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Complexity of Algorithms

– Performance of algorithms, time and space tradeoff, worst case and average case 
performance

– Big O notation

– Recurrence relationships

– Analysis of complexity of iterative and recursive algorithms

– Recursive vs. iterative algorithms: runtime memory implications

– Complexity theory: tractable vs intractable algorithmic complexity

– Example intractable problems: travelling salesman problem, Hamiltonian circuit, 3-colour 
problem, SAT, cliques

– Determinism and non-determinism

– P, NP, and NP-Complete classes of algorithm
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Motivation

Complexity Theory

– Easy problems (sort a million items in a few seconds)

– Hard problems (schedule a thousand classes in a hundred years)

– What makes some problems hard and others easy (computationally) and how do we make 
hard problems easier?

– Complexity Theory addresses these questions
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Complexity Analysis

Why do we write programs?

– to perform some specific tasks

– to solve some specific problems

– We will focus on “solving problems”

– What is a “problem”?

– We can view a problem as a mapping of “inputs” to “outputs”
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For example, Find Minimum

Inputs Outputs

(1,4,9) 1

(5,2,3,7,2)

3

(6,5,3)

2

(2,2,6,8)

Complexity Analysis
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How to describe a problem?

– Input

• Describe what an input looks like

– Output

• Describe what an output looks like and how it relates to the input

Complexity Analysis
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Complexity Analysis

An instance is an assignment of values to the input variables

An instance of the Find Minimum function

N = 10
(a1, a2,…, aN) = (5,1,7,4,3,2,3,3,0,8)

Another instance of the Find Minimum Problem

N = 10

(a1, a2,…, aN) = (15,8,0,4,7,2,5,10,1,4)
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Input Output

(4,3,2,3,3,0,8) 0

Mapping

Mapping

Complexity Analysis

A problem can be considered as a black box
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Example: Sorting

 Input: A sequence of N numbers a1…an

 Output: the permutation (reordering) of the input sequence such that 
   a1 £ a2 £ … £ an  

Complexity Analysis
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How do we solve a problem?

 Write an algorithm that implements the mapping

 Takes an input in and produces a correct output

Input Output
Algorithm

or 
Program

Complexity Analysis
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Complexity Analysis

• How do we judge whether an algorithm is good or bad?

• Analyse its efficiency

– Determined by the amount of computer resources consumed by the 
algorithm

• What are the important resources?

– Amount of memory (space complexity)
– Amount of computational time (time complexity)
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Complexity Analysis

 Consider the amount of resources 

      i.e, memory space  and time

 that an algorithm consumes

    as a function of the size of the input to the algorithm
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Complexity Analysis

• Suppose there is an assignment statement in your program
   
x := x +1

• We’d like to determine:

– The time a single execution would take

– The number of times it is executed:  Frequency Count
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Time Complexity

• Product of execution time and frequency is approximately the total time taken

• But, since the execution time will be very machine dependent (and compiler 
dependent), we neglect it and concentrate on the frequency count

• Frequency count will vary from data set to data set 
(input to the algorithm)
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Time Complexity

Program 1

x := x + 1

Program 2
 
FOR i := 1 to n 
DO
   x := x + 1
END

Program 3

FOR i := 1 to n 
DO
   FOR j := 1 to n 
   DO
      x := x + 1   
   END
END

Frequency = 1

Frequency = n
Frequency = n2
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Time Complexity

• Program 1

– statement is not contained in a loop (implicitly or explicitly)
– Frequency count is 1

• Program 2

– statement is executed n times

• Program 3

– statement is executed n2 times
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Big-O Notation

• 1, n, and n2 are said to be different and increasing orders of magnitude 

(e.g., let n = 10 Þ 1, 10, 100 )

• We are interested in determining the order of magnitude of the time complexity of 
an algorithm
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Big-O Notation

Let’s look at an algorithm to print the nth term of the Fibonnaci sequence 

0 1 1 2 3 5 8 13 21 34 …
tn = tn-1 + tn-2 

t0 = 0 

t1 = 1
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Big-O Notation

1 procedure fibonacci {print nth term}
2    read(n)
3    if n<0
4       then print(error)
5         else if n=0 
6            then print(0)
7            else if n=1 
8               then print(1)
9               else
10                 fnm2 := 0;
11                 fnm1 := 1;
12                 FOR i := 2 to n DO
13                   fn := fnm1 + fnm2;
14                    fnm2 := fnm1;
15                    fnm1 := fn
16                 end
17                  print(fn);

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

n<0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0



Complexity of Algorithms 1                       20                       Data Structures and  Algorithms for Engineers 

