
Lists 2 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 5: Lists

Lecture 2: List ADT: implementation with linked lists. Doubly linked lists and
circular lists. Performance considerations.

Lists 2 2 Data Structures and Algorithms for Engineers

Aside:

Linked Lists Using Pointers

Lists 2 3 Data Structures and Algorithms for Engineers

• Linked lists are used avoid excessive data movement with insertions and deletions

• Elements are not necessarily stored in contiguous memory locations

• Makes efficient use of memory space

– Allocate space when needed

– Deallocate space when finished & return it to the free store

• Failure to deallocate space will cause memory leakage

Why Pointer-Based Implementation?

Lists 2 4 Data Structures and Algorithms for Engineers

Some guidelines when writing programs that dynamically allocate memory

– Use malloc or new to create data-structures of the appropriate size

– Remember to avoid memory leakage by always using free and delete to deallocate
dynamically-created data-structures

– Check every call to malloc or new to see if it returned NULL
(i.e. check if the allocation was unsuccessful)

Why Pointer-Based Implementation?

Lists 2 5 Data Structures and Algorithms for Engineers

Some guidelines when writing programs that dynamically allocate memory

– You must expect free or delete to alter the contents of the memory that was freed or deleted

– Never access a data structure after it has been freed or deleted

– If malloc fails in a non-interactive program, make that a fatal error

– In an interactive program, it is better to abort the current command and return to the command
reader loop

Why Pointer-Based Implementation?

Lists 2 6 Data Structures and Algorithms for Engineers

A Linked List

• A linked list is a list in which the order of the components is determined by an
explicit link member in each node

• The nodes are structs
– each node contains a component member and also a link member that gives the location of the

next node in the list

Lists 2 7 Data Structures and Algorithms for Engineers

Pointer-Based (Dynamic) Linked List

A pointer-based linked list is a dynamic linked list where nodes are linked together by
pointers, and an external pointer (or head pointer) points to the first node in the list

Lists 2 8 Data Structures and Algorithms for Engineers

Nodes can be located anywhere in memory

The link member holds the memory address of (or a reference to, i.e., pointer to)
the next node in the list

Lists 2 9 Data Structures and Algorithms for Engineers

// Type DECLARATIONS

struct NodeType {
 char info;
 NodeType* next;
}

typedef NodeType* NodePtr;

// Variable DECLARATIONS

NodePtr head;
NodePtr ptr;

Declarations for a Dynamic Linked List

Lists 2 10 Data Structures and Algorithms for Engineers

Pointer Dereferencing and Member Selection

. info . next
‘A’ 6000ptr

ptr ptr is a pointer to a node

ptr
. info . next

‘A’ 6000

*ptr *ptr is the entire node pointed to by ptr

(*ptr).info ~ ptr->info
(*ptr).next ~ ptr->next

ptr
. info . next

‘A’ 6000

ptr->info is a node member
ptr->next is a node member

ptr

. info . next

‘A’ 6000

Lists 2 11 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 12 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 13 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 14 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 15 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 16 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 17 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 18 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 19 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 20 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 21 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 22 Data Structures and Algorithms for Engineers

//PRE: head points to a dynamic linked list

ptr = head ;
while (ptr != NULL) {
 cout << ptr->info ;
 // Or, do something else with node *ptr
 ptr = ptr->next ;
}

Traversing a Linked List

Lists 2 23 Data Structures and Algorithms for Engineers

Using Operator new

• If memory is available in an area called the free store (or heap), operator new
allocates the requested object, and returns a pointer to the memory allocated

• The dynamically allocated object exists until the delete operator destroys it

23

Lists 2 24 Data Structures and Algorithms for Engineers

Inserting a Node at the Front of a List

Lists 2 25 Data Structures and Algorithms for Engineers

Inserting a Node at the Front of a List

Lists 2 26 Data Structures and Algorithms for Engineers

Inserting a Node at the Front of a List

Lists 2 27 Data Structures and Algorithms for Engineers

Inserting a Node at the Front of a List

Lists 2 28 Data Structures and Algorithms for Engineers

Inserting a Node at the Front of a List

Lists 2 29 Data Structures and Algorithms for Engineers

Inserting a Node at the Front of a List

Lists 2 30 Data Structures and Algorithms for Engineers

The object currently pointed to by the pointer is deallocated, and the pointer is
considered undefined.

The object’s memory is returned to the free store.

