
Trees 1 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 1: Types of trees. Binary Tree ADT.

Trees 1 2 Data Structures and Algorithms for Engineers

Trees

• Trees are everywhere

• Hierarchical method of structuring data

• Uses of trees:

– genealogical tree

– organizational tree

– expression tree

– binary search tree

– decision tree

Trees 1 3 Data Structures and Algorithms for Engineers

Uses of Trees

Organization Tree

Trees 1 4 Data Structures and Algorithms for Engineers

Uses of Trees

Code Tree

0 1

0

1

1

0

a

b

c d

Trees 1 5 Data Structures and Algorithms for Engineers

Uses of Trees

Binary Seach Tree
Sun

Mon Tue

Fri Sat Thur Wed

Trees 1 6 Data Structures and Algorithms for Engineers

Uses of Trees

Decision Tree

Alert

Yes

Alarm?

Yes

Night?

No

Sensors
Operative?

Override?

No
No

Trees 1 7 Data Structures and Algorithms for Engineers

Trees

• Fundamentals

• Traversals

• Display

• Representation

• Abstract Data Type (ADT) approach

• Emphasis on binary tree

• Also, multi-way trees, forests, orchards

Trees 1 8 Data Structures and Algorithms for Engineers

Tree Definitions

• A binary tree T of n nodes, n ³ 0,

– either is empty, if n = 0

– or consists of a root node u and two binary trees u(1) and u(2) of n1 and n2 nodes, respectively,
such that n = 1 + n1 + n2

• We say that u(1) is the first or left subtree of T, and u(2) is the second or right
subtree of T

Trees 1 9 Data Structures and Algorithms for Engineers

Binary Tree

Binary Tree of zero nodes

Trees 1 10 Data Structures and Algorithms for Engineers

Binary Tree

Binary Tree of 1 node

1 2

Trees 1 11 Data Structures and Algorithms for Engineers

Binary Tree

Binary Tree of 2 nodes

1 2

1 2

Trees 1 12 Data Structures and Algorithms for Engineers

Binary Tree

Binary Tree of 3 nodes

1 2

1 2

1 2

Trees 1 13 Data Structures and Algorithms for Engineers

Binary Tree

External nodes - have no subtrees

Internal nodes - always have two subtrees

Trees 1 14 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• Let T be a binary tree with root u

• Let v be any node in T

• If v is the root of either u(1) or u(2), then we say u is the parent of v and that v is
the child of u

• If w is also a child of u, and w is distinct from v, we say that v and w are siblings

Trees 1 15 Data Structures and Algorithms for Engineers

Trees 1 16 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• If v is the root of u(i)

• then v is the ith child of u;
u(1) is the left child and u(2) is the right child

• Also have grandparents and grandchildren

Trees 1 17 Data Structures and Algorithms for Engineers

Trees 1 18 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• Given a binary tree T of n nodes, n ³ 0

• then v is a descendent of u if either

– v is equal to u
or

– v is a child of some node w and w is a descendant of u

• We write v descT u

• v is a proper descendent of u if v is a descendant of u and v ¹ u

Trees 1 19 Data Structures and Algorithms for Engineers

Trees 1 20 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• Given a binary tree T of n nodes, n ³ 0

• then v is a left descendent of u if either

– v is equal to u
or

– v is a left child of some node w and w is a left descendant of u

• We write v ldescT u

• Similarly we have v rdescT u

Trees 1 21 Data Structures and Algorithms for Engineers

Trees 1 22 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• leftT relates nodes across a binary tree
rather than up and down a binary tree

• Given two nodes u and v in a binary tree T, we say that v is to the left of u if there is
a new node w in T such that v is a left descendant of w, and u is a right descendant
of w

• We denote this relation by leftT and write v leftT u

Trees 1 23 Data Structures and Algorithms for Engineers

Trees 1 24 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• The external nodes of a tree define its frontier

• We can count the number of nodes in a binary tree in three ways:

– Number of internal nodes

– Number of external nodes

– Number of internal and external nodes

• The number of internal nodes is the size of the tree

Trees 1 25 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• Let T be a binary tree of size n , n ³ 0,

• Then, the number of external nodes of T is n + 1

Trees 1 26 Data Structures and Algorithms for Engineers

Trees 1 27 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• The height of T is defined recursively as

0 if T is empty and

1 + max(height(T1), height(T2)) otherwise,
where T1 and T2 are the subtrees of the root

• The height of a tree is the length of a longest chain of descendants

Trees 1 28 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• Height Numbering

– Number all external nodes 0

– Number each internal node to be one more than the maximum of the numbers of its children

