
The Software Development Life Cycle 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 1: Introduction

Lecture 1: Levels of abstraction. The software development life cycle.
Formalisms for representing algorithms.

The Software Development Life Cycle 2 Data Structures and Algorithms for Engineers

Muḥammad ibn Mūsā al-Khwārizmī
يمزراوخلاىسومنبدمحم

Born approximately 780, died between 835 and 850
Persian mathematician and astronomer

from the Khorasan province of present-day Uzbekistan

The word algorithm is derived from his name

The Software Development Life Cycle 3 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 4 Data Structures and Algorithms for Engineers

Algorithms + Data Structures = Programs

Inventor of Pascal and Modula

Niklaus Wirth, 1976

Inventor of Pascal and Modula
programming languages
Winner of Turing Award 1984

1969

The Software Development Life Cycle 5 Data Structures and Algorithms for Engineers

Algorithms + Data Structures = Programs

Information Processing:
Representation & Transformation

Input Output

The Software Development Life Cycle 6 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Goal, logic, strategy, model

I/O representation, transformation algorithm

Physical realization

Loose coupling

Loose coupling

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

D. Marr and T. Poggio. "From understanding computation to understanding neural circuitry", in E. Poppel, R. Held, and J. E. Dowling,
editors, Neuronal Mechanisms in Visual Perception, volume 15 of Neurosciences Research Program Bulletin, pages 470–488. 1977.
D. Marr. Vision. Freeman, San Francisco, 1982.
T. Poggio. The levels of understanding framework, revised. Perception, 41:1017–1023, 2012.

The Software Development Life Cycle 7 Data Structures and Algorithms for Engineers

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

 “Trying to understand perception by studying only neurons is like trying to understand bird
flight by studying only feathers: it just cannot be done.
In order to understand bird flight, we have to understand aerodynamics;
only then do the structure of feathers and the different shapes of birds’ wings make sense”

 Marr, D. Vision, Freeman, 1982.

The Software Development Life Cycle 8 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Sorting a List

Given a sequence of n keys a1, … , an

Find the permutation (reordering)
such that ai £ aj
1 £ i, j £ n

The Software Development Life Cycle 9 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Bubble Sort

Insertion Sort

Quick Sort

Merge Sort, …

Key point: different computational complexity

Sorting a List

The Software Development Life Cycle 10 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Sorting a List

The Software Development Life Cycle 11 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Sorting a List

The Software Development Life Cycle 12 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

The Software Development Life Cycle 13 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

DFT: Discrete Fourier Transform

FFT: Fast Fourier Transform

FFTW: Fastest Fourier Transform in the West

Key point: different computational complexity

The Software Development Life Cycle 14 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

The Software Development Life Cycle 15 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

The Software Development Life Cycle 16 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Marr’s Levels of Understanding Framework updated 2012 by T. Poggio

Learning &
Development Calibrating & improving the model

The Software Development Life Cycle 17 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Marr’s Levels of Understanding Framework updated 2012 by T. Poggio

Evolution

Learning &
Development Calibrating & improving the model

Generating new models

The Software Development Life Cycle 18 Data Structures and Algorithms for Engineers

Life Cycle Models

The Software Development Life Cycle 19 Data Structures and Algorithms for Engineers

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

The Software Development Life Cycle 20 Data Structures and Algorithms for Engineers

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

The Software Development Life Cycle 21 Data Structures and Algorithms for Engineers

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Waterfall Model
Software development Life Cycle

The Software Development Life Cycle 22 Data Structures and Algorithms for Engineers

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Life Cycle Models (Software Process Models):

 Waterfall (& variants, e.g. V)
 Evolutionary
 Re-use
 Hybrid
 Spiral
 …

The Software Development Life Cycle 23 Data Structures and Algorithms for Engineers

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Software Development Methodologies:

Structured
 Yourdon Structured Analysis (YSA)
 Jackson Structured Analysis (JSA)
 Structured Analysis and Design Technique (SADT)

Object-oriented analysis, design, programming

Component-based software engineering (CBSE)

The Software Development Life Cycle 24 Data Structures and Algorithms for Engineers

Software Development Life Cycle

1. Problem identification

2. Requirements elicitation

3. Problem modelling

4. System analysis & specification

5. System design

6. Module implementation and system integration

7. System test and evaluation

8. Documentation

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

The Software Development Life Cycle 25 Data Structures and Algorithms for Engineers