Using Operator delete

30

Lists 2 31 Data Structures and Algorithms for Engineers

Deleting the first node from a list

next

Lists 2 32 Data Structures and Algorithms for Engineers

Deleting the first node from a list

next

Lists 2 33 Data Structures and Algorithms for Engineers

Deleting the first node from a list

next

Lists 2 34 Data Structures and Algorithms for Engineers

Deleting the first node from a list

next

Lists 2 35 Data Structures and Algorithms for Engineers

Deleting the first node from a list

next

Lists 2 36 Data Structures and Algorithms for Engineers

End of Aside:

Linked Lists Using Pointers

Lists 2 37 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

Header node

element pointer NULL pointer

List

Lists 2 38 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

Header node

An empty list!!!

List

Lists 2 39 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

window

To place the window at this position
we provide a link to the previous node
(hence the need for a header node)

List

When we insert and delete nodes,
we have to modify the link in the previous node.
If we didn't have a pointer to the previous node,
we would have to run the list from the start to find it.
This would mean that insert and delete operations would be O(n),
instead of O(1)

Lists 2 40 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

window

To place the window at end of the list
we provide a link to the last node

List

Lists 2 41 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

window

To insert a node at this window position
we create the node and re-arrange the links

List

Lists 2 42 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

window tempList

When we insert and delete nodes,
we have to modify the link in the previous node.
If we didn't have a pointer to the previous node,
we would have to run the list from the start to find it.
This would mean that insert and delete operations would be O(n),
instead of O(1)

To insert a node at this window position
we create the node and re-arrange the links

Lists 2 43 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

To delete a node at this window position
we re-arrange the links and free the node

windowList

Lists 2 44 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

To delete a node at this window position
we re-arrange the links and free the node

window

temp

List

When we insert and delete nodes,
we have to modify the link in the previous node.
If we didn't have a pointer to the previous node,
we would have to run the list from the start to find it.
This would mean that insert and delete operations would be O(n),
instead of O(1)

Lists 2 45 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

To delete a node at this window position
we re-arrange the links and free the node

windowList

temp

Lists 2 46 Data Structures and Algorithms for Engineers

• type elementtype

• type LIST

• type Boolean

• type windowtype

LIST: Linked-List Implementation

Lists 2 47 Data Structures and Algorithms for Engineers

/* linked-list implementation of LIST ADT */

#include <stdio.h>
#include <math.h>
#include <string.h>

#define FALSE 0
#define TRUE 1

typedef struct {
 int number;
 char *string;
 } ELEMENT_TYPE;

LIST: Linked-List Implementation

number

string

Lists 2 48 Data Structures and Algorithms for Engineers

typedef struct node *NODE_TYPE;

typedef struct node {
 ELEMENT_TYPE element;
 NODE_TYPE next;
 } NODE;

typedef NODE_TYPE LIST_TYPE;
typedef NODE_TYPE WINDOW_TYPE;

LIST: Linked-List Implementation

number

string

Lists 2 49 Data Structures and Algorithms for Engineers

typedef struct node *NODE_TYPE;

/* alternative approach ... */
/* but need to use sizeof(struct node) in malloc()*/

struct node {
 ELEMENT_TYPE element;
 NODE_TYPE next;
 };

typedef NODE_TYPE LIST_TYPE;
typedef NODE_TYPE WINDOW_TYPE;

LIST: Linked-List Implementation

number

string

Lists 2 50 Data Structures and Algorithms for Engineers

/*** position following last element in a list ***/

WINDOW_TYPE end(LIST_TYPE *list) {
 WINDOW_TYPE q;
 q = *list;
 if (q == NULL) {
 error(“non-existent list”);
 }
 else {
 while (q->next != NULL) {
 q = q->next;
 }
 }
 return(q);
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

q

Lists 2 51 Data Structures and Algorithms for Engineers

/*** position following last element in a list ***/

WINDOW_TYPE end(LIST_TYPE *list) {
 WINDOW_TYPE q;
 q = *list;
 if (q == NULL) {
 error(“non-existent list”);
 }
 else {
 while (q->next != NULL) {
 q = q->next;
 }
 }
 return(q);
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

q

Lists 2 52 Data Structures and Algorithms for Engineers

/*** position following last element in a list ***/

WINDOW_TYPE end(LIST_TYPE *list) {
 WINDOW_TYPE q;
 q = *list;
 if (q == NULL) {
 error(“non-existent list”);
 }
 else {
 while (q->next != NULL) {
 q = q->next;
 }
 }
 return(q);
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

q

Lists 2 53 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q)
 }

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

q

Lists 2 54 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q)
 }

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

qp

Lists 2 55 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q)
 }

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

qp

Lists 2 56 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q)
 }

LIST: Linked-List Implementation

*list

number

string

number

string

p q

Lists 2 57 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q)
 }

LIST: Linked-List Implementation

*list

number

string

number

string

p q

Lists 2 58 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q)
 }

LIST: Linked-List Implementation

*list

number

string

number

string

p q

Lists 2 59 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q)
 }

LIST: Linked-List Implementation

*list

number

string

p q

Lists 2 60 Data Structures and Algorithms for Engineers

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list != NULL) {
 /* list exists: delete all nodes including header */
 q = *list;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 free(p);
 }
 free(q);
 }

