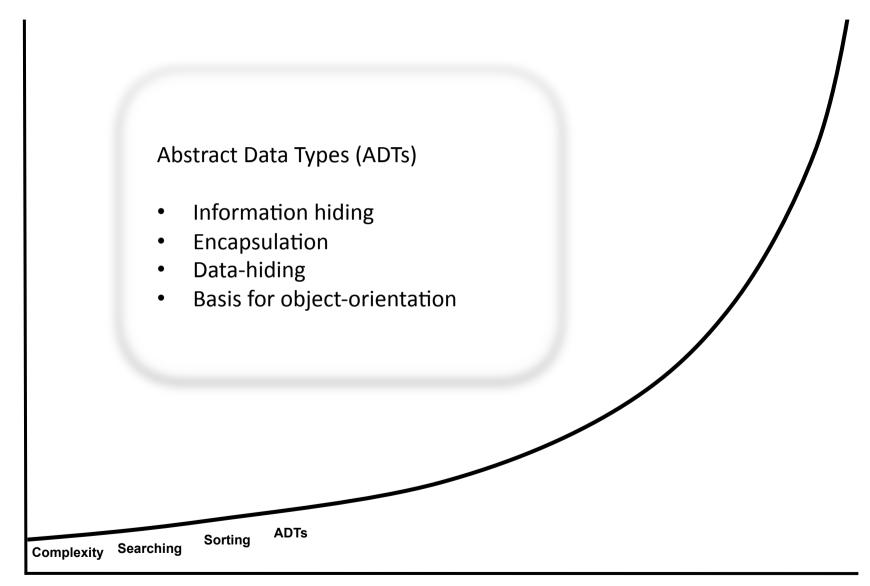
```
first: 1 7 10
last: 11 11 11
mid: 6 9 10
list[mid]: J O P FOUND!
key: P P P
```