Big-O Notation
n=0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 procedure fibonacci {print nth term}
2    read(n)
3    if n<0
4       then print(error)
5         else if n=0 
6            then print(0)
7            else if n=1 
8               then print(1)
9               else
10                 fnm2 := 0;
11                 fnm1 := 1;
12                 FOR i := 2 to n DO
13                   fn := fnm1 + fnm2;
14                    fnm2 := fnm1;
15                    fnm1 := fn
16                 end
17                  print(fn);
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Big-O Notation
n=1
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 procedure fibonacci {print nth term}
2    read(n)
3    if n<0
4       then print(error)
5         else if n=0 
6            then print(0)
7            else if n=1 
8               then print(1)
9               else
10                 fnm2 := 0;
11                 fnm1 := 1;
12                 FOR i := 2 to n DO
13                   fn := fnm1 + fnm2;
14                    fnm2 := fnm1;
15                    fnm1 := fn
16                 end
17                  print(fn);
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Big-O Notation
n>1
1
1
1
0
1
0
1
0
1
1
1
n
n-1
n-1
n-1
n-1
1

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 procedure fibonacci {print nth term}
2    read(n)
3    if n<0
4       then print(error)
5         else if n=0 
6            then print(0)
7            else if n=1 
8               then print(1)
9               else
10                 fnm2 := 0;
11                 fnm1 := 1;
12                 FOR i := 2 to n DO
13                   fn := fnm1 + fnm2;
14                    fnm2 := fnm1;
15                    fnm1 := fn
16                 end
17                  print(fn);
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Big-O Notation

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

n<0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

n=0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

n=1
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0

n>1
1
1
1
0
1
0
1
0
1
1
1
n
n-1
n-1
n-1
n-1
1
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Big-O Notation

• The cases where n < 0, n = 0, n =1 are not particularly instructive or interesting

• In the case where n > 1, we have the total statement frequency of

9 + n + 4(n-1) = 5n + 5
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Big-O Notation

• 9 + n + 4(n-1) = 5n + 5

• We write this as O(n), ignoring the constants

• This is called Big-O notation

• More formally, f (n) = O (g(n) )   
where g(n) is an asymptotic upper bound for f(n)
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• The notation f (n) = O (g(n)) has a precise mathematical definition

• Read f(n) = O(g(n)) as 
f of n is big-O of g of n

• Definition:
Let f, g: Z+ ® R+

 f(n) = O(g(n)) if there exist two constants c and k such that f(n) £ c g(n) for all n ³ k

Big-O Notation
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Suppose f(n)= 2n2+4n+10
and  f(n) = O(g(n)) where g(n)=n2

 Proof:
 f(n)= 2n2+4n+10
 f(n) £ 2n2+ 4n2+10n2 for n ³ 1
 f(n) £ 16n2    

 f(n) £ 16g(n)   where c = 16 and k =1
 

Big-O Notation
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Time & Space Complexity

• f(n) will normally represent the computing time of some algorithm

 Time complexity T(n)

• f(n) can also represent the amount of memory an algorithm will need to run

 Space complexity S(n)
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Time Complexity

• If an algorithm has a time complexity of O(g(n)) it means that its execution will take 
no longer than a constant times g(n)

• More formally, g(n) is an asymptotic upper bound for f(n)
   

Remember

• f(n) £ c g(n) 
 
 n is typically the size of the data set
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Time Complexity

O(1)     Constant (computing time)

O(n)     Linear (computing time)

O(n2)    Quadratic (computing time)

O(n3)    Cubic (computing time)

O(2n)    Exponential (computing time)

O(log n)  is faster than O(n) for sufficiently large n

O(n log n)  is faster than O(n2) for sufficiently large n
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Time Complexity
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log(n)

n

Time Complexity
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log(n)

n

n

n log(n)

Time Complexity
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Time Complexity

n10

n log(n)

n3

n2
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n10

n20
nn

1.1n

2n

3n

Time Complexity

Log Scale
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Time Complexity

f1(n) = 10 n + 25 n2

f2(n) = 20 n log n + 5 n

f3(n) = 12 n log n + 0.05 n2

f4(n) = n1/2 + 3 n log n

O(n2)

O(n log n)

O(n2) 

O(n log n)
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Time Complexity

Arithmetic of Big-O notation
 
 if  

  T1(n) = O(f(n)) and T2(n) = O(g(n)) 

then

  T1(n) + T2(n) = O(max(f(n), g(n)) 
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Time Complexity

Arithmetic of Big-O notation
 
 if 

  f(n) £ g(n)

then

  O(f(n) + g(n))= O(g(n)) 
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Time Complexity

Arithmetic of Big-O notation
 
 if 

  T1(n) = O(f(n)) and T2(n) = O(g(n)) 

 then

  T1(n) T2(n) = O(f(n) g(n)) 
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Time Complexity

Rules for computing the time complexity

– the complexity of each read, write, and assignment statement can be taken as O(1)

– the complexity of a sequence of statements is determined by the summation rule

– the complexity of an if statement is the complexity of the executed statements, plus the time for 
evaluating the condition
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Time Complexity

Rules for computing the time complexity

– the complexity of an if-then-else statement is the time for evaluating the condition plus the 
larger of the complexities of the then and else clauses

– the complexity of a loop is the sum, over all the times around the loop, of the complexity of the 
body and the complexity of the termination condition
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Time Complexity

• Given an algorithm, we analyse the frequency count of each statement and total 
the sum
  

• This may give a polynomial P(n):

 P(n) = ck nk + ck-1 nk-1 + ...+ c1 n + c0

where the ci are constants, ck are non-zero, and n is a parameter
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Time Complexity

If the big-O notation of a portion of an algorithm is given by:

 P(n) = O(nk)

   and on the other hand, if any other step is executed 2n times or more, we have: 

 c 2n + P(n) = O(2n )



Complexity of Algorithms 1                       44                       Data Structures and  Algorithms for Engineers 

Time Complexity

• What about computing the complexity of a recursive algorithm?