LIST: Linked-List Implementation

*list

p q

Lists 2 61 Data Structures and Algorithms for Engineers

/* now, create a new empty one with a header node */

 if ((q = (NODE_TYPE) malloc(sizeof(NODE))) == NULL)
 error(“function empty: unable to allocate memory”);
 else {
 q->next = NULL;
 *list = q;
 }
 return(end(list));
}

LIST: Linked-List Implementation

number

string

*list

p q

Lists 2 62 Data Structures and Algorithms for Engineers

/* now, create a new empty one with a header node */

 if ((q = (NODE_TYPE) malloc(sizeof(NODE))) == NULL)
 error(“function empty: unable to allocate memory”);
 else {
 q->next = NULL;
 *list = q;
 }
 return(end(list));
}

LIST: Linked-List Implementation

number

string

*list

p q

Lists 2 63 Data Structures and Algorithms for Engineers

/* now, create a new empty one with a header node */

 if ((q = (NODE_TYPE) malloc(sizeof(NODE))) == NULL)
 error(“function empty: unable to allocate memory”);
 else {
 q->next = NULL;
 *list = q;
 }
 return(end(list));
}

LIST: Linked-List Implementation

number

string

*list

p q

Lists 2 64 Data Structures and Algorithms for Engineers

/*** test to see if a list is empty ***/

int is_empty(LIST_TYPE *list) {
 WINDOW_TYPE q;
 q = *list;
 if (q == NULL) {
 error(“non-existent list”);
 }
 else {
 if (q->next == NULL) {
 return(TRUE);
 else
 return(FALSE);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

q

number

string

*list

q

Lists 2 65 Data Structures and Algorithms for Engineers

/*** position at first element in a list ***/

WINDOW_TYPE first(LIST_TYPE *list) {
 if (is_empty(list) == FALSE) {
 return(*list);
 else
 return(end(list));
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

number

string

end(list)

*list

Lists 2 66 Data Structures and Algorithms for Engineers

/*** position at next element in a list ***/

WINDOW_TYPE next(WINDOW_TYPE w, LIST_TYPE *list) {
 if (w == last(list)) {
 return(end(list));
 }
 else if (w == end(list)) {
 error("can't find next after end of list");
 }
 else {
 return(w->next);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

end(list)w->nextw

Lists 2 67 Data Structures and Algorithms for Engineers

/*** position at previous element in a list ***/

WINDOW_TYPE previous(WINDOW_TYPE w, LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (w != first(list)) {
 p = first(list);
 while (p->next != w) {
 p = p->next;
 if (p == NULL) break; /* trap this to ensure */
 } /* we don’t dereference */
 if (p != NULL) /* a null pointer in the */
 return(p); /* while condition */

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

p w

number

string

Lists 2 68 Data Structures and Algorithms for Engineers

/*** position at previous element in a list ***/

WINDOW_TYPE previous(WINDOW_TYPE w, LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (w != first(list)) {
 p = first(list);
 while (p->next != w) {
 p = p->next;
 if (p == NULL) break; /* trap this to ensure */
 } /* we don’t dereference */
 if (p != NULL) /* a null pointer in the */
 return(p); /* while condition */

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

p w

number

string

Lists 2 69 Data Structures and Algorithms for Engineers

 else {
 error("can't find previous to a non-existent node");
 }
 }
 else {
 error("can't find previous before first element of list");
 return(w);
 }
}

LIST: Linked-List Implementation

Lists 2 70 Data Structures and Algorithms for Engineers

/*** position at last element in a list ***/

WINDOW_TYPE last(LIST_TYPE *list) {
 WINDOW_TYPE p, q;
 if (*list == NULL) {
 error("non-existent list");
 }
 else {
 /* list exists: find last node */

LIST: Linked-List Implementation

Lists 2 71 Data Structures and Algorithms for Engineers

/* list exists: find last node */

 if (is_empty(list)) {
 p = end(list);
 }
 else {
 p = *list;
 q = p->next;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 }
 }
 return(p);
 }
 }