Software Development Life Cycle

1. Problem identification

– Normally requires experience

– Theoretical issues: appropriate models (problem domain)

– Technical issues: tools, OS, API, libraries (solution domain)

The Software Development Life Cycle 26 Data Structures and Algorithms for Engineers

Software Development Life Cycle

2. Requirements elicitation

– Talk to the client (by talk, I mean counsel and coach)
– Document agreed requirements

 What it does, what it doesn’t do, how the user is to use it or how it communicates with the user,
what messages it displays, how it behaves when the user asks it to do something it expects, and
especially how it behaves when the user asks it to do something it doesn’t expect

– Validate requirements with client
– Repeat until mutual understanding converges
– But beware …

The Software Development Life Cycle 27 Data Structures and Algorithms for Engineers

Software Development Life Cycle

2. Requirements elicitation

Customer to a software engineer:

“I know you believe you understood
what you think I said,
but I am not sure you realize
that what you heard is not what I meant”.

R. Pressman

The Software Development Life Cycle 28 Data Structures and Algorithms for Engineers

Software Development Life Cycle

3. Problem modelling

– Identify theory needed to model and solve the problem

• Ideally, identify several, compare them, and choose the best (i.e., most appropriate)

• Use criteria derived from your functional and non-functional requirements

– Create a rigorous – ideally mathematical – description
 Graph theory, Fourier theory, linear system theory, information theory, …

– If you don’t have a model, you aren’t doing engineering

• Connecting components (or lines of code) together is not engineering

• Without a model, you can’t analyze the system and make firm statement about
– Robustness
– Operating parameters
– Limitations

The Software Development Life Cycle 29 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

– Identify
• The system functionality
• The operational parameters (conditions under which your system will operate, including required

software and hardware systems)
• Limitations & restrictions
• User interface or system interface

– Including
• Functional model
• Data model
• Process-flow model
• Behavioural model

The Software Development Life Cycle 30 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Functional model

– Hierarchical functional decomposition tree

– Modular decomposition (typically)

– Each leaf node in the tree:
• Short description of functionality, i.e. the input/output transformation
• Information (data) input

• Information (data) output

– System architecture diagram
• Network of components at first or second level of decomposition

The Software Development Life Cycle 31 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 32 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 33 Data Structures and Algorithms for Engineers

Sensors personDetection

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

 /naoqi_driver/camera/depth/image_raw

soundDetection /naoqi_driver/audio

 faceDetection

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

 overtAttention

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

robotLocalization

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

 /naoqi_driver/odom

 /naoqi_driver/imu/base

 /joint_states

 /personDetection/data

behaviorController

 /personDetection/data

 speechEvent

 /soundDetection/signal

 /soundDetection/direction

 /faceDetection/data

 /speechEvent/text

 tabletEvent

knowledgeBase

/tabletEvent/prompt_and_get_response

 /knowledgeBase/query

 /overtAttention/set_mode
 /overtAttention/set_activation

animateBehaviour

/animateBehaviour/set_activation

gestureExecution/gestureExecution/perform_gesture

 robotNavigation

/robotNavigation/set_goal

 textToSpeech

/textToSpeech/say_text

 /overtAttention/mode

Actuators

 /pepper_dcm/Head_controller/follow_joint_trajectory

 /cmd_vel

 /pepper_dcm/RightHand_controller/follow_joint_trajectory

 /pepper_dcm/LeftHand_controller/follow_joint_trajectory

 /pepper_dcm/RightArm_controller/follow_joint_trajectory

 /pepper_dcm/LeftArm_controller/follow_joint_trajectory

 /pepper_dcm/Pelvis_controller/follow_joint_trajectory

 /cmd_vel

 /pepper_dcm/RightHand_controller/follow_joint_trajectory
 /pepper_dcm/LeftHand_controller/follow_joint_trajectory
 /pepper_dcm/RightArm_controller/follow_joint_trajectory
 /pepper_dcm/LeftArm_controller/follow_joint_trajectory
 /pepper_dcm/Pelvis_controller/follow_joint_trajectory
 /cmd_vel

 /robotLocalization/pose

 /robotLocalization/pose
 /robotLocalization/pose

 /robotLocalization/pose

 /knowledgeBase/query

 /robotLocalization/reset_pose

 /cmd_vel

The Software Development Life Cycle 34 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Modular decomposition … Dave Parnas

 “In this context "module" is considered to be a responsibility assignment rather than a subprogram.

