Data Structures and Algorithms for Engineers

Module 2: Complexity of Algorithms

Lecture 1: Complexity Analysis

Complexity of Algorithms

Performance of algorithms, time and space tradeoff, worst case and average case
performance

Big O notation

Recurrence relationships

Analysis of complexity of iterative and recursive algorithms
Recursive vs. iterative algorithms: runtime memory implications

Motivation

Complexity Theory

— Easy problems (sort a million items in a few seconds]
— Hard problems [schedule a thousand classes in a hundred years]

— What makes some problems hard and others easy (computationally) and how do we make
hard problems easier?

— Complexity Theory addresses these questions

Complexity Analysis

Why do we write programs?

— to perform some specific tasks
— to solve some specific problems
— We will focus on “solving problems™

— What is a "problem”?

— We can view a problem as a mapping of “inputs” to "outputs”

Complexity Analysis

For example, Find Minimum

(1,4,9)

(5,2,3,7,2)

(6,5,3)

(2,2,6,8)

Inputs Outputs

Complexity Analysis

How to describe a problem?

- Input

* Describe what an input looks like

— Output

* Describe what an output looks like and how it relates to the input

Complexity Analysis

An instance is an assignment of values to the input variables

An instance of the Find Minimum function

N =10
(al) az;'"; aN) = (51117;4;3)213)31018)

Another instance of the Find Minimum Problem

N =10
(a, do,..., ay) = (15,8,0,4,7,2,5,10,1,4)

Complexity Analysis

A problem can be considered as a black box

Mapping

N\

777

Input > Output

(4,3,2,3,3,0,8) >\ Mapping

T

Complexity Analysis

Example: Sorting
Input: A sequence of N numbers aj;...a,

Output: the permutation (reordering] of the input sequence such that
a;<a,<..<a,

Complexity Analysis

How do we solve a problem?
Write an algorithm that implements the mapping

Takes an input in and produces a correct output

Algorithm
Input > or —p Output
Program

Complexity Analysis

* How do we judge whether an algorithm is good or bad?

* Analyse its efficiency

— Determined by the amount of computer resources consumed by the
algorithm

* \What are the important resources?

— Amount of memory (space complexity)
— Amount of computational time (time complexity]

Complexity Analysis

Consider the amount of resources

.e, memory space and time
that an algorithm consumes

as a function of the size of the input to the algorithm

Complexity Analysis
* Suppose there is an assignment statement in your program
x = x +1

 \We'd like to determine;

— The time a single execution would take

— The number of times it is executed: Frequency Count

Time Complexity

Product of execution time and frequency is approximately the total time taken

But, since the execution time will be very machine dependent (and compiler
dependent), we neglect it and concentrate on the frequency count

Frequency count will vary from data set to data set
(iInput to the algorithm)

Time Complexity

Program 1 Program 2 Program 3
X :=x+ 1 FOR i :=1 ton FOR i :=1 to n
DO DO
N x :(=x+1 FOR j :=1 ton
END DO
x :=x+1
END
END
Frequency = 1
Frequency = n 5

Frequency = n

Time Complexity

* Program 1

— statement is not contained in a loop [implicitly or explicitly)
— Frequency countis 1

* Program 2

— statement is executed »n times

* Program 3

— statement is executed 72 times

Big-O Notation

1, n, and »n? are said to be different and increasing orders of magnitude
(e.g.,letn=10=1, 10, 100]

* We are interested in determining the order of magnitude of the time complexity of

an algorithm

Big-O Notation

Let’s look at an algorithm to print the #n” term of the Fibonnaci sequence

0112358132134 ...
by = bop T 1o

f=0

{ =1

Big-O Notation

procedure fibonacci {print nth term}
read(n)
if n<0
then print (error)
else if n=0
then print(0)
else if n=1
then print(1)
else
fnm2 := 0;
fnml 1;
FOR i := 2 to n DO
fn := fnml + fnm2;
fnm2 := fnml;
fnml := £n
end
print (£fn) ;

o
O
'o

OO JdJo U dWDMNDEFED®B

n<0

OO0 O0OO0OO0O0OOO0OO0OCOO0OO0OCOOCORKFRLRHRKR

Big-O Notation

procedure fibonacci {print nth term}
read(n)
if n<0
then print (error)
else if n=0
then print(0)
else if n=1
then print(1)
else
fnm2 := 0;
fnml 1;
FOR i := 2 to n DO
fn := fnml + fnm2;
fnm2 := fnml;
fnml := £n
end
print (£fn) ;

