
Searching and Sorting Algorithms 2 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 3: Searching and Sorting Algorithms

Lecture 2: Not-in-place sorts: quicksort, mergesort. Characteristics of a good sort.

Searching and Sorting Algorithms 2 2 Data Structures and Algorithms for Engineers

Quicksort

The Quicksort algorithm was developed by C.A.R. Hoare.
It has the best average behaviour in terms of complexity:

Average case: O(n log2n)

Worst case: O(n2)

Searching and Sorting Algorithms 2 3 Data Structures and Algorithms for Engineers

Quicksort

• Given a list of elements

• take a partitioning element (called a "pivot")

• and create two (sub)lists

1. Left sublist: all elements are less than partitioning element,

2. Right sublist: all elements are greater than it

• Now repeat this partitioning effort on each of these two sublists

• This is a divide-and-conquer strategy

Searching and Sorting Algorithms 2 4 Data Structures and Algorithms for Engineers

Quicksort

• And so on in a recursive manner until all the sublists are empty, at which point the
(total) list is sorted

• Partitioning can be effected by
– scanning left to right

– scanning right to left

– iinterchanging elements in the wrong parts of the list

• The partitioning element is then placed between the resultant sublists
– which are then partitioned in the same manner

Searching and Sorting Algorithms 2 5 Data Structures and Algorithms for Engineers

Implementation of Quicksort()

In pseudo-code first

If anything to be partitioned
 choose a pivot
 DO
 scan from left to right until we find an element

 > pivot: i points to it

 scan from right to left until we find an element
 <= pivot: j points to it

 IF i < j
 exchange ith and jth element
 WHILE i <= j

Searching and Sorting Algorithms 2 6 Data Structures and Algorithms for Engineers

Implementation of Quicksort()

/* simple quicksort to sort an array of integers */

void quicksort (int A[], int L, int R) {
 int i, j, pivot;

 /* assume A[R] contains a number > any element, */
 /* i.e., it is a sentinel. */

Searching and Sorting Algorithms 2 7 Data Structures and Algorithms for Engineers

Implementation of Quicksort()

if (R > L) { // if R==L, it is a list with just one element!!
 i = L; j = R;
 pivot = A[i];
 do {
 while (A[i] <= pivot)

 i=i+1;
 while ((A[j] >= pivot) && (j>L))
 j=j-1;
 if (i < j) {
 exchange(A[i],A[j]); /* between partitions */
 i = i+1; j = j-1;
 }
 } while (i <= j);
 exchange(A[L], A[j]); /* reposition pivot */

 quicksort(A, L, j);
 quicksort(A, i, R); /*includes sentinel*/
 }
}

Searching and Sorting Algorithms 2 8 Data Structures and Algorithms for Engineers

Quicksort

10 9 8 11 4 99

sentinel

Searching and Sorting Algorithms 2 9 Data Structures and Algorithms for Engineers

Quicksort

10 9 8 11 4 99

i

QS(A, ,)

L:
R:
i:
j:
pivot:

j

Searching and Sorting Algorithms 2 10 Data Structures and Algorithms for Engineers

Quicksort

10 9 8 11 4 99

i

QS(A,1,6)

L: 1
R: 6
i: 1
j: 6
pivot: 10

j

Searching and Sorting Algorithms 2 11 Data Structures and Algorithms for Engineers

Quicksort

10 9 8 11 4 99

i

QS(A,1,6)

L: 1
R: 6
i: 1 2 3 4
j: 6 5
pivot: 10

j

Searching and Sorting Algorithms 2 12 Data Structures and Algorithms for Engineers

Quicksort

10 9 8 4 11 99

i

QS(A,1,6)

L: 1
R: 6
i: 1 2 3 4
j: 6 5
pivot: 10

j

Searching and Sorting Algorithms 2 13 Data Structures and Algorithms for Engineers

Quicksort

10 9 8 4 11 99

i

QS(A,1,6)

L: 1
R: 6
i: 1 2 3 4 5
j: 6 5 4
pivot: 10

j

Searching and Sorting Algorithms 2 14 Data Structures and Algorithms for Engineers

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L: 1
R: 6
i: 1 2 3 4 5
j: 6 5 4
pivot: 10

j

Searching and Sorting Algorithms 2 15 Data Structures and Algorithms for Engineers

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L: 1
R: 6
i: 1 2 3 4 5
j: 6 5 4
pivot: 10

j

QS(A,1,4)

L: 1
R: 4
i:
j:
pivot: 4

QS(A,5,6)

L: 5
R: 6
i:
j:
pivot: 11

Searching and Sorting Algorithms 2 16 Data Structures and Algorithms for Engineers