 The modularizations include the design decisions which must be made before the work on
independent modules can begin.”

 D.L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, Communications of the ACM, Vol. 15, No.
12, Dec 1972

 Also responsible for the concepts of data hiding and encapsulation, cf. ADTs in Lecture DSA02-04

The Software Development Life Cycle 35 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Data model

– Data entities (not data structures) to represent
• Input, temporary, output data

– Data dictionary
• What the data entities mean
• How they are composed
• How they are structured
• Valid value ranges
• Dimensions (e.g., velocity m/s)
• Relationships between data entities

– Entity-relationship model

The Software Development Life Cycle 36 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Process-flow model

– What data flows into and out of each functional block
(into and out of the leaf nodes in the functional decomposition tree)

– Data-flow diagrams
• Organized in several levels: DFD level 0, DFD level 1, …
• Level 0 DFD: system architecture diagram

The Software Development Life Cycle 37 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Process-flow model

– DFDs model the transformation of inputs into outputs

– Processes/Functions represent individual functions that the system carries out and transform
inputs to outputs

– Flows represent connections between processes and the flow of information and data between
processes

– Data Stores show collections or aggregations of data

– I/O Entities show external entities with which the system communicates
• They are the sources and consumers of data
• They can be users, groups, organizations, systems,...

The Software Development Life Cycle 38 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 39 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 40 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Behavioural model

– Behaviour over time
– System states

– Triggers that cause transition
(from state to state)

– Functional block associated with each state
– State transition diagram

• Finite state machine
• Finite automaton

– Control-flow diagram
 (version of DFD with events and triggers on each process)

The Software Development Life Cycle 41 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 42 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 43 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Definition of all the user and system interfaces

– User manual

– User interface storyboard

The Software Development Life Cycle 44 Data Structures and Algorithms for Engineers

Software Development Life Cycle

4. System analysis & specification

Specification of non-functional characteristics

– Dependability

– Security

– Composability

– Portability

– Reusability

– Interoperability

 Often reflect the quality of the system

The Software Development Life Cycle 45 Data Structures and Algorithms for Engineers

Software Development Life Cycle

5. Software design

– For each module (i.e., leaf node in the hierarchical decomposition tree / system architecture
diagram / lowest level DFD)

– Identify several design options & compare them

• Algorithms
• Data-structures
• Files
• Interface protocols

– Choose the best design

• You have to define what ‘best’ means for your particular project

• Use criteria derived from the functional and non-functional requirements

Effect the functional input-output transformation,
i.e., realize computational theory

Representation of the input, temporary, and output data

The Software Development Life Cycle 46 Data Structures and Algorithms for Engineers

Software Development Life Cycle

6. Module implementation and system integration

– Use a modular construction approach

– Don’t attempt the so-called Big Bang approach

– Build (and test) each component or modular sub-system individually

• Driver (dummy calling routine) … test harness

• Stub (dummy called routine)

– Link or connect them together, one component at a time.

The Software Development Life Cycle 47 Data Structures and Algorithms for Engineers