o
O
'o
I

O

OO JdJo U dWDMNDEFED®B

el eleleNeloNelNolNolNoelNoll NN el SNl e

codo U WN R

Big-O Notation

procedure fibonacci {print nth term}
read(n)
if n<0
then print (error)
else if n=0
then print(0)
else if n=1
then print(1)
else
fnm2 := 0;
fnml 1;
FOR i := 2 to n DO
fn := fnml + fnm2;
fnm2 := fnml;
fnml := £n
end
print (£fn) ;

o
O
'o

OO JdJo U dWDMNDEFED®B

coocoocoocoocoocoookrRrPOPRFPOKRPRERE

1

Big-O Notation

procedure fibonacci {print nth term}

read(n)
if n<0
then print (error)
else if n=0
then print(0)
else if n=1
then print(1)
else
fnm2 := 0;
fnml 1;

FOR i := 2 to n DO
fn := fnml + f£nm2;
fim2 := fnml;

fnml :=
end
print (£fn) ;

fn

o
O
'o

OO JdJo U dWDMNDEFED®B

n>1

RS BB BSRPPRPFRPROFPORFRORRERHK

Big-O Notation

n>1

n=1

n=0

n<o0

step

10
11
12
13
14

15
16
17

Big-O Notation

* The cases where n <0, n =0, n =1 are not particularly instructive or interesting

* Inthe case where n > 1, we have the total statement frequency of

9+n+4(n-1)=5n+5

Big-O Notation

9+n+4(n-1)=5n+5
We write this as O(n), ignoring the constants

This is called Big-O notation

More formally, f(n) = O (g(n))
where g(n) is an asymptotic upper bound for f(n)

Big-O Notation

* The notation f(n) = O (g(n)) has a precise mathematical definition

* Read f(n) = O(g(n)) as
fofnisbig-O of gofn

e Definition;
letf, g: Z" > R"

f(n) = O(g(n)) if there exist two constants ¢ and k such that f(n) < c g(n) for alln> &

Big-O Notation

Suppose f(n)=2n*+4n+10
and f(n) = O(g(n)) where g(n)=n?

Proof:
f(n)=2n?+4n+10
f(n) <2n’+ 4n’>+10n* for n>1

f(n) <16n? ~

f(n) <16g(n) wherec=16and k =1

Time & Space Complexity

* f(n) will normally represent the computing time of some algorithm
Time complexity 7(n)
* f(n) can also represent the amount of memory an algorithm will need to run

Space complexity S(n)

Time Complexity

* [If an algorithm has a time complexity of O(g(n)) it means that its execution will take
no longer than a constant times g(n)

* More formally, g(n) is an asymptotic upper bound for f(n)

Hemember

* fn) <cgn)

n is typically the size of the data set

o(1)
O(n)
O(n?)
o)
0(2")
O(log n)

O(n log n)

Time Complexity

Constant [computing time]

Linear [computing time]

(Quadratic ([computing time]

Cubic [computing time]

Exponential [computing time]

s faster than O(n) for sufficiently large n

is faster than O(n?) for sufficiently large n

O©oOoO~NOOS WN-=-3

WNDNNDNNNNNNN=22 2 A aaaa v
QOWOONOOOPR,WN-_20OONOOOPAWN-~O

NNNNNNNNNNNNNNNNNNNNNNNNNNNN—N—NT

Time Complexity

O(n) O(nlog2(n))

1
2
3
4
5
6
7
8

9
10
"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

0.0
2.0
4.8
8.0
11.6
15.5
19.7
24.0
28.5
33.2
38.1
43.0
48.1
53.3
58.6
64.0
69.5
75.1
80.7
86.4
92.2
98.1
104.0
110.0
116.1
122.2
128.4
134.6
140.9
147.2

100
121
144
169
196
225
256
289
324
361
400
441
484
529
576
625
676
729
784
841
900

O(n"4)
1

16

81
256
625
1296
2401
4096
6561
10000
14641
20736
28561
38416
50625
65536
83521
104976
130321
160000
194481
234256
279841
331776
390625
456976
531441
614656
707281
810000

0(2"n)
2

4

8

16

32

64

128

256

512

1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
1.34E+08
2.68E+08
5.37E+08
1.07E+09

