
Complexity of Algorithms 1 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 2: Complexity of Algorithms

Lecture 1: Complexity Analysis

Complexity of Algorithms 1 2 Data Structures and Algorithms for Engineers

Complexity of Algorithms

– Performance of algorithms, time and space tradeoff, worst case and average case
performance

– Big O notation

– Recurrence relationships

– Analysis of complexity of iterative and recursive algorithms

– Recursive vs. iterative algorithms: runtime memory implications

– Complexity theory: tractable vs intractable algorithmic complexity

– Example intractable problems: travelling salesman problem, Hamiltonian circuit, 3-colour
problem, SAT, cliques

– Determinism and non-determinism

– P, NP, and NP-Complete classes of algorithm

Complexity of Algorithms 1 3 Data Structures and Algorithms for Engineers

Motivation

Complexity Theory

– Easy problems (sort a million items in a few seconds)

– Hard problems (schedule a thousand classes in a hundred years)

– What makes some problems hard and others easy (computationally) and how do we make
hard problems easier?

– Complexity Theory addresses these questions

Complexity of Algorithms 1 4 Data Structures and Algorithms for Engineers

Complexity Analysis

Why do we write programs?

– to perform some specific tasks

– to solve some specific problems

– We will focus on “solving problems”

– What is a “problem”?

– We can view a problem as a mapping of “inputs” to “outputs”

Complexity of Algorithms 1 5 Data Structures and Algorithms for Engineers

For example, Find Minimum

Inputs Outputs

(1,4,9) 1

(5,2,3,7,2)

3

(6,5,3)

2

(2,2,6,8)

Complexity Analysis

Complexity of Algorithms 1 6 Data Structures and Algorithms for Engineers

How to describe a problem?

– Input

• Describe what an input looks like

– Output

• Describe what an output looks like and how it relates to the input

Complexity Analysis

Complexity of Algorithms 1 7 Data Structures and Algorithms for Engineers

Complexity Analysis

An instance is an assignment of values to the input variables

An instance of the Find Minimum function

N = 10
(a1, a2,…, aN) = (5,1,7,4,3,2,3,3,0,8)

Another instance of the Find Minimum Problem

N = 10

(a1, a2,…, aN) = (15,8,0,4,7,2,5,10,1,4)

Complexity of Algorithms 1 8 Data Structures and Algorithms for Engineers

Input Output

(4,3,2,3,3,0,8) 0

Mapping

Mapping

Complexity Analysis

A problem can be considered as a black box

Complexity of Algorithms 1 9 Data Structures and Algorithms for Engineers

Example: Sorting

 Input: A sequence of N numbers a1…an

 Output: the permutation (reordering) of the input sequence such that
 a1 £ a2 £ … £ an

Complexity Analysis

Complexity of Algorithms 1 10 Data Structures and Algorithms for Engineers

How do we solve a problem?

 Write an algorithm that implements the mapping

 Takes an input in and produces a correct output

Input Output
Algorithm

or
Program

Complexity Analysis

Complexity of Algorithms 1 11 Data Structures and Algorithms for Engineers

Complexity Analysis

• How do we judge whether an algorithm is good or bad?

• Analyse its efficiency

– Determined by the amount of computer resources consumed by the
algorithm

• What are the important resources?

– Amount of memory (space complexity)
– Amount of computational time (time complexity)

Complexity of Algorithms 1 12 Data Structures and Algorithms for Engineers

Complexity Analysis

 Consider the amount of resources

 i.e, memory space and time

 that an algorithm consumes

 as a function of the size of the input to the algorithm

Complexity of Algorithms 1 13 Data Structures and Algorithms for Engineers

Complexity Analysis

• Suppose there is an assignment statement in your program

x := x +1

• We’d like to determine:

– The time a single execution would take

– The number of times it is executed: Frequency Count

Complexity of Algorithms 1 14 Data Structures and Algorithms for Engineers

Time Complexity

• Product of execution time and frequency is approximately the total time taken

• But, since the execution time will be very machine dependent (and compiler
dependent), we neglect it and concentrate on the frequency count

