Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 1: Types of trees. Binary Tree ADT.

Trees

* Trees are everywhere

* Hierarchical method of structuring data

e Uses of trees:

— genealogical tree

— organizational tree
— expression tree

— binary search tree

— decision tree

Uses of Trees

w i r- T
-8 @000
g
=
=
=
ow..*o

" -ow.ﬁow o=
Q offie=- o=

= offie=- o= |
c o= o= ofi=
.m -omum_l-ow | o=
®© o= ; ,ow.w.-ow
= o=
5 =
m o= |lofi=

Uses of Trees

Code Tree

Uses of Trees

Binary Seach Tree

Sun

Mon Q Tue
VAN
"ROR X >3\

Uses of Trees

Decision Tree

@ Yes
No m Yes
Alert

No

Sensors
Operative?

No

Trees

Fundamentals

Traversals

Display

Representation

Abstract Data Type [ADT] approach
Emphasis on binary tree

Also, multi-way trees, forests, orchards

Tree Definitions

* Abinary tree T of n nodes, n >0

— either is empty, if n =0

— or consists of a root node u and two binary trees u(1) and u(2) of n, and n, nodes, respectively,
suchthatn=1+n, +n,

* \We say that u(1) is the first or left subtree of T, and u(2) is the second or right
subtree of T

Binary Tree

Binary Tree of zero nodes

Binary Tree

Binary Tree of 1 node

Binary Tree

/N

Binary Tree of 2 nodes

Binary Tree

Binary Tree of 3 nodes

Binary Tree

External nodes - have no subtrees

Q Internal nodes - always have two subtrees

Binary Tree Terminology

Let 7 be a binary tree with root u
Let vbeanynodein T

If v is the root of either u(1) or u(2), then we say u is the parent of v and that v is
the child of u

If wis also a child of 4, and w is distinct from v, we say that v and w are siblings

Binary Tree Terminology

If v is the root of u(i)

then v is the i™ child of ¥;
u(1) is the left child and u(2) is the right child

Also have grandparents and grandchildren

Binary Tree Terminology

Given a binary tree T of n nodes, n 2[I1]

then v is a descendent of u if either

— vis equal to u
or

— vis a child of some node w and w is a descendant of u

We write v desc, u

vis a proper descendent of u if v is a descendant of u and v #lu

Binary Tree Terminology

Given a binary tree T of n nodes, n 2[I1]

then v is a left descendent of u if either

— vis equal to u
or

— vis a left child of some node w and w is a left descendant of u

We write v ldesc; u

Similarly we have v rdesc, u

Binary Tree Terminology

left, relates nodes across a binary tree
rather than up and down a binary tree

Given two nodes u# and v in a binary tree T, we say that v is to the left of u if there is
a new node w in T such that v is a left descendant of w, and u is a right descendant
of w

We denote this relation by left,; and write v left, u

Binary Tree Terminology

e The external nodes of a tree define its frontier

* We can count the number of nodes in a binary tree in three ways:

— Number of internal nodes
— Number of external nodes

— Number of internal and external nodes

e The number of internal nodes is the size of the tree

Binary Tree Terminology

* Let 7'be a binary tree of size n, n 2111

 Then, the number of external nodes of 7Tisn + 1

Binary Tree Terminology

The height of T is defined recursively as
0 if T'is empty and

1 + max(height(T);), height(T,)) otherwise,
where T; and T, are the subtrees of the root

The height of a tree is the length of a longest chain of descendants

Binary Tree Terminology

* Height Numbering

— Number all external nodes 0

— Number each internal node to be one more than the maximum of the numbers of its children

— Then the number of the root is the height of T’

* The height of a node u in T is the height of the subtree rooted at u

Binary Tree Terminology

Levels of nodes

— The level of a node in a binary tree is computed as follows
— Number the root node 0

— Number every other node to be 1 more than its parent

— Then the number of a node v is that node’s level

— The level of v is the number of branches on the path from the root to v

Binary Tree Terminology

Skinny Trees

— every internal node has at most one internal child

Binary Tree Terminology

Complete Binary Trees (Fat Trees]

— the external nodes appear on at most two adjacent levels

— Perfect Trees: complete trees having all their external nodes on one level

— Left-complete Trees: the internal nodes on the lowest level is in the leftmost possible position
— Skinny trees are the highest possible trees

— Complete trees are the lowest possible trees

Complete Tree

Ve

/N SN N

Perfect Tree

o

SN SN SN N

Left-Complete Tree

<

/N N

Binary Tree Terminology

A binary tree of height 4 >[ll[has size at least /
A binary tree of height at most / >[[[[has size at most 2" — 1
A binary tree of size n >[[[lhas height at most n

A binary tree of size n >[[llhas height at least [log, (n + 1)]

Multiway Trees

Multiway trees are defined in a similar way to binary trees, except that the degree
[the maximum number of children] is no longer restricted to the value 2

Multiway Trees

A multiway tree T of n internal nodes, n (111

— either is empty, if n = 0,
— or consists of
* aroot node u,

* aninteger d, >1, the degree of u,

* and multiway trees u(1) of n; nodes, .., u(d,) of n; nodes
suchthatn=1+n;+..+ny