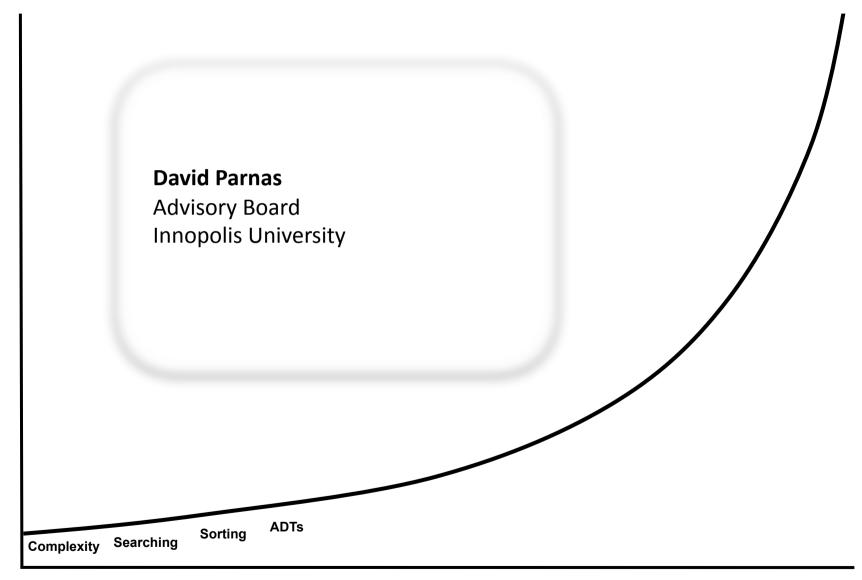


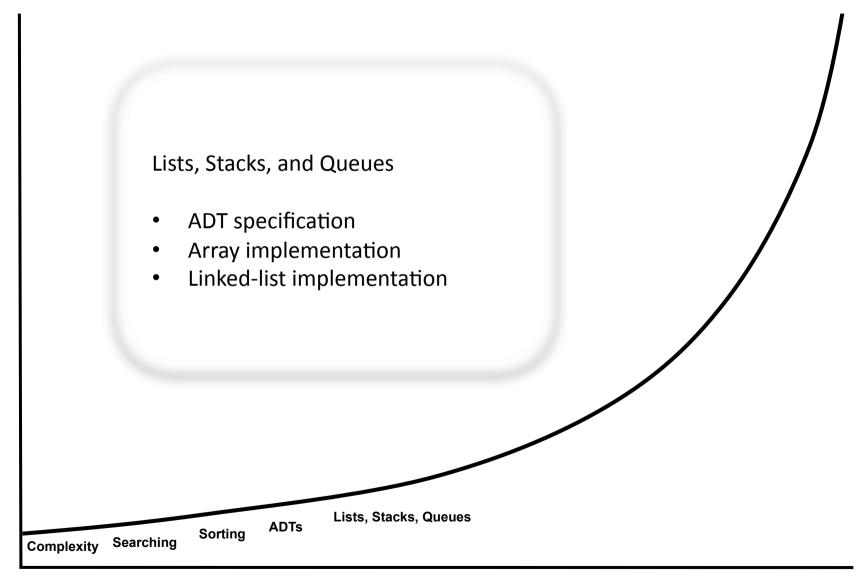
```
/* Quicksort: assume A[R] contains a sentinel */
void quicksort (int A[], int L, int R)
{
   int i, j, pivot;
  if (R > L) {
      i = L; j = R;
      pivot = A[i];
      do {
         while (A[i] <= pivot) i=i+1;
         while ((A[j] \ge pivot) && (j>1)) j=j-1;
         if (i < j) {
            exchange(A[i],A[j]); /*between partitions*/
            i = i+1; j = j-1;
         }
      } while (i <= j);</pre>
      exchange(A[L], A[j]); /* reposition pivot */
      quicksort(A, L, j);
      quicksort(A, i, R); /*includes sentinel*/
```



QS(A,1,6)						QS(A,1,4)		QS(A,5,6)	
L:	1					L:	1	L:	5
R:	6					R:	4	R:	6
i:	1	2	3	4	5	i:		i:	
j:	6	5	4			j:		j:	
pivot:	10					pivot:	4	pivot:	11

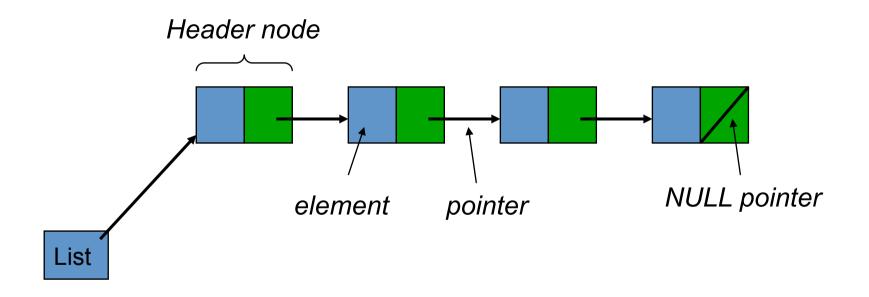


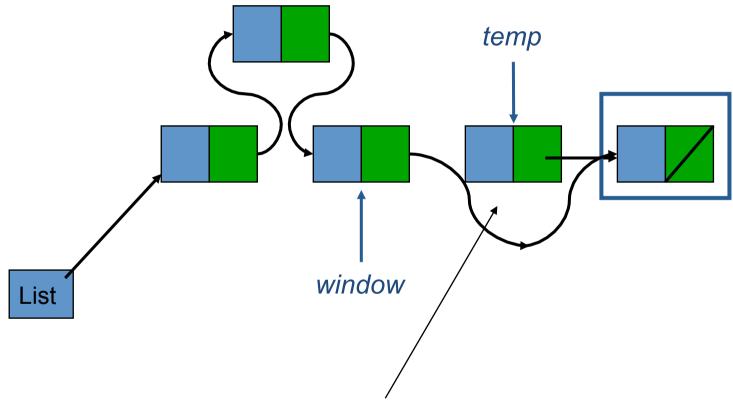




Example of List manipulation

$$w = Next(Last(L), L)$$
 $Insert(e, w, L)$
 $w = Previous(w, L)$
 $Delete(w, L)$