• Frequency count will vary from data set to data set
(input to the algorithm)

Complexity of Algorithms 1 15 Data Structures and Algorithms for Engineers

Time Complexity

Program 1

x := x + 1

Program 2

FOR i := 1 to n
DO
 x := x + 1
END

Program 3

FOR i := 1 to n
DO
 FOR j := 1 to n
 DO
 x := x + 1
 END
END

Frequency = 1

Frequency = n
Frequency = n2

Complexity of Algorithms 1 16 Data Structures and Algorithms for Engineers

Time Complexity

• Program 1

– statement is not contained in a loop (implicitly or explicitly)
– Frequency count is 1

• Program 2

– statement is executed n times

• Program 3

– statement is executed n2 times

Complexity of Algorithms 1 17 Data Structures and Algorithms for Engineers

Big-O Notation

• 1, n, and n2 are said to be different and increasing orders of magnitude

(e.g., let n = 10 Þ 1, 10, 100)

• We are interested in determining the order of magnitude of the time complexity of
an algorithm

Complexity of Algorithms 1 18 Data Structures and Algorithms for Engineers

Big-O Notation

Let’s look at an algorithm to print the nth term of the Fibonnaci sequence

0 1 1 2 3 5 8 13 21 34 …
tn = tn-1 + tn-2

t0 = 0

t1 = 1

Complexity of Algorithms 1 19 Data Structures and Algorithms for Engineers

Big-O Notation

1 procedure fibonacci {print nth term}
2 read(n)
3 if n<0
4 then print(error)
5 else if n=0
6 then print(0)
7 else if n=1
8 then print(1)
9 else
10 fnm2 := 0;
11 fnm1 := 1;
12 FOR i := 2 to n DO
13 fn := fnm1 + fnm2;
14 fnm2 := fnm1;
15 fnm1 := fn
16 end
17 print(fn);

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

n<0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

Complexity of Algorithms 1 20 Data Structures and Algorithms for Engineers

Big-O Notation
n=0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 procedure fibonacci {print nth term}
2 read(n)
3 if n<0
4 then print(error)
5 else if n=0
6 then print(0)
7 else if n=1
8 then print(1)
9 else
10 fnm2 := 0;
11 fnm1 := 1;
12 FOR i := 2 to n DO
13 fn := fnm1 + fnm2;
14 fnm2 := fnm1;
15 fnm1 := fn
16 end
17 print(fn);

Complexity of Algorithms 1 21 Data Structures and Algorithms for Engineers

Big-O Notation
n=1
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 procedure fibonacci {print nth term}
2 read(n)
3 if n<0
4 then print(error)
5 else if n=0
6 then print(0)
7 else if n=1
8 then print(1)
9 else
10 fnm2 := 0;
11 fnm1 := 1;
12 FOR i := 2 to n DO
13 fn := fnm1 + fnm2;
14 fnm2 := fnm1;
15 fnm1 := fn
16 end
17 print(fn);

Complexity of Algorithms 1 22 Data Structures and Algorithms for Engineers

Big-O Notation
n>1
1
1
1
0
1
0
1
0
1
1
1
n
n-1
n-1
n-1
n-1
1

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

1 procedure fibonacci {print nth term}
2 read(n)
3 if n<0
4 then print(error)
5 else if n=0
6 then print(0)
7 else if n=1
8 then print(1)
9 else
10 fnm2 := 0;
11 fnm1 := 1;
12 FOR i := 2 to n DO
13 fn := fnm1 + fnm2;
14 fnm2 := fnm1;
15 fnm1 := fn
16 end
17 print(fn);