Sensors personDetection

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

 /naoqi_driver/camera/depth/image_raw

soundDetection /naoqi_driver/audio

 faceDetection

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

 overtAttention

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

robotLocalization

 /naoqi_driver/camera/front/image_raw

 /naoqi_driver/camera/stereo/image_raw

 /naoqi_driver/odom

 /naoqi_driver/imu/base

 /joint_states

 /personDetection/data

behaviorController

 /personDetection/data

 speechEvent

 /soundDetection/signal

 /soundDetection/direction

 /faceDetection/data

 /speechEvent/text

 tabletEvent

knowledgeBase

/tabletEvent/prompt_and_get_response

 /knowledgeBase/query

 /overtAttention/set_mode
 /overtAttention/set_activation

animateBehaviour

/animateBehaviour/set_activation

gestureExecution/gestureExecution/perform_gesture

 robotNavigation

/robotNavigation/set_goal

 textToSpeech

/textToSpeech/say_text

 /overtAttention/mode

Actuators

 /pepper_dcm/Head_controller/follow_joint_trajectory

 /cmd_vel

 /pepper_dcm/RightHand_controller/follow_joint_trajectory

 /pepper_dcm/LeftHand_controller/follow_joint_trajectory

 /pepper_dcm/RightArm_controller/follow_joint_trajectory

 /pepper_dcm/LeftArm_controller/follow_joint_trajectory

 /pepper_dcm/Pelvis_controller/follow_joint_trajectory

 /cmd_vel

 /pepper_dcm/RightHand_controller/follow_joint_trajectory
 /pepper_dcm/LeftHand_controller/follow_joint_trajectory
 /pepper_dcm/RightArm_controller/follow_joint_trajectory
 /pepper_dcm/LeftArm_controller/follow_joint_trajectory
 /pepper_dcm/Pelvis_controller/follow_joint_trajectory
 /cmd_vel

 /robotLocalization/pose

 /robotLocalization/pose
 /robotLocalization/pose

 /robotLocalization/pose

 /knowledgeBase/query

 /robotLocalization/reset_pose

 /cmd_vel

The Software Development Life Cycle 48 Data Structures and Algorithms for Engineers

Software Development Life Cycle

6. Module implementation and system integration

You Must Validate Data

– Validate input

– Validate parameters

– ‘Constraints on data and computation usually take the form of wrappers – access routines (or methods) that
prevent bad data from being stored or used and ensure that all programs modify data through a single,
common interface’

 J. A. Whittaker and S. Atkin, “Software Engineering Is Not Enough”, IEEE Software, July/August 2002, pp. 108-115.

The Software Development Life Cycle 49 Data Structures and Algorithms for Engineers

Software Development Life Cycle

7. Unit, integration, & acceptance test and evaluation

– NOT about showing the system works

– Showing it meets specifications

– Showing it meets requirements

– Showing the system doesn’t fail (stress testing)

– Three goals of testing

1. Verification

2. Validation

3. Evaluation

The Software Development Life Cycle 50 Data Structures and Algorithms for Engineers

Software Development Life Cycle

7. System test and evaluation

1. Verification

• Has the system been built correctly?
• Is it computing the right answer (producing correct data)?

• Extensive test data sets

• Exercise each module or computation
– Independently

– As a whole system

• Live data (not just data in test files)

The Software Development Life Cycle 51 Data Structures and Algorithms for Engineers

Software Development Life Cycle

7. System test and evaluation

2. Validation

• Does it meet the client’s requirements?

• Can the user adjust all the main parameters on which operation depends? (List them!)

The Software Development Life Cycle 52 Data Structures and Algorithms for Engineers

Software Development Life Cycle

7. System test and evaluation

3. Evaluation

• How good is the system?
• Hallmark of good engineering: assess performance and benchmark against other systems

• Identify quantitative metrics

• Identify qualitative metrics

• Vary parameters and collect statistics
• Evaluate against ground-truth data (data for which you know the correct result)

• Evaluate against other systems (benchmarking)

The Software Development Life Cycle 53 Data Structures and Algorithms for Engineers

Software Development Life Cycle

7. System test and evaluation

– Tests need to be automated (run several times as the system is tuned)

– Regression testing

– Types of test
• Unit Tests … individual modules / components
• Integration Tests … sub-systems and system

• Acceptance Tests … system

The Software Development Life Cycle 54 Data Structures and Algorithms for Engineers

Software Development Life Cycle

8. Documentation

– Internal documentation
• Documentation comments

– Intended to be extracted automatically by, e.g., Doxygen tool

– Describe the functionality from an implementation-free perspective
– Purpose is to explain how to use the component through its application programming

interface (API), rather than understand its implementation

• Implementation comments
– Overviews of code

– Provide additional information that is not readily available in the code itself
– Comments should contain only information that is relevant to reading and understanding

the program

• Use standards

The Software Development Life Cycle 55 Data Structures and Algorithms for Engineers

Software Development Life Cycle

8. Documentation

 “There is rarely such a thing as too much documentation …

 Documentation – often exceeding the source code in size – is a requirement, not
an option.”