– Then the number of the root is the height of T

• The height of a node u in T is the height of the subtree rooted at u

Trees 1 29 Data Structures and Algorithms for Engineers

Trees 1 30 Data Structures and Algorithms for Engineers

Trees 1 31 Data Structures and Algorithms for Engineers

Binary Tree Terminology

Levels of nodes

– The level of a node in a binary tree is computed as follows

– Number the root node 0

– Number every other node to be 1 more than its parent

– Then the number of a node v is that node’s level

– The level of v is the number of branches on the path from the root to v

Trees 1 32 Data Structures and Algorithms for Engineers

Trees 1 33 Data Structures and Algorithms for Engineers

Trees 1 34 Data Structures and Algorithms for Engineers

Binary Tree Terminology

Skinny Trees

– every internal node has at most one internal child

Trees 1 35 Data Structures and Algorithms for Engineers

Trees 1 36 Data Structures and Algorithms for Engineers

Binary Tree Terminology

Complete Binary Trees (Fat Trees)

– the external nodes appear on at most two adjacent levels

– Perfect Trees: complete trees having all their external nodes on one level

– Left-complete Trees: the internal nodes on the lowest level is in the leftmost possible position

– Skinny trees are the highest possible trees

– Complete trees are the lowest possible trees

Trees 1 37 Data Structures and Algorithms for Engineers

Complete Tree

Trees 1 38 Data Structures and Algorithms for Engineers

Perfect Tree

Trees 1 39 Data Structures and Algorithms for Engineers

Left-Complete Tree

Trees 1 40 Data Structures and Algorithms for Engineers

Binary Tree Terminology

• A binary tree of height h ³ 0 has size at least h

• A binary tree of height at most h ³ 0 has size at most 2h – 1

• A binary tree of size n ³ 0 has height at most n

• A binary tree of size n ³ 0 has height at least log2 (n + 1)

Trees 1 41 Data Structures and Algorithms for Engineers

Multiway Trees

Multiway trees are defined in a similar way to binary trees, except that the degree
(the maximum number of children) is no longer restricted to the value 2

Trees 1 42 Data Structures and Algorithms for Engineers

Multiway Trees

A multiway tree T of n internal nodes, n ³ 0,

– either is empty, if n = 0,

– or consists of

• a root node u,

• an integer du ³ 1, the degree of u,

• and multiway trees u(1) of n1 nodes, ..., u(du) of ndu nodes
such that n = 1 + n1 + ... + ndu

Trees 1 43 Data Structures and Algorithms for Engineers

Multiway Trees

A multiway tree T is a d-ary tree, for some d > 0,

if du = d, for all internal nodes u in T

Trees 1 44 Data Structures and Algorithms for Engineers

d-ary Tree

Trees 1 45 Data Structures and Algorithms for Engineers

Multiway Trees

• A multiway tree T is a (a, b)-tree,

if 1 £ a £ du £ b, for all u in T

• Every binary tree is a (2, 2)-tree, and vice versa

Trees 1 46 Data Structures and Algorithms for Engineers

BINARY_TREE & TREE Specification

• So far, no values associated with the nodes of a tree

• Now want to introduce an ADT called BINARY_TREE

– Has value of type elementtype

– Sometimes

• has value of type intelementtype associated with the internal nodes

• has value of type extelementtype associated with the external nodes

• These value don’t have any effect on BINARY_TREE operations

Trees 1 47 Data Structures and Algorithms for Engineers

BINARY_TREE & TREE Specification

• BINARY_TREE has explicit windows and window-manipulation operations

• A window allows us to ‘see’ the value in a node (and to gain access to it)

• Windows can be positioned over any internal or external node

• Windows can be moved from parent to child

• Windows can be moved from child to parent

Trees 1 48 Data Structures and Algorithms for Engineers

Window

Trees 1 49 Data Structures and Algorithms for Engineers

BINARY_TREE & TREE Specification

• Let BT denote denote the set of values of BINARY_TREE of elementtype

• Let E denote the set of values of type elementtype

• Let W denote the set of values of type windowtype

• Let B denote the set of Boolean values true and false

Trees 1 50 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Empty: BT ® BT :

The function Empty(T) is an empty binary tree; if necessary, the tree is deleted

IsEmpty: BT ® B :

The function value IsEmpty(T) is true if T is empty; otherwise it is false

Trees 1 51 Data Structures and Algorithms for Engineers

Example

Trees 1 52 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Root: BT ® W :

The function value Root(T) is the window position of the single external node if T is
empty;

otherwise, it is the window position of the root of T

Trees 1 53 Data Structures and Algorithms for Engineers

Example

Trees 1 54 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

IsRoot: W x BT ® B :

The function value IsRoot(w, T) is true if the window w is over the root;

otherwise, it is false

Trees 1 55 Data Structures and Algorithms for Engineers

Example

Trees 1 56 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

IsExternal: W x BT ® B :

The function value IsExternal(w, T) is true if the window w is over an external node of T

otherwise, it is false

Trees 1 57 Data Structures and Algorithms for Engineers

Example

Trees 1 58 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Child: N x W x BT ® W :