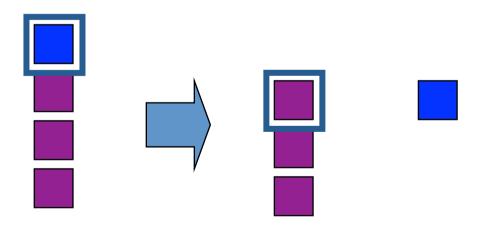


To delete a node at this window position we re-arrange the links and free the node

 $Pop: S \rightarrow E:$

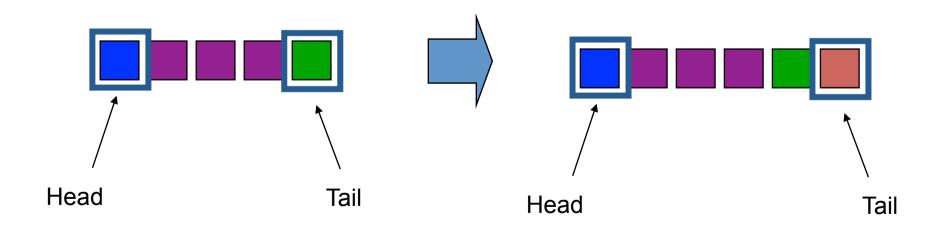
Pop(S)

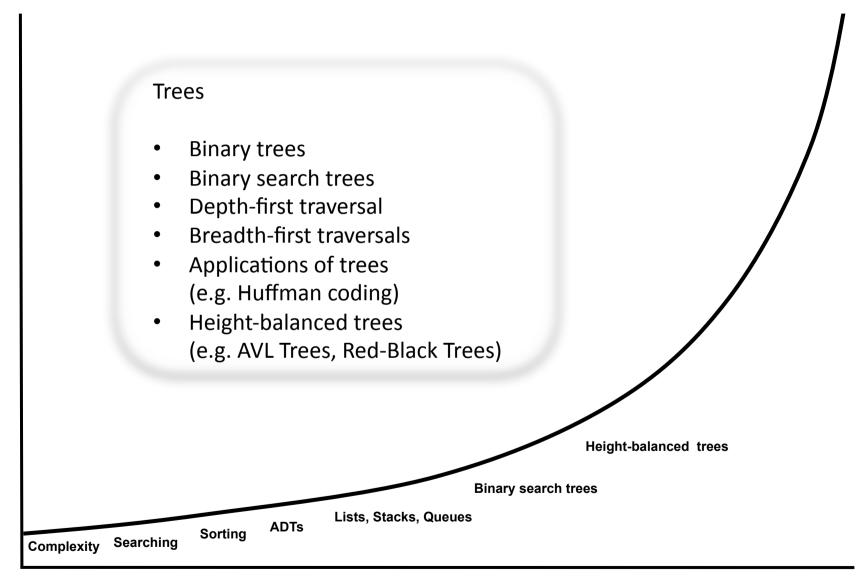
Remove the top element from the stack: i.e. return the top element and delete it from the stack