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L: 1
R: 6
i: 1 2 3 4 5
j: 6 5 4
pivot: 10

j

QS(A,1,4)

L: 1
R: 4
i: 1
j: 4
pivot: 4

QS(A,5,6)

L: 5
R: 6
i:
j:
pivot: 11

Searching and Sorting Algorithms 2 17 Data Structures and Algorithms for Engineers

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L: 1
R: 6
i: 1 2 3 4 5
j: 6 5 4
pivot: 10

j

QS(A,1,4)

L: 1
R: 4
i: 1 2
j: 4 3 4 1
pivot: 4

QS(A,5,6)

L: 5
R: 6
i:
j:
pivot: 11

Searching and Sorting Algorithms 2 18 Data Structures and Algorithms for Engineers

Quicksort

4 9 8 10 11 99

i j

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,1,1)

L: 1
R: 1
i:
j:
pivot: 4

QS(A,2,4)

L: 2
R: 4
i:
j:
pivot: 9

Searching and Sorting Algorithms 2 19 Data Structures and Algorithms for Engineers

Quicksort

4 9 8 10 11 99

i j

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,2,4)

L: 2
R: 4
i: 2
j: 4
pivot: 9

Searching and Sorting Algorithms 2 20 Data Structures and Algorithms for Engineers

Quicksort

4 9 8 10 11 99

ij

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,2,4)

L: 2
R: 4
i: 2 3 4
j: 4 3
pivot: 9

Searching and Sorting Algorithms 2 21 Data Structures and Algorithms for Engineers

Quicksort

4 8 9 10 11 99

ij

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,2,4)

L: 2
R: 4
i: 2 3 4
j: 4 3
pivot: 9

Searching and Sorting Algorithms 2 22 Data Structures and Algorithms for Engineers

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,2,4)

L: 2
R: 4
i: 2 3 4
j: 4 3
pivot: 9

QS(A,2,3)

L: 2
R: 3
i:
j:
pivot: 8

QS(A,4,4)

L: 4
R: 4
i:
j:
pivot: 10

Searching and Sorting Algorithms 2 23 Data Structures and Algorithms for Engineers

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,2,3)

L: 2
R: 3
i: 2
j: 3
pivot: 8

QS(A,4,4)

L: 4
R: 4
i:
j:
pivot: 10

Searching and Sorting Algorithms 2 24 Data Structures and Algorithms for Engineers

Quicksort

4 8 9 10 11 99

ij

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,2,3)

L: 2
R: 3
i: 2 3
j: 3 2
pivot: 8

QS(A,4,4)

L: 4
R: 4
i:
j:
pivot: 10

Searching and Sorting Algorithms 2 25 Data Structures and Algorithms for Engineers

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot:
11

QS(A,2,3)

L: 2
R: 3
i: 2 3
j: 3 2
pivot: 8

QS(A,4,4)

L: 4
R: 4
i:
j:
pivot: 10

QS(A,2,2)

L: 2
R: 2
i:
j:
pivot: 8

QS(A,3,3)

L: 3
R: 3
i:
j:
pivot: 9

Searching and Sorting Algorithms 2 26 Data Structures and Algorithms for Engineers

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot:
11

QS(A,4,4)

L: 4
R: 4
i:
j:
pivot: 10

Searching and Sorting Algorithms 2 27 Data Structures and Algorithms for Engineers

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L: 5
R: 6
i: 5
j: 6
pivot: 11

QS(A,5,5)

L: 5
R: 5
i:
j:
pivot: 11

QS(A,6,6)

L: 6
R: 6
i:
j:
pivot: 99

Searching and Sorting Algorithms 2 28 Data Structures and Algorithms for Engineers

Quicksort

Why 6?
Because the implementation
inserts its own sentinel at the
end (i.e., at array index 6) but it
isn't printed because it's not part
of the data to be sorted.

The implementation
doesn't assume that the last
element of the data is a sentinel
(although in this case it could act
as one, this won't be true in
general)

Why 0?

Because the
implementation
uses index 0 for the first
element in the list

Searching and Sorting Algorithms 2 29 Data Structures and Algorithms for Engineers

Quicksort

• Performance depends on which element is selected as the pivot

• The worst-case occurs when the list is sorted, and the left-most element is
selected as the pivot

• Space complexity is O(n2) in the worst case

Searching and Sorting Algorithms 2 30 Data Structures and Algorithms for Engineers

Mergesort

• Divide-and-conquer, recursive, O(n log n)

• Recursively partition the list into two lists L1 and L2

– L1 and L2 approx. n/2 elements each

• Stop when we have a collection of lists of 1 element

• Now, each L1 and L2 is merged into a list S

– the elements of L1 and L2 are put in S in order

• Pairs of sorted lists S1 and S2 are, in turn, merged as we ascend back up through the
recursion

