
Searching and Sorting Algorithms 1 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 3: Searching and Sorting Algorithms

Lecture 1: Linear and binary search. In-place sorts: bubblesort, selection sort,
insertion sort.

Searching and Sorting Algorithms 1 2 Data Structures and Algorithms for Engineers

Linear (Sequential) Search

Linear (Sequential) Search

• Begin at the beginning of the list

• Proceed through the list, sequentially and element by element,

• Until the key is encountered
or
Until the end of the list is reached

Searching and Sorting Algorithms 1 3 Data Structures and Algorithms for Engineers

Linear (Sequential) Search

• Note: we treat a list as a general concept, decoupled from its implementation

• The order of complexity is O(n)

• The list does not have to be in sorted order

Searching and Sorting Algorithms 1 4 Data Structures and Algorithms for Engineers

Implementation of linear search in C

int linear_search(item_type s[], item_type key, int low, int high) {

 int i;

 i = low;

 while ((s[i] != key) && (i < high)) {
 i = i+1;
 }

 if (s[i] == key) {
 return (i);
 }
 else {

 return(-1);
 }
}

Searching and Sorting Algorithms 1 5 Data Structures and Algorithms for Engineers

Binary Search

• If the list is sorted, we can use a more efficient O(log2(n)) search strategy

• Check to see whether the key is

– equal to

– less than

– greater than

 the middle element

Searching and Sorting Algorithms 1 6 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first lastmid

Searching and Sorting Algorithms 1 7 Data Structures and Algorithms for Engineers

Binary Search

• If key is equal to the middle element,
then terminate (found)

• If key is less than the middle element,
then search the left half

• If key is greater than the middle element, then search the right half

• Continue until either

– the key is found or

– there are no more elements to search

Searching and Sorting Algorithms 1 8 Data Structures and Algorithms for Engineers

Implementation of Binary_Search

Pseudo-code

binary_search(list, key, lower_bound, upper_bound)

identify sublist to be searched by setting bounds on search

REPEAT
 get middle element of list
 if middle element < key
 then reset bounds to make the right sublist

 the list to be searched
 else reset bounds to make the left sublist
 the list to be searched
UNTIL list is empty or key is found

Searching and Sorting Algorithms 1 9 Data Structures and Algorithms for Engineers

Implementation of binary search in C
(iterative approach)

typedef char item_type;

int binary_search(item_type s[], item_type key, int low, int high) {

 int first, last, mid;

 first = low;
 last = high;

 do {
 mid = (first + last) / 2;
 if (s[mid] < key) {
 first = mid + 1;
 }
 else {
 last = mid - 1;
 }
 } while ((first <= last) && (s[mid] != key));

 if (s[mid] == key)
 return (mid);
 else
 return (-1);
}

Searching and Sorting Algorithms 1 10 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first:
last:
mid:
list[mid]:
key: P

mid

Should really have written these as 'P', 'A', 'B', ... because they are character values

Searching and Sorting Algorithms 1 11 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first: 1
last: 11
mid: 6
list[mid]: J
key: P

mid

Searching and Sorting Algorithms 1 12 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first: 1 7
last: 11 11
mid: 6 9
list[mid]: J O
key: P P

mid

Searching and Sorting Algorithms 1 13 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first: 1 7 10
last: 11 11 11
mid: 6 9 10
list[mid]: J O P
key: P P P

mid

FOUND!

Searching and Sorting Algorithms 1 14 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first:
last:
mid:
list[mid]:
key: E

mid

Searching and Sorting Algorithms 1 15 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first: 1
last: 11
mid: 6
list[mid]: J
key: E

mid

Searching and Sorting Algorithms 1 16 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first: 1 1
last: 11 5
mid: 6 3
list[mid]: J D
key: E E

mid

Searching and Sorting Algorithms 1 17 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

first last

first: 1 1 4
last: 11 5 5
mid: 6 3 4
list[mid]: J D F
key: E E E

mid

Searching and Sorting Algorithms 1 18 Data Structures and Algorithms for Engineers

Binary Search

A B D F G J K M O P R

firstlast

first: 1 1 4 4
last: 11 5 5 3
mid: 6 3 4 3
list[mid]: J D F D
key: E E E E

mid

first > last: NOT FOUND!

Searching and Sorting Algorithms 1 19 Data Structures and Algorithms for Engineers

Implementation of binary search in C
(recursive approach)

typedef char item_type;

int binary_search(item_type s[], item_type key, int low, int high) {

 int mid;

 if (low > high) return (-1); /* key not found */

 mid = (low + high) / 2;

 if (s[mid] == key) return(mid);

 if (s[mid] > key) {
 return(binary_search(s, key, low, mid-1));
 }
 else {
 return(binary_search(s, key, mid+1, high));
 }
}

Searching and Sorting Algorithms 1 20 Data Structures and Algorithms for Engineers

Sorting Algorithms

Searching and Sorting Algorithms 1 21 Data Structures and Algorithms for Engineers

 Input: A sequence of n numbers < a1, a2, … an >

 Output: the permutation (reordering) of the input sequence such that
a1 £ a2 £ … £ an

The Sorting Problem

Searching and Sorting Algorithms 1 22 Data Structures and Algorithms for Engineers

