
Lists 3 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 5: Lists

Lecture 3: Stacks. Implementation using List ADT. Comparison of order of
complexity. Stack applications.

Lists 3 2 Data Structures and Algorithms for Engineers

Stacks

A stack is a special type of list

– all insertions and deletions take place at one end, called the top

– thus, the last one added is always the first one available for deletion

– also referred to as

• pushdown stack
• pushdown list
• LIFO list (Last In First Out)

Lists 3 3 Data Structures and Algorithms for Engineers

Stacks

Top

Lists 3 4 Data Structures and Algorithms for Engineers

Stack Operations

Declare: ® S :

The function value of Declare(S) is an empty stack

Lists 3 5 Data Structures and Algorithms for Engineers

Stack Operations

Empty: ® S :

The function Empty causes the stack to be emptied and it returns position End(S)

Lists 3 6 Data Structures and Algorithms for Engineers

Stack Operations

IsEmpty: S ® B :

The function value IsEmpty(S) is true if S is empty;
otherwise, it is false

Lists 3 7 Data Structures and Algorithms for Engineers

Stack Operations

Top: S ® E :

The function value Top(S) is the first element in the list;

if the list is empty, the value is undefined

Lists 3 8 Data Structures and Algorithms for Engineers

Stack Operations

Push: E x S ® S :

Push(e, S)
Insert an element e at the top of the stack

Lists 3 9 Data Structures and Algorithms for Engineers

Stack Operations

Pop: S ® E :

Pop(S)
Remove the top element from the stack: i.e., return the top element and delete it
from the stack

Lists 3 10 Data Structures and Algorithms for Engineers

Stack Operations

• All these operations can be directly implemented using the LIST ADT operations on
a List S

• Although it may be more efficient to use a dedicated implementation

• It depends what you want: code efficiency or software re-use
(i.e., utilization efficiency)

Lists 3 11 Data Structures and Algorithms for Engineers

Stack Operations

Declare(S)

Empty(S)

Top(S)
Retrieve(First(S), S)

Push(e, S)
Insert(e, First(S), S)

Pop(S)
Retrieve(First(S), S)
Delete(First(S), S)

Lists 3 12 Data Structures and Algorithms for Engineers

Stack Errors

• Stack overflow errors occur when you attempt to Push() an element on a stack
that is full

• Stack underflow errors occur when you attempt to Pop() an element off of an
empty stack

• Your ADT implementation should provide guards that catch these errors

Lists 3 13 Data Structures and Algorithms for Engineers

Stack Implementation

• The List ADT can be implemented
– As an array

– As a linked-list

• So, therefore, so can the Stack ADT

• What are the relative advantages and disadvantages of these two options?

• When would you pick one implementation over the other?

Lists 3 14 Data Structures and Algorithms for Engineers

Stack Operations

Declare(S)

Empty(S)

Top(S)
Retrieve(First(S), S)

Push(e, S)
Insert(e, First(S), S)

Pop(S)
Retrieve(First(S), S)
Delete(First(S), S)

Lists 3 15 Data Structures and Algorithms for Engineers

Stack Operations

 Array Linked-List
Declare(S) O(1) O(1)

Empty(S) O(1) O(n)

Top(S) O(1) O(1)
Retrieve(First(S), S)

Push(e, S) O(n) … why? O(1)
Insert(e, First(S), S)

Pop(S) O(n) O(1)
Retrieve(First(S), S)
Delete(First(S), S)

Lists 3 16 Data Structures and Algorithms for Engineers

Stack Operations

 Array Linked-List
Declare(S) O(1) O(1)

Empty(S) O(1) O(n)

Top(S) O(1) O(1)
Retrieve(Last(S), S)

Push(e, S) O(1) O(n) … !!!
Insert(e, end(S), S)

Pop(S) O(1) O(n) … !!!
Retrieve(Last(S), S)
Delete(Last(S), S)

Lists 3 17 Data Structures and Algorithms for Engineers

Stack Implementation

• Reusing the List ADT involves some compromises

• Alternative is to create a new Stack ADT

– With an implementation that avoids these compromises

Lists 3 18 Data Structures and Algorithms for Engineers

Stack Applications

• Reversing the order of a list of items

• Undo sequence (like those in a text editor)

• Page-visited history in a web browser

• Saving local variables when one function calls another, and it calls another,
and so on

• Parenthesis (begin-end token) matching

Lists 3 19 Data Structures and Algorithms for Engineers

Stack Applications

Saving local variables when one function calls another, and it calls another, and so on

• A typical operating system keeps track of the chain of active functions and local variables
with a stack

• When a function is called, the run-time system pushes onto the stack a frame containing
local variables and maintains state of program at the point of departure

• When a function returns to the point of departure, the function frame is popped from the
stack and control is passed to the code at the point of departure.