Complexity of Algorithms 1 23 Data Structures and Algorithms for Engineers

Big-O Notation

step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

n<0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0

n=0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0

n=1
1
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
0

n>1
1
1
1
0
1
0
1
0
1
1
1
n
n-1
n-1
n-1
n-1
1

Complexity of Algorithms 1 24 Data Structures and Algorithms for Engineers

Big-O Notation

• The cases where n < 0, n = 0, n =1 are not particularly instructive or interesting

• In the case where n > 1, we have the total statement frequency of

9 + n + 4(n-1) = 5n + 5

Complexity of Algorithms 1 25 Data Structures and Algorithms for Engineers

Big-O Notation

• 9 + n + 4(n-1) = 5n + 5

• We write this as O(n), ignoring the constants

• This is called Big-O notation

• More formally, f (n) = O (g(n))
where g(n) is an asymptotic upper bound for f(n)

Complexity of Algorithms 1 26 Data Structures and Algorithms for Engineers

• The notation f (n) = O (g(n)) has a precise mathematical definition

• Read f(n) = O(g(n)) as
f of n is big-O of g of n

• Definition:
Let f, g: Z+ ® R+

 f(n) = O(g(n)) if there exist two constants c and k such that f(n) £ c g(n) for all n ³ k

Big-O Notation

Complexity of Algorithms 1 27 Data Structures and Algorithms for Engineers

Suppose f(n)= 2n2+4n+10
and f(n) = O(g(n)) where g(n)=n2

 Proof:
 f(n)= 2n2+4n+10
 f(n) £ 2n2+ 4n2+10n2 for n ³ 1
 f(n) £ 16n2

 f(n) £ 16g(n) where c = 16 and k =1

Big-O Notation

Complexity of Algorithms 1 28 Data Structures and Algorithms for Engineers

Time & Space Complexity

• f(n) will normally represent the computing time of some algorithm

 Time complexity T(n)

• f(n) can also represent the amount of memory an algorithm will need to run

 Space complexity S(n)

Complexity of Algorithms 1 29 Data Structures and Algorithms for Engineers

Time Complexity

• If an algorithm has a time complexity of O(g(n)) it means that its execution will take
no longer than a constant times g(n)

• More formally, g(n) is an asymptotic upper bound for f(n)

Remember

• f(n) £ c g(n)

 n is typically the size of the data set

Complexity of Algorithms 1 30 Data Structures and Algorithms for Engineers

Time Complexity

O(1) Constant (computing time)

O(n) Linear (computing time)

O(n2) Quadratic (computing time)

O(n3) Cubic (computing time)

O(2n) Exponential (computing time)

O(log n) is faster than O(n) for sufficiently large n

O(n log n) is faster than O(n2) for sufficiently large n

Complexity of Algorithms 1 31 Data Structures and Algorithms for Engineers

Time Complexity

Complexity of Algorithms 1 32 Data Structures and Algorithms for Engineers

log(n)

n

Time Complexity

Complexity of Algorithms 1 33 Data Structures and Algorithms for Engineers

log(n)

n

n

n log(n)

Time Complexity

Complexity of Algorithms 1 34 Data Structures and Algorithms for Engineers

Time Complexity

n10

n log(n)

n3

n2

Complexity of Algorithms 1 35 Data Structures and Algorithms for Engineers

n10

n20
nn

1.1n

2n

3n

Time Complexity

Log Scale

Complexity of Algorithms 1 36 Data Structures and Algorithms for Engineers

Time Complexity

f1(n) = 10 n + 25 n2

f2(n) = 20 n log n + 5 n

f3(n) = 12 n log n + 0.05 n2

f4(n) = n1/2 + 3 n log n

O(n2)

O(n log n)

O(n2)

O(n log n)

Complexity of Algorithms 1 37 Data Structures and Algorithms for Engineers

Time Complexity

Arithmetic of Big-O notation

 if

 T1(n) = O(f(n)) and T2(n) = O(g(n))

then

 T1(n) + T2(n) = O(max(f(n), g(n))