Multiway Trees

A multiway tree T'is a d-ary tree, for some d 11111

if d,=d, for all internal nodes u in T

d-ary Tree

Multiway Trees

* A multiway tree T'is a (a, b)-tree,

f 1<a< d, <b,foralluinT

* Every binary tree is a (2, 2)-tree, and vice versa

BINARY_TREE & TREE Specification

e So far, no values associated with the nodes of a tree

* Now want to introduce an ADT called BINARY _TREE

— Has value of type elementtype

— Sometimes

* has value of type /intelernenttype associated with the internal nodes
* has value of type extelernenttype associated with the external nodes

* These value don't have any effect on BINARY_TREE operations

BINARY_TREE & TREE Specification

BINARY_TREE has explicit windows and window-manipulation operations
A window allows us to ‘see’ the value in a node [and to gain access to it)
Windows can be positioned over any internal or external node

Windows can be moved from parent to child

Windows can be moved from child to parent

Window

/N N

BINARY_TREE & TREE Specification
Let BT denote denote the set of values of BINARY_TREE of elementtype
Let E denote the set of values of type elementtype
Let W denote the set of values of type windowtype

Let B denote the set of Boolean values true and false

BINARY_TREE Operations

Empty: BT — BT

The function Empty(T) is an empty binary tree; if necessary, the tree is deleted

ISEmpty: BT —> B

The function value IsEmpty(T) is true if T is empty; otherwise it is false

Example

/N N

BINARY_TREE Operations

Root: BT —» W :

The function value Root(T) is the window position of the single external node if T is
empty;

otherwise, it Is the window position of the root of T

Example

/N N

BINARY_TREE Operations

IsRoot: W xX BT — B :

The function value IsRoot(w, T) is true if the window w is over the root;

otherwise, it is false

Example

/N N

BINARY_TREE Operations

IsExternal: W xX(BT — B :
The function value IsExternal(w, T) is true if the window w is over an external node of T

otherwise, it is false

Example

/N N

BINARY_TREE Operations

Child: N xX'\W x(BT > W :

The function value Child(i, w, T) is undefined if the node in the window w is external

or
the node in w is internal and i is neither 1 nor 2;

otherwise, it is the it child of the node in w

Example

/N N

BINARY_TREE Operations

Parent: W xBT > W :

The function value Parent(w, T) is undefined if T is empty

or
wis overtherootof T

otherwise, it is the window position of the parent of the node in the window w

Example

/N N

BINARY_TREE Operations

Examine: W x BT — | :

The function value Examine(w, T) is undefined if w is over an external node;

otherwise, It Is element at the internal node in the window w

Example

/N N

BINARY_TREE Operations

Replace: £ xW x BT — BT :

The function value Replace(e, w, T) is undefined if w is over an external node;

otherwise, it is T, with the element at the internal node in w replaced by e

Example

/N N

BINARY_TREE Operations

Insert: ExX'W x BT — W x(BT :

The function value Insert(e, w, T) is undefined if w is over an internal node;

otherwise, it is T, with the external node in w replaced by a new internal node with two
external children.

Furthermore, the new internal node Is given the value e and the window is moved
over the new internal node.

Example

/N N

BINARY_TREE Operations

Delete: W x(BT — W x(BT :
* The function value Delete(w, T) is undefined if w is over an external node;

* |f wis over a leaf node (both its children are external nodes]), then the function
value is T with the internal node to be deleted replaced by its left external node

BINARY_TREE Operations

Delete: W x BT — W x[BT :

* [f wis over an internal node with just one internal node child, then the function
value is T with the internal node to be deleted replaced by its child [internal node])

BINARY_TREE Operations

Delete: W xX\ BT — W x(BT :

* if wis over an internal node with two internal node children, then the function value
Is T with the internal node to be deleted replaced by the leftmost internal node
descendent In its right sub-tree

* In all cases, the window is moved over the replacement node

Example

o

SN SN SN SN

A

BINARY_TREE Operations

Left: W xI BT > W :

The function value Left(w, T) is undefined if w is over an external node;

otherwise, it is the window position of the left (or first) child of the node w

Example

/N N

BINARY_TREE Operations

Right: W x(BT —> W :

The function value Right(w, T) is undefined if w is over an external node;

otherwise, it is the window position of the right (or second) child of the node w

Example

/N N

TREE Operations

Degree: W xX(T — |

The function value Degree(w, T) is the degree of the node in the window w

TREE Operations

Child: N xXW xXT — W :

The function value Child(i, w, T) is undefined if the node in the window w is external
or

if the node in w is internal and i is outside the range 1..d, where d is the degree of the
node;

otherwise, it is the it child of the node in w

BINARY_ TREE Representation

/* pointer implementation of BINARY TREE ADT */

#include <stdio.h>
#include <math.h>
#include <string.h>

#define FALSE O
#define TRUE 1

typedef struct {
int number;
char *string;
} ELEMENT TYPE;

BINARY_ TREE Representation

typedef struct node *NODE TYPE;

typedef struct node({
ELEMENT TYPE element;
NODE TYPE left, right;
} NODE;

typedef NODE TYPE BINARY TREE TYPE;
typedef NODE TYPE WINDOW TYPE;

BINARY_TREE Representation

/N

BINARY_TREE Representation

Tree J

-

=78

% %

Window

BZ

(

BINARY_TREE Representation

This implementation assumes that we are going to represent external nodes as
NULL links

For many ADT operations, we need to know if the window is over an internal or an
external node

— we are over an external node if the window is NULL

BINARY_TREE Representation

-

=78

WINDOW

BINARY_TREE Representations

Whenever we insert an internal node
[remember we can only do this if the window is over an external node]

we simply make its two children NULL