Sorting Algorithms

• In-place sorts

– Small number of elements stored outside the input data structure

– Additional space requirements O(1)
– Tradeoff: more computationally-complex algorithms (slower sorts)

• Bubble Sort
• Selection Sort

• Insertion Sort

Searching and Sorting Algorithms 1 23 Data Structures and Algorithms for Engineers

Sorting Algorithms

• Not-in-place sort

– Additional space requirements not O(1)
– Tradeoff: less computationally-complex algorithms but greater memory requirements

(possibly unpredictable)

• Quick Sort

• Merge Sort

• Characteristics of a good sort

Searching and Sorting Algorithms 1 24 Data Structures and Algorithms for Engineers

Bubble Sort

• Assume we are sorting a list represented by an array A of n integer elements

• Bubble sort algorithm in pseudo-code

FOR every element in the list,
 proceeding from the first to the last

 WHILE list element > previous list element
 bubble element back (up) the list
 by successive swapping with
 the element just above/prior it

Searching and Sorting Algorithms 1 25 Data Structures and Algorithms for Engineers

Bubble Sort

10 9 8 11 4

Searching and Sorting Algorithms 1 26 Data Structures and Algorithms for Engineers

Bubble Sort

10

9
Swap

8

11

4

Searching and Sorting Algorithms 1 27 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

Searching and Sorting Algorithms 1 28 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

Swap

Searching and Sorting Algorithms 1 29 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

Searching and Sorting Algorithms 1 30 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

Swap

Searching and Sorting Algorithms 1 31 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

Searching and Sorting Algorithms 1 32 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

No Swap

Searching and Sorting Algorithms 1 33 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4
Swap

Searching and Sorting Algorithms 1 34 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

Searching and Sorting Algorithms 1 35 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

Swap

Searching and Sorting Algorithms 1 36 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

Searching and Sorting Algorithms 1 37 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

Swap

Searching and Sorting Algorithms 1 38 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

8

4

9

10

11

Searching and Sorting Algorithms 1 39 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

8

4

9

10

11

Swap

Searching and Sorting Algorithms 1 40 Data Structures and Algorithms for Engineers

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

4

8

9

10

11

Searching and Sorting Algorithms 1 41 Data Structures and Algorithms for Engineers

Implementation of Bubble_Sort()

int bubble_sort(int *a, int size) { // int a[]
 int i,j, temp;

 for (i=0; i < size-1; i++) { // why?
 for (j=i; j >= 0; j--) { // Because initially j=i
 if (a[j] > a[j+1]) { // and we access element j+1

 /* swap */
 temp = a[j+1];
 a[j+1] = a[j];
 a[j] = temp;
 }
 }
 }
}

Note that this is an inefficient naive implementation.
It doesn't use the while condition in the pseudo-code:

WHILE list element > previous list element

It uses a for loop and blindly compares all elements right
back to the beginning of the list, swapping when
necessary.

Exercise: reimplement this more efficiently with the
while loop.

Searching and Sorting Algorithms 1 42 Data Structures and Algorithms for Engineers

Bubble Sort

A few observations:

– we don’t usually sort numbers; we usually sort records with keys
• the key can be a number

• or the key could be a string

• the record would be represented with a struct

– The swap should be done with a function (so that a record can be swapped)

– We can make the preceding algorithm more efficient. How?
(hint: do we always have to bubble back to the top?)

Searching and Sorting Algorithms 1 43 Data Structures and Algorithms for Engineers

Bubble Sort

Exercise: implement these changes and write a driver program to test:

– the original bubble sort

– the more efficient bubble sort

– the bubble sort with a swap function

– the bubble sort with structures

– compute the order of time complexity of the bubble sort

Searching and Sorting Algorithms 1 44 Data Structures and Algorithms for Engineers

Selection Sort

Example:

Initial Array

After 1st swap

After 4th swap

After 2nd swap

After 3rd swap

29 10 14 37 13

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37

10 13 14 29 37

- Shaded elements are selected
- Boldface elements are in order

Searching and Sorting Algorithms 1 45 Data Structures and Algorithms for Engineers

Selection Sort

• Assume we are sorting a list represented by an array A of n integer elements

• Selection sort algorithm in pseudo-code

 last = n-1
 Do

 Select largest element from a[0..last]
 Swap it with a[last]
 last = last–1

 While (last >= 1)

Searching and Sorting Algorithms 1 46 Data Structures and Algorithms for Engineers

Selection Sort

typedef int DataType;

void selectionSort(DataType a[], int n) {

 DataType temp;
 int index_of_largest, index, last;

 for(last= n-1; last >= 1; last--) {

 // select largest item in a[0..last]
 index_of_largest = 0;
 for(index=1; index <= last; index++) {
 if (a[index] > a[index_of_largest])
 index_of_largest = index;
 }

 // swap largest item with last element
 temp = a[index_of_largest];
 a[index_of_largest] = a[last];
 a[last] = temp;
 }
}

Searching and Sorting Algorithms 1 47 Data Structures and Algorithms for Engineers

Insertion Sort

typedef int DataType;

insertion_sort(DataType a[], int n) {

 int i,j;
int temp;

 for (i=1; i<n; i++) {
j=i;

 while ((j>0) && (a[j] < a[j-1])) {
temp = a[j-1]; // swap

 a[j-1] = a[j];
 a[j] = temp;

 j = j-1;
 }
 }
}