• In general, this is more difficult

• The basic technique 

– Identify a recurrence relation implicit in the recursion 

 T(n) = f(T(k)), k Î {1, 2, … , n-1}

– Solve the recurrence relation by finding an expression for T(n) in term which do not involve T(k)
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Time Complexity

int factorial(int n) {
   int factorial_value;

   factorial_value = 0;
   
   /* compute factorial value recursively */

   if (n <= 1) {
      factorial_value = 1;
   }
   else {
      factorial_value = n * factorial(n-1);
   }
   return (factorial_value);
}
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Time Complexity

Let the time complexity of the function be T(n)

… which is what we want to compute!

Now, let’s try to analyse the algorithm
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Time Complexity

int factorial(int n)
{
   int factorial_value;

   factorial_value = 0;

   if (n <= 1) {
      factorial_value = 1;
   }
   else {
      factorial_value = n * factorial(n-1);
   }
   return (factorial_value);
}

n>1

1

1

1
0

1
T(n-1)

1
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Time Complexity

T(n) = 5 + T(n-1) 
T(n) = c + T(n-1)
T(n-1)  = c + T(n-2)
T(n) = c + c + T(n-2)

     = 2c + T(n-2)
T(n-2)  = c + T(n-3)
T(n) = 2c + c + T(n-3)

     = 3c + T(n-3)
T(n) = ic + T(n-i )
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Time Complexity

T(n) = ic + T(n-i )

Finally, when i = n-1

T(n)  = (n-1)c + T(n-(n-1) )
        = (n-1)c + T(1)
        = (n-1)c + d

Hence, T(n) = O(n)
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Space Complexity

 Compute the space complexity of an algorithm by analysing the storage 
requirements (as a function on the input size) in the same way



Complexity of Algorithms 1                       51                       Data Structures and  Algorithms for Engineers 

Space Complexity

For example

• if you read a stream of n characters 

• and only ever store a constant number of them,

• then it has space complexity O(1)
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Space Complexity

For example

– if you read a stream of n records 

– and store all of them, 

– then it has space complexity O(n)
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Space Complexity

For example

– if you read a stream of n records 

– and store all of them, 

– and each record causes the creation of (a constant number) of other records, 

– then it still has space complexity O(n)
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Space Complexity

For example

– if you read a stream of n records 

– and store all of them, 

– and each record causes the creation of a number of other records (and the number is 
proportional to the size of the data set n) 

– then it has space complexity O(n2)
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Time vs Space Complexity

In general, we can often decrease the time complexity, but this will involve an increase in the space 
complexity

 and vice versa (decrease space, increase time)

 This is the time-space tradeoff
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Time vs Space Complexity

For example

– the average time complexity of an iterative sort (e.g., bubble sort) is O(n2)

– but we can do better: 

– the average time complexity of the Quicksort is O(n log n)

– But the Quicksort is recursive and the recursion causes an increase in memory requirements 
(i.e., an increase in space complexity)



Complexity of Algorithms 1                       57                       Data Structures and  Algorithms for Engineers 

Time vs Space Complexity

For example 

– The space complexity of 2-D matrix is O(n2)

– If the matrix is sparse, we can do better: we can represent the matrix as a 2-D linked list and 
often reduce the space complexity to O(n)

– But the time taken to access each element will rise (i.e., the time complexity will rise)
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Time vs Space Complexity
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Time vs Space Complexity

Order of space complexity for the matrix representation of the banded matrix is O(n2)  >> 
order of space complexity for the linked list representation O(n)

 However, the matrix implementation will sometimes be more effective:
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Time vs Space Complexity

n2 <= 14n – 8

 n2 -14n + 8 <= 0

 n = ± 13 is the cutoff at which the list representation is more efficient in terms of storage space

 Typically, in real engineering problems, n can be much greater than 100 and the saving is very 
significant
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 So far we have looked only at worst-case complexity (i.e., we have developed an upper-bound on 
complexity)

 However, there are times when we are more interested in the average-case complexity (especially 
it differs significantly)

Worst-case and average-case complexity 
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For example

 the Quicksort algorithm has 

 T(n) = O(n2), worst case (for inversely sorted data)

 T(n) = O(n log2 n), average case (for randomly ordered data)

Worst-case and average-case complexity 
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Worst-case and average-case complexity 
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Worst-case and average-case complexity 
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Worst-case and average-case complexity 
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Worst-case and average-case complexity 