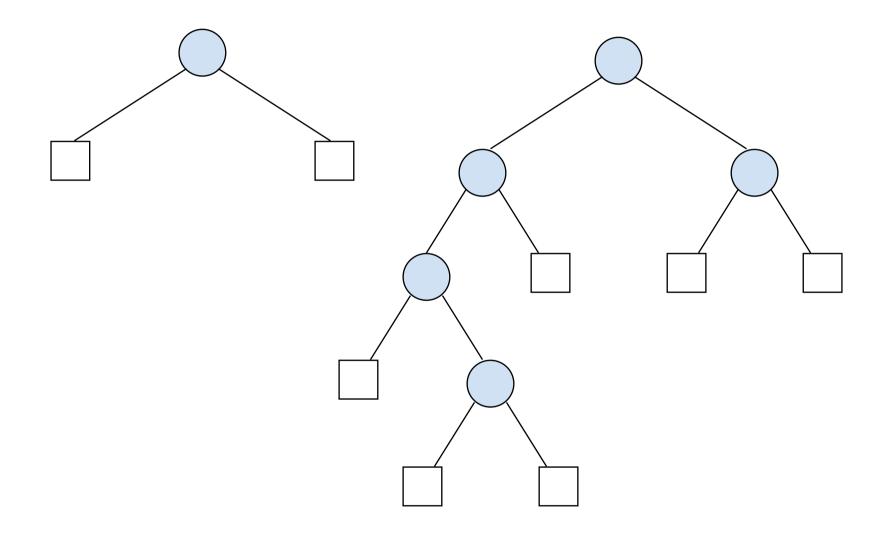


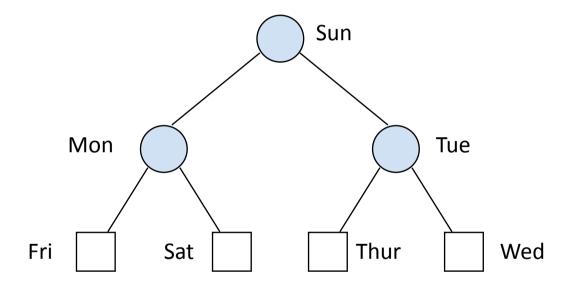
Enqueue: $\mathbf{E} \times \mathbf{Q} \rightarrow \mathbf{Q}$:

Enqueue(e, Q)
Add an element e the tail of the queue

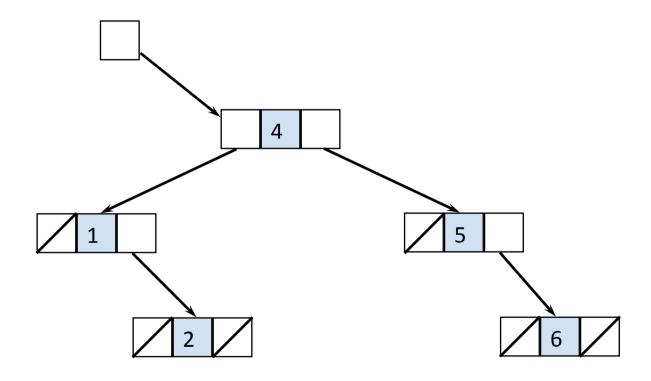




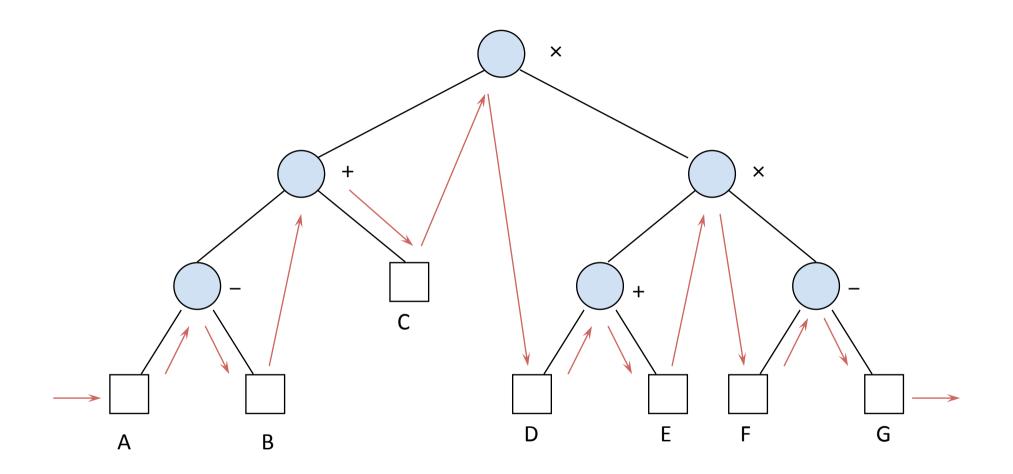




Binary Search Tree



Pointer Implementation

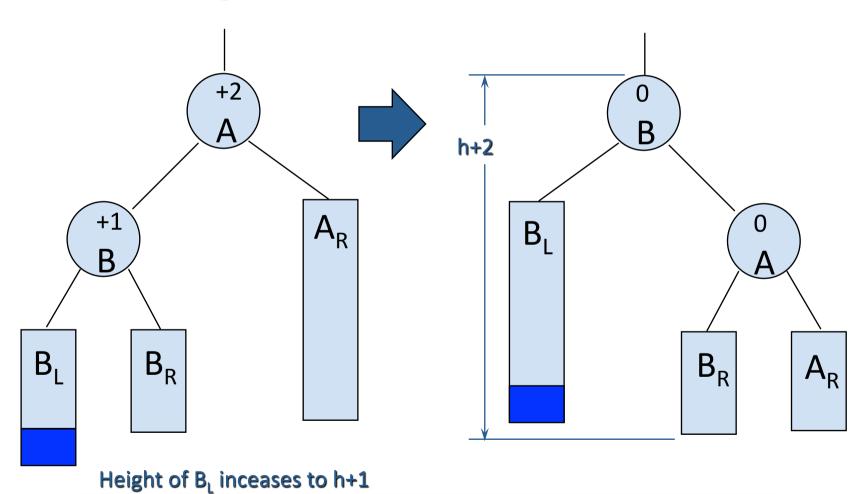


Inorder Traversal

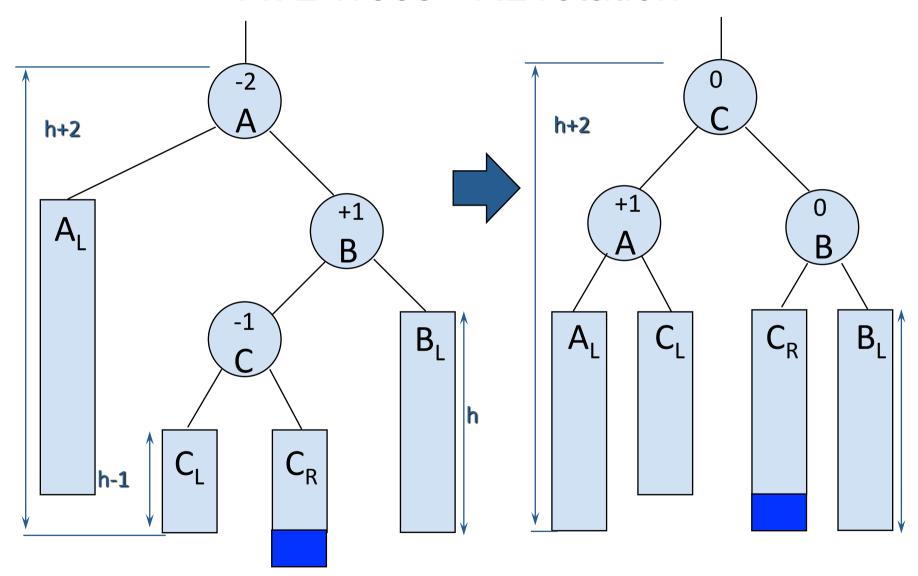
AVL Trees – Height Balancing

Unbalanced following insertion

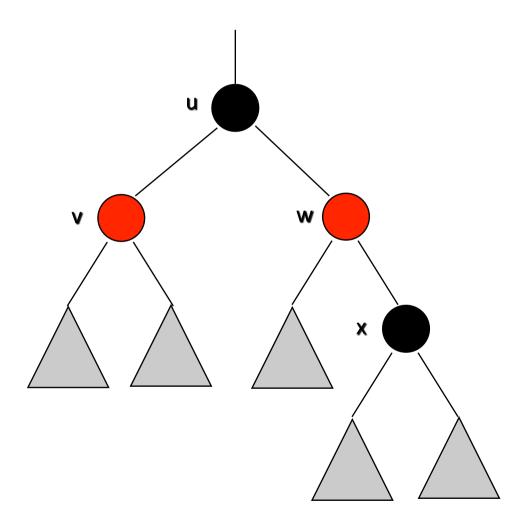
Rebalanced subtree



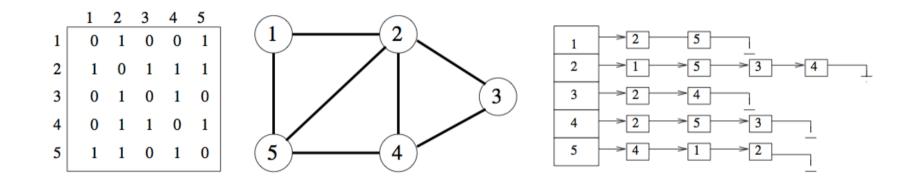