 J. A. Whittaker and S. Atkin, “Software Engineering Is Not Enough”, IEEE Software, July/August 2002,
pp. 108-115.

The Software Development Life Cycle 56 Data Structures and Algorithms for Engineers

Software Development Life Cycle

8. Documentation

– External documentation
• User manual

• Reference manual

• Design documents

The Software Development Life Cycle 57 Data Structures and Algorithms for Engineers

The Software Development Life Cycle 58 Data Structures and Algorithms for Engineers

Formalisms for Representing Algorithms

Informal definition

An algorithm is a systematic procedure for transforming information from one (input) state to
another (output) state

Information Processing:
Representation & Transformation

Input Output

The Software Development Life Cycle 59 Data Structures and Algorithms for Engineers

Definition of an Algorithm

Typically, there is a strong link between an algorithm and the information
representation, i.e., the data structure

The Software Development Life Cycle 60 Data Structures and Algorithms for Engineers

Formalisms for Representing Algorithms

Required characteristics

– Simple, clear, and intuitive (as far as possible)

– As rigorous as practical – but keeping the math as simple as possible

– Language neutral

– Factor out the hardware and operating systems

– Focus on algorithmic essence

– Properly scoped (not too big, not too trivial or obvious)

The Software Development Life Cycle 61 Data Structures and Algorithms for Engineers

Practical Representations

• Some candidate representations
– Pseudo Code

– Flow Charts

– State Diagrams

– Formalisms

– Modeling Methodologies (e.g., UML)

• Many engineers use these, but some use them
– At the wrong time

– To model the wrong kinds of things (poor scoping)

– Incorrectly

– Mix “what is needed” with “how we will build it”

The Software Development Life Cycle 62 Data Structures and Algorithms for Engineers

Pseudo Code

• Pseudo code is an informal abstraction of an algorithm that:

– uses the structural conventions of a programming language

– is simplified for human reading rather than machine compilation

– omits details that are not essential for algorithmic analysis

– shows the temporal relation of instruction execution (sequencing)

• Despite many attempts, no standard for pseudo code syntax currently exists

The Software Development Life Cycle 63 Data Structures and Algorithms for Engineers

Pseudo Code

Declaration
type variable;
integer A; string name;

Assignment
variable = value;
a = 45; x = y

Basic mathematical operators
result = variable_value operator variable_value
y = a+b; z = 5.0/e; j = k*l; r = 2*(22/7)*(r^2)

Basic functions, subroutines, methods
read(), write(), print(),…

Assumed functions should be clearly defined prior to use; more on functions, subroutines, and methods later

The Software Development Life Cycle 64 Data Structures and Algorithms for Engineers

Pseudo Code

Control Structures

– Direct sequence
do X, then do Y

– Conditional branching
if Q then do X, else do Y

– Bounded iteration
do Z exactly X times

– Conditional or unbounded iteration
do Z until Q becomes true

while Q is true do Z

The Software Development Life Cycle 65 Data Structures and Algorithms for Engineers

Pseudo Code

Example: algorithm to find the greatest common
denominator (GCD)

• How the read()function work is not important for our
analysis

• We focus on the essence of the algorithm, not on
checking input, formatting output, error handling, and so
forth

• Now that the algorithm has been distilled to its essence
we can analyze: how do we know we solved the
problem? how quickly does it compute the answer?

a = read()
b = read()
if a = 0
 return b
while b ≠ 0
 if a > b
 a := a − b
 else
 b := b − a
return a

The Software Development Life Cycle 66 Data Structures and Algorithms for Engineers

Pseudo Code

• Pseudo code is attractive because

– It looks like the computer-interpretable code

– It is complete in terms of describing computer algorithms

• In practice, pseudo code is sometimes extended and violates notions of minimalism

– Pseudo code should only support what is necessary to describe the algorithm – and no more!

– Sometimes, pseudo code is used to describe entire applications, and becomes too cumbersome
to support analysis of algorithms

The Software Development Life Cycle 67 Data Structures and Algorithms for Engineers

Flowcharts

• Graphical representation of the behavior of an algorithm
– Represents the steps of an algorithm by geometric shapes

– Temporal relationships are shown by connections

• Developed in the early 20th century for use in industrial engineering
– Used in many domains for the last 100 years

– John von Neumann developed the flow chart while working at IBM as a means to describe how
programs operated

– Flowcharts are still used to describe computer algorithms- UML activity diagrams are an
extension of the flowchart

• There are many flowchart notation standards

The Software Development Life Cycle 68 Data Structures and Algorithms for Engineers

Flowcharts

The Software Development Life Cycle 69 Data Structures and Algorithms for Engineers

Flowcharts

Strengths and weaknesses

– The set of defined constructs is both minimal and complete

– The resulting algorithms can be hard to understand and analyze

– Graphical methods do not scale well – very difficult to represent large or complex algorithms