Complexity of Algorithms 1 38 Data Structures and Algorithms for Engineers

Time Complexity

Arithmetic of Big-O notation

 if

 f(n) £ g(n)

then

 O(f(n) + g(n))= O(g(n))

Complexity of Algorithms 1 39 Data Structures and Algorithms for Engineers

Time Complexity

Arithmetic of Big-O notation

 if

 T1(n) = O(f(n)) and T2(n) = O(g(n))

 then

 T1(n) T2(n) = O(f(n) g(n))

Complexity of Algorithms 1 40 Data Structures and Algorithms for Engineers

Time Complexity

Rules for computing the time complexity

– the complexity of each read, write, and assignment statement can be taken as O(1)

– the complexity of a sequence of statements is determined by the summation rule

– the complexity of an if statement is the complexity of the executed statements, plus the time for
evaluating the condition

Complexity of Algorithms 1 41 Data Structures and Algorithms for Engineers

Time Complexity

Rules for computing the time complexity

– the complexity of an if-then-else statement is the time for evaluating the condition plus the
larger of the complexities of the then and else clauses

– the complexity of a loop is the sum, over all the times around the loop, of the complexity of the
body and the complexity of the termination condition

Complexity of Algorithms 1 42 Data Structures and Algorithms for Engineers

Time Complexity

• Given an algorithm, we analyse the frequency count of each statement and total
the sum

• This may give a polynomial P(n):

 P(n) = ck nk + ck-1 nk-1 + ...+ c1 n + c0

where the ci are constants, ck are non-zero, and n is a parameter

Complexity of Algorithms 1 43 Data Structures and Algorithms for Engineers

Time Complexity

If the big-O notation of a portion of an algorithm is given by:

 P(n) = O(nk)

 and on the other hand, if any other step is executed 2n times or more, we have:

 c 2n + P(n) = O(2n)

Complexity of Algorithms 1 44 Data Structures and Algorithms for Engineers

Time Complexity

• What about computing the complexity of a recursive algorithm?

• In general, this is more difficult

• The basic technique

– Identify a recurrence relation implicit in the recursion

 T(n) = f(T(k)), k Î {1, 2, … , n-1}

– Solve the recurrence relation by finding an expression for T(n) in term which do not involve T(k)

Complexity of Algorithms 1 45 Data Structures and Algorithms for Engineers

Time Complexity

int factorial(int n) {
 int factorial_value;

 factorial_value = 0;

 /* compute factorial value recursively */

 if (n <= 1) {
 factorial_value = 1;
 }
 else {
 factorial_value = n * factorial(n-1);
 }
 return (factorial_value);
}

Complexity of Algorithms 1 46 Data Structures and Algorithms for Engineers

Time Complexity

Let the time complexity of the function be T(n)

… which is what we want to compute!

Now, let’s try to analyse the algorithm

Complexity of Algorithms 1 47 Data Structures and Algorithms for Engineers

Time Complexity

int factorial(int n)
{
 int factorial_value;

 factorial_value = 0;

 if (n <= 1) {
 factorial_value = 1;
 }
 else {
 factorial_value = n * factorial(n-1);
 }
 return (factorial_value);
}

n>1

1

1

1
0

1
T(n-1)

1

Complexity of Algorithms 1 48 Data Structures and Algorithms for Engineers

Time Complexity

T(n) = 5 + T(n-1)
T(n) = c + T(n-1)
T(n-1) = c + T(n-2)
T(n) = c + c + T(n-2)

 = 2c + T(n-2)
T(n-2) = c + T(n-3)
T(n) = 2c + c + T(n-3)

 = 3c + T(n-3)
T(n) = ic + T(n-i)

Complexity of Algorithms 1 49 Data Structures and Algorithms for Engineers

Time Complexity

T(n) = ic + T(n-i)

Finally, when i = n-1

T(n) = (n-1)c + T(n-(n-1))
 = (n-1)c + T(1)
 = (n-1)c + d

Hence, T(n) = O(n)