AVL Trees - RL rotation



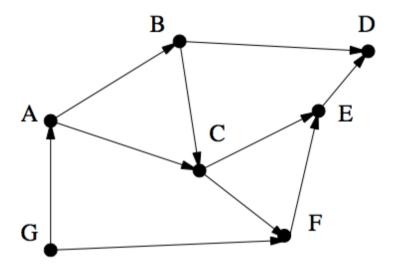
Red-Black Height-balanced Trees



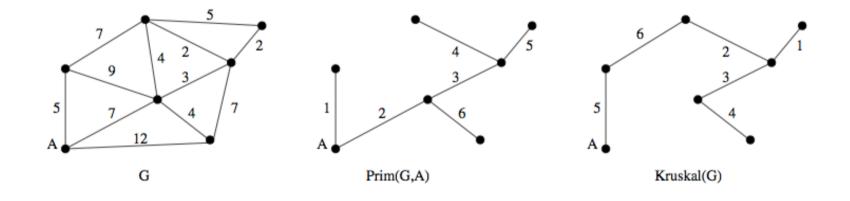




Adjacency matrix and list implementations of a graph



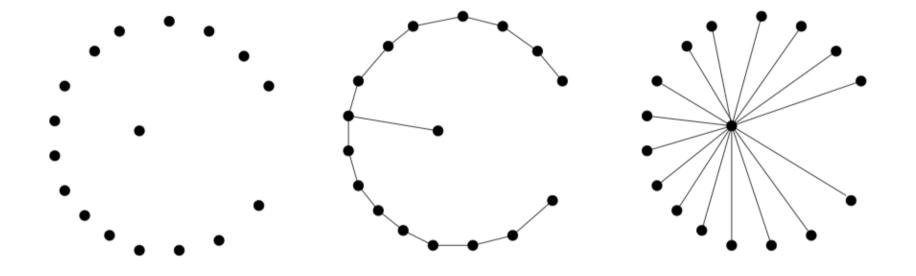
A DAG with only one topological sort (G,A,B,C,F,E,D)



Minimum Spanning Trees

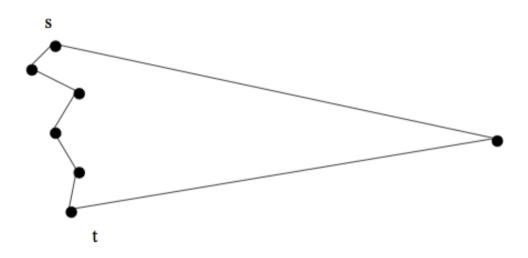
Tree formed from subset of graph edges that connects all vertices and minimizes the total path length