– Hard to distribute, share, and reuse

The Software Development Life Cycle 70 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

• Behavioral models composed of a finite number of states, transitions between
those states, and actions

• FSMs are represented by state diagrams

• State diagrams have been used for 50+ years in software, hardware, and system
design and there are a variety of notations and approaches

– Traditional Mealy-Moore state machines

– Harel state machines

– UML state machines

The Software Development Life Cycle 71 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

A traditional (e g. Mealy-Moore) type of FSM is a quintuple (Σ, S, s0, δ, F)

Σ is the input alphabet where Σ is finite ∧ Σ ≠ ∅
S is a set of states where S is finite ∧ S ≠ ∅
s0 is an initial state where, s0 ∈ S
δ(q, x) is the state transition function where q ∈ S ∧ x ∈ Σ

(If the FSM is nondeterministic, then δ could be a set of states)

F is the set of final states where F ⊆ of S ∪ {∅}

The Software Development Life Cycle 72 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

δ(q, x) may be a partial function:

δ(q, x) does not have to be defined for every combination of q and x

If it is not defined, then the FSM can enter an error state or reject the input

The Software Development Life Cycle 73 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

The following (limiting) assumptions are made regarding traditional (deterministic)
Mealy-Moore FSAs

– an FSA can only be in one state at a time, and must be in exactly one state at all times

– States of one FSA are independent from the states of all other FSAs

– Transitions between states are not interruptible

– Actions are atomic and run to completion

– Actions may be executed on entry into a state, on exit from a state, or during the transition
from one state to another

The Software Development Life Cycle 74 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

The Software Development Life Cycle 75 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

Transitions indicate state change from one state to another that are described by

– a condition that needs to be fulfilled to enable a transition

– an action which is an activity that is to be performed at some point in the transition

• Entry action: which is performed when entering the state
• Exit action: which is performed when exiting the state

• Input action: which is performed depending on present state and input conditions

• Transition action: which is performed when performing a certain transition

The Software Development Life Cycle 76 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

• Popular form of FSM are the Harel State Diagrams

• A variant which was adopted for Unified Modeling Language (UML) State Machines

• There are two types of UML State Machines
– Behavioral State Machines (BSM)

 Model the behaviour of objects

– Protocol State Machines (PSM)
Model protocols of interfaces and ports

• Most use users of UML don’t differentiate

The Software Development Life Cycle 77 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

FSAs are limited and it is difficult to model concurrency, complex object states,
threads, multi-tasking

UML state machines extend the traditional automata theory in several ways that
include

– nested state

– guards

– actions

– activities

– orthogonal components

– concurrent state models

The Software Development Life Cycle 78 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML State Machines – Nested States

Outer state is called the superstate

Inner states are called substates

The Software Development Life Cycle 79 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML State Machines – Actions

You can specify state entry and exit actions

The Software Development Life Cycle 80 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML State Machines – Actions

You can nest entry and exit actions

The Software Development Life Cycle 81 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML State Machines – Activities

• Like actions except they are performed as long as the state is active

• Activities are indicated with a do: statement

The Software Development Life Cycle 82 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML State Machines – Orthogonal Components

The Software Development Life Cycle 83 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML State Machines – Concurrent State Models

 Concurrent threading can be modelled

The Software Development Life Cycle 84 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML State Machines – Concurrent State Models

 Forking / Joining can be modelled

The Software Development Life Cycle 85 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

• In traditional FSA, transitions carry little or no information

• UML state machine transitions carry a lot of information:

– Event Name - Name of triggering event

– Parameters - data passed with event

– Guard - condition that must be true for the transition to occur

– Action List - list of actions executed

– Event List - list of events executed

The Software Development Life Cycle 86 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

• The key problem with FSM technologies is that they simply do not scale up well

– State explosion is a common problem

– Care must be taken to restrict the scope of what is being modeled

• FSMs often abstract away the very algorithms we want to model

– Care must be taken to maintain a proper and consistent level of abstraction

– Can violate notions of completeness

The Software Development Life Cycle 87 Data Structures and Algorithms for Engineers

Finite State Machines (FSM)

UML state machines are really more like a notation than traditional FSMs

– Violates minimalism

– Any benefit gain in applying mathematical rigor may be lost