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

qp

Lists 2 72 Data Structures and Algorithms for Engineers

/* list exists: find last node */

 if (is_empty(list)) {
 p = end(list);
 }
 else {
 p = *list;
 q = p->next;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 }
 }
 return(p);
 }
 }

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

qp

Lists 2 73 Data Structures and Algorithms for Engineers

/* list exists: find last node */

 if (is_empty(list)) {
 p = end(list);
 }
 else {
 p = *list;
 q = p->next;
 while (q->next != NULL) {
 p = q;
 q = q->next;
 }
 }
 return(p);
 }
 }

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

qp

Lists 2 74 Data Structures and Algorithms for Engineers

/*** insert an element in a list ***/

LIST_TYPE *insert(ELEMENT_TYPE e, WINDOW_TYPE w,
 LIST_TYPE *list) {
 WINDOW_TYPE temp;
 if (*list == NULL) {
 error(“cannot insert in a non-existent list”);
 }

LIST: Linked-List Implementation

Lists 2 75 Data Structures and Algorithms for Engineers

 else {
 /* insert it after w */
 temp = w->next;
 if ((w->next = (NODE_TYPE) malloc(sizeof(NODE))) = NULL)
 error(“function insert: unable to allocate memory”);
 else {
 w->next->element = e;
 w->next->next = temp;
 }
 return(list);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

tempw

Lists 2 76 Data Structures and Algorithms for Engineers

 else {
 /* insert it after w */
 temp = w->next;
 if ((w->next = (NODE_TYPE) malloc(sizeof(NODE))) = NULL)
 error(“function insert: unable to allocate memory”);
 else {
 w->next->element = e;
 w->next->next = temp;
 }
 return(list);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

tempw

number

string

Lists 2 77 Data Structures and Algorithms for Engineers

 else {
 /* insert it after w */
 temp = w->next;
 if ((w->next = (NODE_TYPE) malloc(sizeof(NODE))) = NULL)
 error(“function insert: unable to allocate memory”);
 else {
 w->next->element = e;
 w->next->next = temp;
 }
 return(list);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

tempw

e.number

e.string

Lists 2 78 Data Structures and Algorithms for Engineers

/*** delete an element from a list ***/

LIST_TYPE *delete(WINDOW_TYPE w, LIST_TYPE *list) {
 WINDOW_TYPE p;
 if (*list == NULL) {
 error(“cannot delete from a non-existent list”);
 }
 else {
 p = w->next; /* node to be deleted */
 w->next = w->next->next; /* rearrange the links */
 free(p); /* delete the node */
 return(list);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

pw

Lists 2 79 Data Structures and Algorithms for Engineers

/*** delete an element from a list ***/

LIST_TYPE *delete(WINDOW_TYPE w, LIST_TYPE *list) {
 WINDOW_TYPE p;
 if (*list == NULL) {
 error(“cannot delete from a non-existent list”);
 }
 else {
 p = w->next; /* node to be deleted */
 w->next = w->next->next; /* rearrange the links */
 free(p); /* delete the node */
 return(list);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

pw

Lists 2 80 Data Structures and Algorithms for Engineers

/*** delete an element from a list ***/

LIST_TYPE *delete(WINDOW_TYPE w, LIST_TYPE *list) {
 WINDOW_TYPE p;
 if (*list == NULL) {
 error(“cannot delete from a non-existent list”);
 }
 else {
 p = w->next; /* node to be deleted */
 w->next = w->next->next; /* rearrange the links */
 free(p); /* delete the node */
 return(list);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

pw

Lists 2 81 Data Structures and Algorithms for Engineers

/*** retrieve an element from a list ***/

ELEMENT_TYPE retrieve(WINDOW_TYPE w, LIST_TYPE *list) {
 WINDOW_TYPE p;

 if (*list == NULL) {
 error(“cannot retrieve from a non-existent list”);
 }
 else {
 return(w->next->element);
 }
}

LIST: Linked-List Implementation

number

string

*list

number

string

number

string

w

Lists 2 82 Data Structures and Algorithms for Engineers

/*** print all elements in a list ***/

int print(LIST_TYPE *list) {
 WINDOW_TYPE w;
 ELEMENT_TYPE e;

 printf(“Contents of list: \n”);
 w = first(list);
 while (w != end(list)) {
 e = retrieve(w, list);
 printf(“%d %s\n”, e.number, e.string);
 w = next(w, list);
 }
 printf(“---\n”);
 return(0);
}