Lists 3 20 Data Structures and Algorithms for Engineers

Stack Applications

int main () {
 int i = 5;
 foo(i);
}

foo(int j) {
 int k;
 k = j+1;
 bar(k);

bar (int m) {
 …
}

main
i: 5

foo
j: 5
k: 6

bar
m: 6

Lists 3 21 Data Structures and Algorithms for Engineers

Stack Applications

Token matching

// X is an array of tokens, e.g., grouping symbol, variable, operator, number

for i=0 to n-1 do {
 if X[i] is an opening grouping symbol {
 S.push(X[i]) }
 else {
 if X[i] is a closing grouping symbol {
 if S.isEmpty() then
 error:: nothing to match with
 if S.pop() is not equal to X[i]
 error:: false {wrong type}
 }
 }
}
if S.isEmpty() then
 return true {every symbol matched}
else
 return false {some symbols were never matched}

Lists 3 22 Data Structures and Algorithms for Engineers

Stack Applications

Notation of expressions

 Infix notation

 Postfix notation

 Prefix notation

(http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm)

For a demonstration of a calculator that operated using postfix notation
(i.e., reverse polish) notation, see the Sinclair Scientific calculator:
 http://files.righto.com/calculator/sinclair_scientific_simulator.html

http://files.righto.com/calculator/sinclair_scientific_simulator.html

Lists 3 23 Data Structures and Algorithms for Engineers

Stack Applications

create a new stack
while(input stream is not empty){
 token = getNextToken();
 if(token instanceof operand){
 push(token);
 }
 else if (token instance of operator) {
 op2 = pop();
 op1 = pop();
 result = calc(token, op1, op2);
 push(result);
 }
}
return pop();

Evaluation of Postfix Notation Expressions

Lists 3 24 Data Structures and Algorithms for Engineers

Stack Applications

Demonstrate with 2 3 4 + * 5 –

The time complexity is O(n) because each operand is scanned once, and each operation is performed
once

2 * (3 + 4) – 5

Lists 3 25 Data Structures and Algorithms for Engineers

Stack Applications

Infix transformation to Postfix

• This process also uses a stack

• We have to hold information that's expressed inside parentheses while scanning to find the closing ')'

• We also have to hold information on operations that are of lower precedence on the stack

Lists 3 26 Data Structures and Algorithms for Engineers

Stack Applications

Infix transformation to Postfix – Algorithm

1. Create an empty stack and an empty postfix output string/stream

2. Scan the infix input string/stream left to right

3. If the current input token is an operand, append it to the output string

4. If the current input token is an operator, pop off all operators that have equal or higher precedence and append them to the
output string; push the operator onto the stack. The order of popping is the order in the output.

5. If the current input token is '(', push it onto the stack

6. If the current input token is ')', pop off all operators and append them to the output string until a '(' is popped; discard the '('.

7. If the end of the input string is found, pop all operators and append them to the output string.

Lists 3 27 Data Structures and Algorithms for Engineers

2 * (3 + 4) – 5

2
2 3
2 3 4
2 3 4 +
2 3 4 + *
2 3 4 + * 5
2 3 4 + * 5 –

*
(
*

+
(
* –*

Infix transformation to Postfix – Algorithm

1. Create an empty stack and an empty postfix output string/stream

2. Scan the infix input string/stream left to right

3. If the current input token is an operand, append it to the output string

4. If the current input token is an operator, pop off all operators that have equal or higher precedence and append them to the
output string; push the operator onto the stack. The order of popping is the order in the output.

5. If the current input token is '(', push it onto the stack

6. If the current input token is ')', pop off all operators and append them to the output string until a '(' is popped; discard the '('.

7. If the end of the input string is found, pop all operators and append them to the output string.