O(n”n)

1

4

27

256
3125
46656
823543
16777216
3.87E+08
1E+10
2.85E+11
8.92E+12
3.03E+14
1.11E+16
4 38E+17
1.84E+19
8.27E+20
3.93E+22
1.98E+24
1.05E+26
5.84E+27
3.41E+29
2.09E+31
1.33E+33
8.88E+34
6.16E+36
4 43E+38
3.31E+40
2.57E+42
2.06E+44

10

Time Complexity

log(n)

100

Time Complexity

50 I ! T T I T T T T

1000

900

800

700

600

500

400

300

200

100

Time Complexity

T

T

T

10

I log(n)

Time Complexity

311
20

{70
Log Scale

10

1.1"

0 10 20 30 40 50 60 70 80 90 100

Time Complexity

f1(n) =10 n+ 25 n? O(n’)
f2(n)=20nlogn+5n O(n log n)
f3(n)=12nlogn+0.05 n? O(n?)

fA(n)=n"?+3 nlogn O(n log n)

Time Complexity

Arithmetic of Big-O notation
if
T')(n) = O(f(n)) and T(n) = O(g(n))

then

T')(n) + Ty(n) = O(max(f(n), g(n))

Time Complexity

Arithmetic of Big-O notation
if

fn) < g(n)

then

O(f(n) + g(n))= O(g(n))

Time Complexity

Arithmetic of Big-O notation
If
T')(n) = O(f(n)) and T(n) = O(g(n))
then

T)(n) Tx(n) = O(f(n) g(n))

Time Complexity

Rules for computing the time complexity

— the complexity of each read, write, and assignment statement can be taken as O(1)
— the complexity of a sequence of statements is determined by the summation rule

— the complexity of an if statement is the complexity of the executed statements, plus the time for
evaluating the condition

Time Complexity

Rules for computing the time complexity

— the complexity of an if-then-else statement is the time for evaluating the condition plus the
larger of the complexities of the then and else clauses

— the complexity of a loop is the sum, over all the times around the loop, of the complexity of the
body and the complexity of the termination condition

Time Complexity

Given an algorithm, we analyse the frequency count of each statement and total
the sum

This may give a polynomial P(n):
P(n)=c, n*+c_ n'+ . . +c n+c

where the c¢; are constants, ¢, are non-zero, and » Is a parameter

Time Complexity
If the big-0O notation of a portion of an algorithm is given by:
P(n) = O(n")

and on the other hand, if any other step is executed 2" times or more, we have:

¢ 2"+ P(n) = O(2")

Time Complexity

* What about computing the complexity of a recursive algorithm?
* In general, this is more difficult

* The basic technique

— ldentify a recurrence relation implicit in the recursion
I(n)=AT(k)), ke {l,2,...,n-1}

— Solve the recurrence relation by finding an expression for 7(n) in term which do not involve T(k)

Time Complexity

int factorial (int n) {
int factorial value;

factorial value = 0;
/* compute factorial value recursively */

if (n<=1) {
factorial value = 1;

}

else {
factorial value = n * factorial(n-1);

}

return (factorial value);

Time Complexity

Let the time complexity of the function be 7(n)
.. which i1s what we want to compute!

Now, let’s try to analyse the algorithm

Time Complexity

n>1
int factorial (int n)
{
int factorial value; !
factorial value = 0; 1
if (n <=1) { 1
factorial value = 1; 0
}
else { 1
factorial value = n * factorial(n-1); T (n-1)

}

return (factorial value); 1

Time Complexity

I(n) =5+1(n-1)
I(n) =c+ 1(n-1)
I(n-1) =c+ T(n-2)

I(n) =c+c+1T(n-2)
=2c + T(n-2)

I(n-2) =c+ I(n-3)

I(n) =2c+c+ T(n-3)
=3c+ T(n-3)

I(n) =ic+ T(n-i)

Time Complexity

I(n)=ic+ I(n-i)
Finally, when i = n-1
(n-1)c + T(n-(n-1))

(n-1)c + T(1)
(n-1)c+d

Hence, T(n) = O(n)

Space Complexity

Compute the space complexity of an algorithm by analysing the storage
requirements (as a function on the input size] in the same way

Space Complexity

For example

* if you read a stream of n characters
* and only ever store a constant number of them,

* then it has space complexity O(1)

Space Complexity

For example

— if you read a stream of n records
— and store all of them,

— then it has space complexity O(n)

Space Complexity

For example

— if you read a stream of n records
— and store all of them,
— and each record causes the creation of (a constant number) of other records,

— then it still has space complexity O(n)

Space Complexity

For example

— if you read a stream of n records
— and store all of them,

— and each record causes the creation of a number of other records (and the number is
proportional to the size of the data set 7]

— then it has space complexity O(n?)