Copyright © D. Vernon 2014

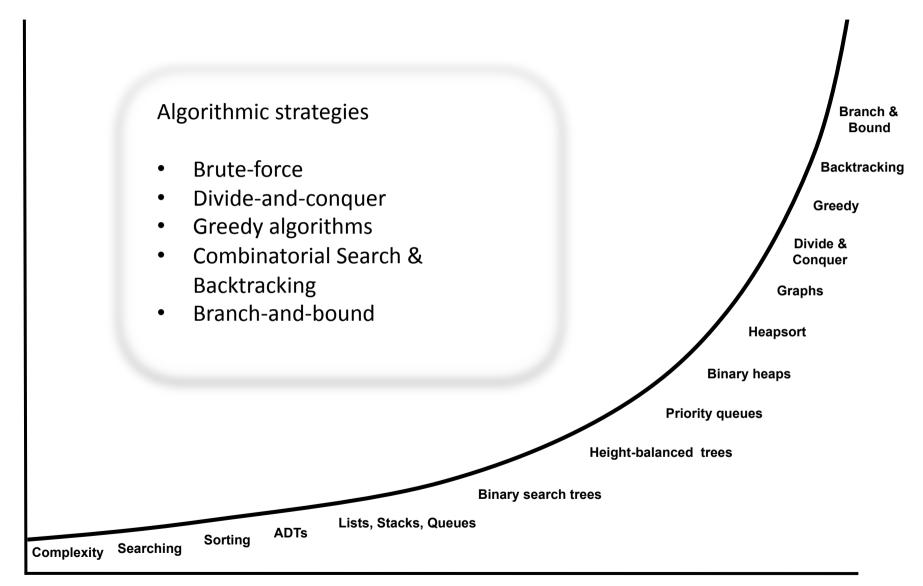


Minimum Spanning Tree

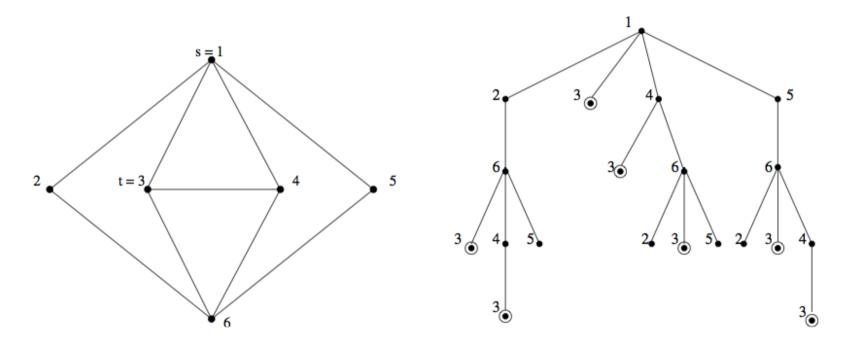
Shortest Path from Centre Spanning Tree



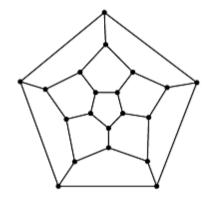
The shortest path from s to t may pass through many intermediate vertices



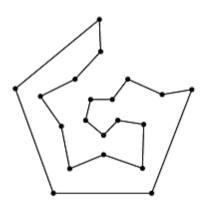
Combinatorial Search and Heuristic Methods



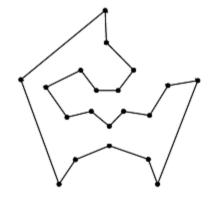
Search tree enumerating all simple s-t paths in the given graph (left).