Searching and Sorting Algorithms 2 31 Data Structures and Algorithms for Engineers

Mergesort

Searching and Sorting Algorithms 2 32 Data Structures and Algorithms for Engineers

mergesort(item_type s[], int low, int high) {

 int i; /* counter */
 int middle; /* index of middle element */

 if (low < high) {
 middle = (low+high)/2;
 mergesort(s,low,middle);
 mergesort(s,middle+1,high);
 merge(s, low, middle, high);
 }
}

Merge Sort

Searching and Sorting Algorithms 2 33 Data Structures and Algorithms for Engineers

Merge Sort

• The efficiency of mergesort depends on how we combine the two sorted halves
into a single sorted list

• The key is to realize that each half (i.e., each sublist) is sorted

• So we just have to repeatedly do the following

– Take the ”front” element of either one list or the other
(depending on which is smaller) and

– Move it to the merged list (thus keeping the elements in order)

Searching and Sorting Algorithms 2 34 Data Structures and Algorithms for Engineers

merge(item_type s[], int low, int middle, int high){
 int i; /* counter */
 queue buffer1, buffer2; /* to hold elements for merging */
 init_queue(&buffer1);
 init_queue(&buffer2);
 for (i=low; i<=middle; i++) enqueue(&buffer1,s[i]);
 for (i=middle+1; i<=high; i++) enqueue(&buffer2,s[i]);

 i = low;
 while (!(empty_queue(&buffer1) && !(empty_queue(&buffer2)) {
 // Alt: while (!(empty_queue(&buffer1) || empty_queue(&buffer2))) {
 if (headq(&buffer1) <= headq(&buffer2))
 s[i++] = dequeue(&buffer1);
 else
 s[i++] = dequeue(&buffer2);
 }
 while (!empty_queue(&buffer1)) s[i++] = dequeue(&buffer1);
 while (!empty_queue(&buffer2)) s[i++] = dequeue(&buffer2);
}

Merge Sort

Searching and Sorting Algorithms 2 35 Data Structures and Algorithms for Engineers

Mergesort

Why is mergesort O(n log n) ?

How many times do we merge and how big are the data sets?

Let’s assume that n is a power of two

At level 0
21 calls to mergesort & merge 21 lists of size ~n/2

At level 1
22 calls to mergesort & merge 22 lists of size ~n/4
…
At level k
2k+1 calls to mergesort & merge 2k+1 lists of size ~n/ 2k+1

Searching and Sorting Algorithms 2 36 Data Structures and Algorithms for Engineers

Mergesort

How many levels k?

k = log2n, e.g. if n = 8, k = 3

At level k, the sub-lists are of size 1.

So, we merge on k = log2n levels (level 0 – k-1)

Each level we merge 2k+1 lists of size ~n/ 2k+1 i.e., total size ~n

So, the total complexity is O(n log2 n)

Searching and Sorting Algorithms 2 37 Data Structures and Algorithms for Engineers

Mergesort

https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/analysis-of-merge-sort

Searching and Sorting Algorithms 2 38 Data Structures and Algorithms for Engineers

Characteristics of a Good Sort

Code Complexity

• Short, simple algorithms are appealing because they are easy to implement and
debug

• Algorithms that can easily be applied to all data types are convenient to use but
often come at the cost of implementation complexity

• Although they may not be as fast as more specialized algorithms, simple
algorithms are always appealing especially when maintenance is an issue

Searching and Sorting Algorithms 2 39 Data Structures and Algorithms for Engineers

Characteristics of a Good Sort

Stability

• A stable sorting algorithm maintains the relative order of records with equal keys

– Let records R and S have the same key

– R appears before S in the original list,

– R will always appear before S in the sorted list

• This is particularly important when sorting based on multiple keys

Searching and Sorting Algorithms 2 40 Data Structures and Algorithms for Engineers

Characteristics of a Good Sort

Stability

• Assume that the following pairs of numbers are to be sorted by their first
component (two different results are possible)

(4, 2) (3, 7) (3, 1) (5, 6)

(3, 7) (3, 1) (4, 2) (5, 6) (stable: order maintained)
(3, 1) (3, 7) (4, 2) (5, 6) (unstable: order changed)

• Unstable sorting algorithms change the relative order of records with equal keys,
but stable sorting algorithms do not

Searching and Sorting Algorithms 2 41 Data Structures and Algorithms for Engineers

Characteristics of a Good Sort

Stability

• Unstable sorting algorithms can be specially implemented to be stable

• Stability usually comes with an additional computational cost

Searching and Sorting Algorithms 2 42 Data Structures and Algorithms for Engineers

http://xkcd.com/1185/