The function value Child(i, w, T) is undefined if the node in the window w is external
or
the node in w is internal and i is neither 1 nor 2;

otherwise, it is the ith child of the node in w

Trees 1 59 Data Structures and Algorithms for Engineers

Example

Trees 1 60 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Parent: W x BT ® W :

The function value Parent(w, T) is undefined if T is empty

or

w is over the root of T

otherwise, it is the window position of the parent of the node in the window w

Trees 1 61 Data Structures and Algorithms for Engineers

Example

Trees 1 62 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Examine: W x BT ® I :

The function value Examine(w, T) is undefined if w is over an external node;

otherwise, it is element at the internal node in the window w

Trees 1 63 Data Structures and Algorithms for Engineers

Example

Trees 1 64 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Replace: E x W x BT ® BT :

The function value Replace(e, w, T) is undefined if w is over an external node;

otherwise, it is T, with the element at the internal node in w replaced by e

Trees 1 65 Data Structures and Algorithms for Engineers

Example

Trees 1 66 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Insert: E x W x BT ® W x BT :

The function value Insert(e, w, T) is undefined if w is over an internal node;

otherwise, it is T, with the external node in w replaced by a new internal node with two
external children.

Furthermore, the new internal node is given the value e and the window is moved
over the new internal node.

Trees 1 67 Data Structures and Algorithms for Engineers

Example

Trees 1 68 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Delete: W x BT ® W x BT :

• The function value Delete(w, T) is undefined if w is over an external node;

• If w is over a leaf node (both its children are external nodes), then the function
value is T with the internal node to be deleted replaced by its left external node

Trees 1 69 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Delete: W x BT ® W x BT :

• If w is over an internal node with just one internal node child, then the function
value is T with the internal node to be deleted replaced by its child (internal node)

Trees 1 70 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Delete: W x BT ® W x BT :

• if w is over an internal node with two internal node children, then the function value
is T with the internal node to be deleted replaced by the leftmost internal node
descendent in its right sub-tree

• In all cases, the window is moved over the replacement node

Trees 1 71 Data Structures and Algorithms for Engineers

Example

Trees 1 72 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Left: W x BT ® W :

The function value Left(w, T) is undefined if w is over an external node;

otherwise, it is the window position of the left (or first) child of the node w

Trees 1 73 Data Structures and Algorithms for Engineers

Example

Trees 1 74 Data Structures and Algorithms for Engineers

BINARY_TREE Operations

Right: W x BT ® W :

The function value Right(w, T) is undefined if w is over an external node;

otherwise, it is the window position of the right (or second) child of the node w

Trees 1 75 Data Structures and Algorithms for Engineers

Example

Trees 1 76 Data Structures and Algorithms for Engineers

TREE Operations

Degree: W x T ® I :

The function value Degree(w, T) is the degree of the node in the window w

Trees 1 77 Data Structures and Algorithms for Engineers

d-ary Tree

Trees 1 78 Data Structures and Algorithms for Engineers

TREE Operations

Child: N x W x T ® W :

The function value Child(i, w, T) is undefined if the node in the window w is external

or

if the node in w is internal and i is outside the range 1..d, where d is the degree of the
node;

otherwise, it is the ith child of the node in w

Trees 1 79 Data Structures and Algorithms for Engineers

d-ary Tree

Trees 1 80 Data Structures and Algorithms for Engineers

/* pointer implementation of BINARY_TREE ADT */

#include <stdio.h>
#include <math.h>
#include <string.h>

#define FALSE 0
#define TRUE 1

typedef struct {
 int number;
 char *string;
 } ELEMENT_TYPE;

BINARY_TREE Representation

Trees 1 81 Data Structures and Algorithms for Engineers

typedef struct node *NODE_TYPE;

typedef struct node{
 ELEMENT_TYPE element;
 NODE_TYPE left, right;
 } NODE;

typedef NODE_TYPE BINARY_TREE_TYPE;
typedef NODE_TYPE WINDOW_TYPE;

BINARY_TREE Representation

Trees 1 82 Data Structures and Algorithms for Engineers

BINARY_TREE Representation

Trees 1 83 Data Structures and Algorithms for Engineers

BINARY_TREE Representation

Tree

Window

Trees 1 84 Data Structures and Algorithms for Engineers

BINARY_TREE Representation

• This implementation assumes that we are going to represent external nodes as
NULL links

• For many ADT operations, we need to know if the window is over an internal or an
external node

– we are over an external node if the window is NULL

Trees 1 85 Data Structures and Algorithms for Engineers

BINARY_TREE Representation

WINDOW

Trees 1 86 Data Structures and Algorithms for Engineers

BINARY_TREE Representations

Whenever we insert an internal node

(remember we can only do this if the window is over an external node)

we simply make its two children NULL