Typical Input for HCP



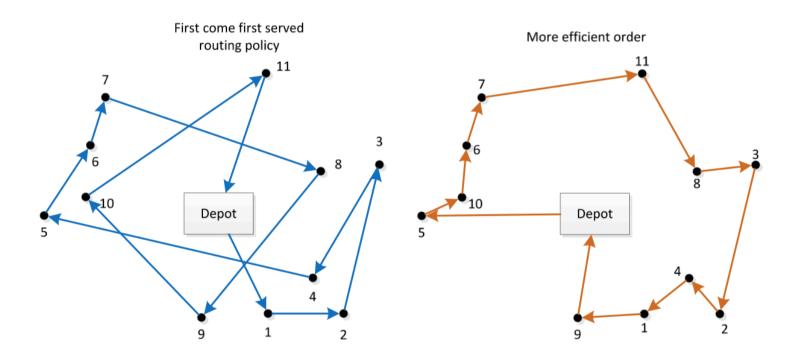
Hamiltonian cycle for the graph

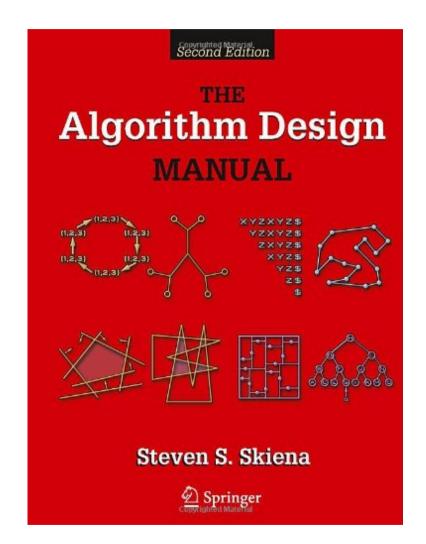


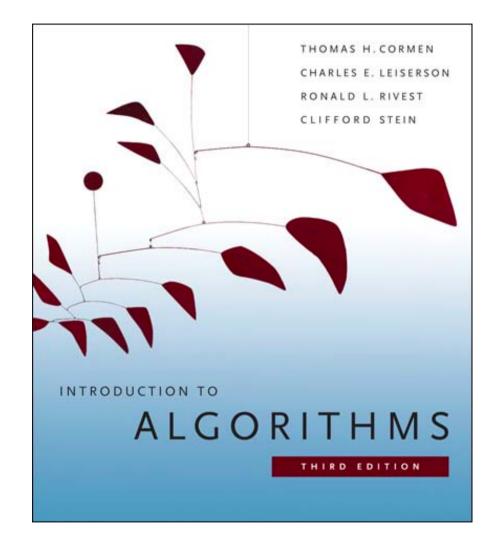
Another Hamiltonian cycle for the same graph in

A Hamiltonian cycle for a given graph G=(V, E) consists on finding an ordering of the vertices of the graph G such that each vertex is visited exactly once

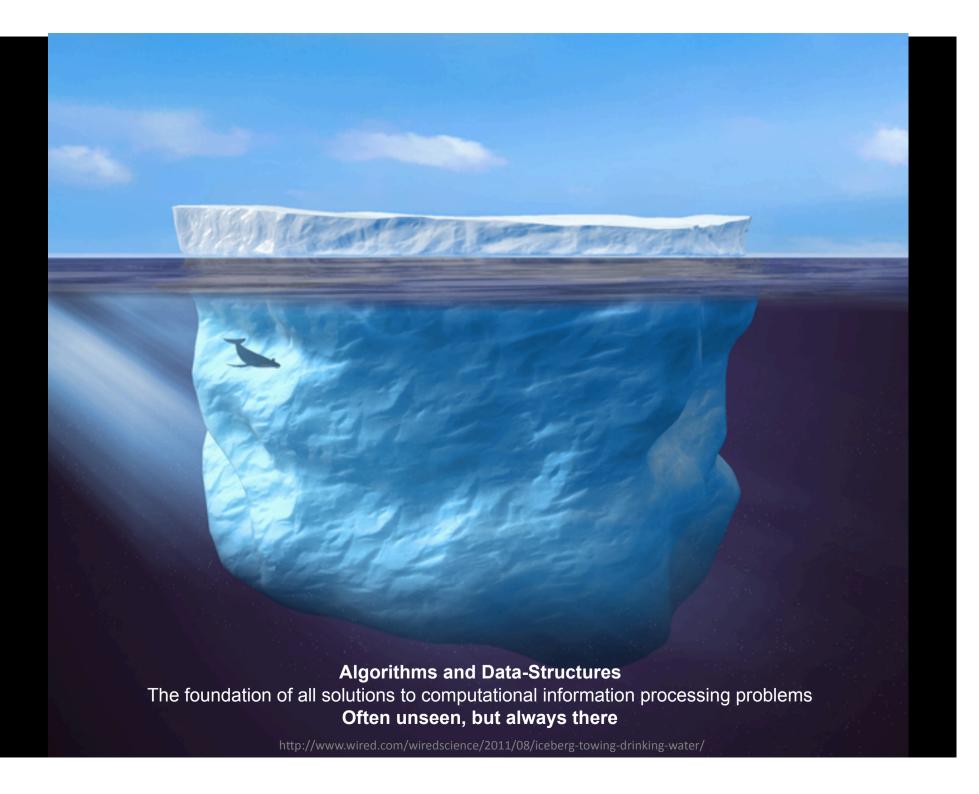
Travelling Salesman Problem ... or, a variant, the vehicle routing problem



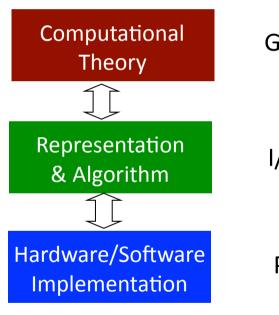




See www.algorist.com for online resources



Marr's Hierarchy of Abstraction / Levels of Understanding Framework



Goal, logic, strategy, model

I/O representation, transformation algorithm

Physical realization