LIST: Linked-List Implementation

Lists 2 83 Data Structures and Algorithms for Engineers

/*** error handler: print message passed as argument and
 take appropriate action ***/

int error(char *s) {
 printf("Error: %s\n", s);
 exit(0);
}

LIST: Linked-List Implementation

Lists 2 84 Data Structures and Algorithms for Engineers

/*** assign values to an element ***/

int assign_element_values(ELEMENT_TYPE *e, int number, char s[]) {
 e->string = (char *) malloc(sizeof(char) * (strlen(s)+1));
 strcpy(e->string, s);
 e->number = number;
}

LIST: Linked-List Implementation

number

string

e

Lists 2 85 Data Structures and Algorithms for Engineers

/*** assign values to an element ***/

int assign_element_values(ELEMENT_TYPE *e, int number, char s[]) {
 e->string = (char *) malloc(sizeof(char) * (strlen(s)+1));
 strcpy(e->string, s);
 e->number = number;
}

LIST: Linked-List Implementation

number

e

Lists 2 86 Data Structures and Algorithms for Engineers

/*** initialize the list pointer to make sure ***/
/*** all subsequent checks on its value are valid ***/

void initialize_list(LIST_TYPE *list) {
 *list = NULL;
}

LIST: Linked-List Implementation

*list

Lists 2 87 Data Structures and Algorithms for Engineers

/*** main driver routine ***/

 WINDOW_TYPE w;
 ELEMENT_TYPE e;
 LIST_TYPE list;
 int i;

 initialize_list(&list);
 empty(&list);
 print(&list);

 assign_element_values(&e, 1, "String A");
 w = first(&list);
 insert(e, w, &list);
 print(&list);

LIST: Linked-List Implementation

Lists 2 88 Data Structures and Algorithms for Engineers

assign_element_values(&e, 2, "String B");
 insert(e, w, &list);
 print(&list);

 assign_element_values(&e, 3, "String C");
 insert(e, last(&list), &list);
 print(&list);

 assign_element_values(&e, 4, "String D");
 w = next(last(&list), &list);
 insert(e, w, &list);
 print(&list);

LIST: Linked-List Implementation

Lists 2 89 Data Structures and Algorithms for Engineers

 w = previous(w, &list);
 delete(w, &list);
 print(&list);

}

LIST: Linked-List Implementation

Lists 2 90 Data Structures and Algorithms for Engineers

Key points:

– All we changed was the implementation of the data-structure and the access routines

– But by keeping the interface to the access routines the same as before, these changes are
transparent to the user

– And we didn’t have to make any changes in the main function which was actually manipulating
the list

LIST: Linked-List Implementation

Lists 2 91 Data Structures and Algorithms for Engineers

Key points:

– In a real software system where perhaps hundreds (or thousands) of people are using these
list primitives, this transparency is critical

– We couldn’t have achieved it if we manipulated the data-structure directly

LIST: Linked-List Implementation

Lists 2 92 Data Structures and Algorithms for Engineers

• Possible problems with the implementation:

– we have to run the length of the list in order to find the end
(i.e., end(L) is O(n))

– there is a (small) overhead in using the pointers

• On the other hand, the list can now grow as large as necessary, without having to
predefine the maximum size

LIST: Linked-List Implementation

Lists 2 93 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

List
We can also have a doubly-linked list;
this removes the need to have a header node
and make finding the previous node more efficient

Lists 2 94 Data Structures and Algorithms for Engineers

LIST: Linked-List Implementation

List
Lists can also be circular

Lists 2 95 Data Structures and Algorithms for Engineers

Comparison:
Linked Lists vs. Arrays

• Relative advantages of linked lists

– Overflow on linked structures can never occur unless memory is actually full

– Insertions and deletions are simpler than for contiguous (array) lists

– With large records, moving pointers is easier and faster than moving the items themselves

Lists 2 96 Data Structures and Algorithms for Engineers

Comparison:
Linked Lists vs. Arrays

• Relative advantages of arrays

– Linked structures require extra space for storing pointer fields

– Linked lists do not allow efficient random access to items

– Arrays allow better memory locality and cache performance than random pointer jumping

• Dynamic memory allocation provides us with flexibility on how and where to use
limited storage resources

Lists 2 97 Data Structures and Algorithms for Engineers

Comparison:
Linked Lists vs. Arrays

• Both lists and arrays can be thought of a recursive objects:

– Lists: chopping off the first element of a linked list leaves a smaller linked list

– Lists are recursive objects

– Splitting the first k elements off an n element array give two smaller arrays, of size k and n-k,
respectively

– Arrays are recursive objects

– This shows us that lists are amenable to efficient (recursive) divide-and-conquer algorithms, such as
binary search and quicksort