Complexity of Algorithms 1 50 Data Structures and Algorithms for Engineers

Space Complexity

 Compute the space complexity of an algorithm by analysing the storage
requirements (as a function on the input size) in the same way

Complexity of Algorithms 1 51 Data Structures and Algorithms for Engineers

Space Complexity

For example

• if you read a stream of n characters

• and only ever store a constant number of them,

• then it has space complexity O(1)

Complexity of Algorithms 1 52 Data Structures and Algorithms for Engineers

Space Complexity

For example

– if you read a stream of n records

– and store all of them,

– then it has space complexity O(n)

Complexity of Algorithms 1 53 Data Structures and Algorithms for Engineers

Space Complexity

For example

– if you read a stream of n records

– and store all of them,

– and each record causes the creation of (a constant number) of other records,

– then it still has space complexity O(n)

Complexity of Algorithms 1 54 Data Structures and Algorithms for Engineers

Space Complexity

For example

– if you read a stream of n records

– and store all of them,

– and each record causes the creation of a number of other records (and the number is
proportional to the size of the data set n)

– then it has space complexity O(n2)

Complexity of Algorithms 1 55 Data Structures and Algorithms for Engineers

Time vs Space Complexity

In general, we can often decrease the time complexity, but this will involve an increase in the space
complexity

 and vice versa (decrease space, increase time)

 This is the time-space tradeoff

Complexity of Algorithms 1 56 Data Structures and Algorithms for Engineers

Time vs Space Complexity

For example

– the average time complexity of an iterative sort (e.g., bubble sort) is O(n2)

– but we can do better:

– the average time complexity of the Quicksort is O(n log n)

– But the Quicksort is recursive and the recursion causes an increase in memory requirements
(i.e., an increase in space complexity)

Complexity of Algorithms 1 57 Data Structures and Algorithms for Engineers

Time vs Space Complexity

For example

– The space complexity of 2-D matrix is O(n2)

– If the matrix is sparse, we can do better: we can represent the matrix as a 2-D linked list and
often reduce the space complexity to O(n)

– But the time taken to access each element will rise (i.e., the time complexity will rise)

Complexity of Algorithms 1 58 Data Structures and Algorithms for Engineers

Time vs Space Complexity

Complexity of Algorithms 1 59 Data Structures and Algorithms for Engineers

Time vs Space Complexity

Order of space complexity for the matrix representation of the banded matrix is O(n2) >>
order of space complexity for the linked list representation O(n)

 However, the matrix implementation will sometimes be more effective:

Complexity of Algorithms 1 60 Data Structures and Algorithms for Engineers

Time vs Space Complexity

n2 <= 14n – 8

 n2 -14n + 8 <= 0

 n = ± 13 is the cutoff at which the list representation is more efficient in terms of storage space

 Typically, in real engineering problems, n can be much greater than 100 and the saving is very
significant

Complexity of Algorithms 1 61 Data Structures and Algorithms for Engineers

 So far we have looked only at worst-case complexity (i.e., we have developed an upper-bound on
complexity)

 However, there are times when we are more interested in the average-case complexity (especially
it differs significantly)

Worst-case and average-case complexity

Complexity of Algorithms 1 62 Data Structures and Algorithms for Engineers

For example

 the Quicksort algorithm has

 T(n) = O(n2), worst case (for inversely sorted data)

 T(n) = O(n log2 n), average case (for randomly ordered data)

Worst-case and average-case complexity

Complexity of Algorithms 1 63 Data Structures and Algorithms for Engineers

Worst-case and average-case complexity

Complexity of Algorithms 1 64 Data Structures and Algorithms for Engineers

Worst-case and average-case complexity

Complexity of Algorithms 1 65 Data Structures and Algorithms for Engineers

Worst-case and average-case complexity

Complexity of Algorithms 1 66 Data Structures and Algorithms for Engineers

Worst-case and average-case complexity