Time vs Space Complexity

In general, we can often decrease the time complexity, but this will involve an increase in the space
complexity

and vice versa (decrease space, increase time)]

This is the time-space tradeoff

Time vs Space Complexity

For example

— the average time complexity of an iterative sort (e.g., bubble sort) is O(n?)
— but we can do better:
— the average time complexity of the Quicksort is O(n log n)

— But the Quicksort is recursive and the recursion causes an increase in memaory requirements
(i.e., an increase in space complexity)

Time vs Space Complexity

For example

— The space complexity of 2-D matrix is O(n?)

— If the matrix is sparse, we can do better: we can represent the matrix as a 2-D linked list and
often reduce the space complexity to O(n)

— But the time taken to access each element will rise (i.e., the time complexity will rise]

Time vs Space Complexity

CIC |0 |12 |2 |0 |2 |2 |N | #
O I |0 |12 |2 || N |© <
CIC IS IS | |S N |¥ < |O
SIS IS IS |S N |¥ < |0 |O
SICIC IS N ¥ < OO0 |O
SICSICSIN ¥ < SIS |C|C
CSICIN X € |O|0 |0 |0 |O
SIN ¥ K SIS |0 |IC|O
N |® < |10 |0C|0|0 |0 |0

AR IO ICIC 0|0 |10 |10 (IO

n X n matrix:
O(n?) space complexity

1] x
1l z
2] 7
131 7
(4l z
15l z
16l z
|7l z
8l Z
19l 7

| 2] x|
31X
| 4] x|
| 5l x
6] X
| 71 x|
9l X
10

4]y
Sy
Laly
Ty
8y
9y
10y

2X(2+4+4)+ (n-2)x(2+4 +4 +4)
=20+ 14n-28 =14n - 8:
O(n) space complexity

Time vs Space Complexity

Order of space complexity for the matrix representation of the banded matrix is O(n?) >>
order of space complexity for the linked list representation O(n)

However, the matrix implementation will sometimes be more effective:

Time vs Space Complexity

n*<=14n-38
n*-14n+8<=0
n =[113 is the cutoff at which the list representation is more efficient in terms of storage space

Typically, in real engineering problems, n can be much greater than 100 and the saving is very
significant

Worst-case and average-case complexity

So far we have looked only at worst-case complexity (i.e., we have developed an upper-bound on
complexity]

However, there are times when we are more interested in the average-case complexity (especially
it differs significantly]

Worst-case and average-case complexity

For example
the Quicksort algorithm has
T(n) = O(n?), worst case (for inversely sorted data)

T(n) = O(n log, n), average case (for randomly ordered data]

Worst-case and average-case complexity

Number &
of Steps Worst Case

Average Case

|

» Best Case

Problem Size

Worst-case and average-case complexity

f(n)
upper bound

-_—

lower bound

Worst-case and average-case complexity

f(n) % O(g(n))fmeans c - g(n) is an upper bound on f(n). Thus there exists
some comnstant ¢ such that f(n) is always < c¢- g(n), for large enough n (i.e. ,
n > ng for some constant no).

f(n) means c-g(n) is a lower bound on f(n). Thus there exists
some constant ¢ such that f(n) is always > ¢ - g(n), for all n > ny.

f(n) ¥ ©(g(n))lmeans c; - g(n) is an upper bound on f(n) and c3 - g(n) is
a lower bound on f(n), for all n > ng. Thus there exist constants ¢; and ¢
such that f(n) < e¢;-g(n) and f(n) > ¢o-g(n). This means that g(n) provides
a nice, tight bound on f(n).

Worst-case and average-case complexity

c*g(n)

f(n)

(@)

f(n)

Aﬁ T
|
|

(b)

cl*g(n)

f(n)

c2*g(n)

©

Figure 2.3: Illustrating the big (a) O, (b) €2, and (c) © notations

