
Trees 2 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 2: Binary Search Tree

Trees 2 2 Data Structures and Algorithms for Engineers

Binary Search Trees

• A Binary Search Tree (BST) is a special type of binary tree

– it represents information is an ordered format

– A binary tree is binary search tree if for every node w,

all keys in the left subtree of w have values less than the key of w

all keys in the right subtree have values greater than key of w.

Trees 2 3 Data Structures and Algorithms for Engineers

Binary Search Trees

Definition: A binary search tree T is a binary tree; either it is empty or each node
in the tree contains an identifier and:

– all keys in the left subtree of T are less (numerically or alphabetically) than the identifier in the
root node T

– all identifiers in the right subtree of T are greater than the identifier in the root node T

– The left and right subtrees of T are also binary search trees.

Trees 2 4 Data Structures and Algorithms for Engineers

Binary Search Trees

Sun

Mon Tue

Fri Sat Thur Wed

Trees 2 5 Data Structures and Algorithms for Engineers

Binary Search Trees

• The main point to notice about such a tree is that, if traversed inorder, the keys
of the tree (i.e., its data elements) will be encountered in a sorted fashion

• Furthermore, efficient searching is possible using the binary search technique

– search time is O(log2 n)

Trees 2 6 Data Structures and Algorithms for Engineers

Binary Search Trees

It should be noted that several binary search trees are possible for a given data set,
e.g., consider the following tree:

Trees 2 7 Data Structures and Algorithms for Engineers

Binary Search Trees

Sun

Mon

Tue

Fri Sat

Thur
Wed

Trees 2 8 Data Structures and Algorithms for Engineers

Binary Search Trees

Sun

Mon

Tue

Fri

Thur

Wed

Sat

Trees 2 9 Data Structures and Algorithms for Engineers

Binary Search Trees

Let us consider how such a situation might arise

Construct a binary search tree:

– Assume we are building a binary search tree of words

– Initially, the tree is null, i.e. there are no nodes in the tree

– The first word is inserted as a node in the tree as the root, with no children

Trees 2 10 Data Structures and Algorithms for Engineers

Binary Search Trees

On insertion of the second word, we check to see if it is the same as the key in the
root, less than it, or greater than it

• If it is the same, no further action is required (duplicates are not allowed)

• If it is less than the key in the current node, move to the left subtree and compare again

• If the left subtree does not exist, then the word does not exist, and it is inserted as a new
node on the left

Trees 2 11 Data Structures and Algorithms for Engineers

Binary Search Trees

• If, on the other hand, the word was greater than the key in the current node, move to the
right subtree and compare again

• If the right subtree does not exist, then the word does not exist, and it is inserted as a
new node on the right

– This insertion can most easily be effected in a recursive manner

Trees 2 12 Data Structures and Algorithms for Engineers

Binary Search Trees

– The point here is that the structure of the tree depends on the order in which
the data is inserted in the list

– If the words are entered in sorted order, then the tree will degenerate to a
1-D list

Trees 2 13 Data Structures and Algorithms for Engineers

BST Operations

Insert: E x BST ® BST :

The function value Insert(e,T) is the BST T with the element e inserted as a leaf node;

if the element already exists, no action is taken

NO WINDOW!!!

Trees 2 14 Data Structures and Algorithms for Engineers

BST Operations

Delete: E x BST ® BST :

The function value Delete(e, T) is the BST T with the element e deleted;
if the element is not in the BST exists, no action is taken.

NO WINDOW!!!

Trees 2 15 Data Structures and Algorithms for Engineers

Implementation of Insert(e, T)

• If T is empty (i.e., T is NULL)

– create a new node for e

– make T point to it

• If T is not empty

– if e < element at root of T

• Insert e in left child of T: Insert(e, T(1))

– if e > element at root of T

• Insert e in right child of T: Insert(e, T(2))

Trees 2 16 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

First, we must locate the element e to be deleted in the tree

– if e is at a leaf node
• we can delete that node and be done

– if e is at an interior node at w
• we can’t simply delete the node at w as that would disconnect its children

– if the node at w has only one child
• we can replace that node with its child

Trees 2 17 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

– if the node at w has two children

• we replace the node at w with the lowest-valued element among the descendents of its
right child

• this is the left-most node of the right sub-tree

• It is useful to have a function DeleteMin() which
removes the smallest element from a non-empty tree
and
returns the value of the element removed

Trees 2 18 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

• If T is not empty

– if e < element at root of T

Delete e from left child of T: Delete(e, T(1))

– if e > element at root of T

Delete e from right child of T: Delete(e, T(2))

– if e = element at root of T and both children are empty

Remove T

Trees 2 19 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

– if e = element at root of T and left child is empty

Replace T with T(2)

– if e = element at root of T and right child is empty

Replace T with T(1)

– if e = element at root of T and neither child is empty

Replace T with left-most node of T(2) ← “left-most node in right sub-tree!”

Trees 2 20 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

What if the left-most node in the right sub-tree has two (interior node) children?

Trees 2 21 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

It can’t!

If it did, it wouldn’t be the left-most node ...

because there would be a node on it’s left!

Trees 2 22 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

Sun

Mon Tue

Fri Sat Thur Wed

Trees 2 23 Data Structures and Algorithms for Engineers

Implementation of Delete(e, T)

Sun

Mon

Tue

Fri Sat

Thur Wed

Trees 2 24 Data Structures and Algorithms for Engineers

Tree Traversals

• To perform a traversal of a data structure, we use a method of visiting every node
in some predetermined order

• Traversals can be used

– to test data structures for equality

– to display a data structure

– to construct a data structure of a given size

– to copy a data structure

Trees 2 25 Data Structures and Algorithms for Engineers

Depth-First Traversals

• There are 3 depth-first traversals

– Inorder

– Postorder

– Preorder

• For example, consider the expression tree:

Trees 2 26 Data Structures and Algorithms for Engineers

Example: Expression Tree

´

´+

- -+

A B D E F G

C

Trees 2 27 Data Structures and Algorithms for Engineers

Depth-First Traversals

• Inorder traversal

A - B + C x D + E x F - G

• Postorder traversal

A B - C + D E + F G - x x

• Preorder traversal

 x + -A B C x + D E - F G

Trees 2 28 Data Structures and Algorithms for Engineers

Depth-First Traversals

• The parenthesised Inorder traversal

((A - B) + C) x ((D + E) x (F - G))

This is the infix expression corresponding to the expression tree

• Postorder traversal gives a postfix expression

• Preorder traversal gives a prefix expression

Trees 2 29 Data Structures and Algorithms for Engineers

Depth-First Traversals

Recursive definition of inorder traversal

Given a binary tree T

 if T is empty

 visit the external node

 otherwise

 perform an inorder traversal of Left(T)
 visit the root of T
 perform an inorder traversal of Right(T)

Trees 2 30 Data Structures and Algorithms for Engineers

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

Trees 2 31 Data Structures and Algorithms for Engineers

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

Trees 2 32 Data Structures and Algorithms for Engineers

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

1

2

3

4

5

6

10

8

7 9 11

12

13

Trees 2 33 Data Structures and Algorithms for Engineers

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

Trees 2 34 Data Structures and Algorithms for Engineers

Sun

Mon Tue

Fri Sat Thur Wed

Example: Inorder Traversal

Trees 2 35 Data Structures and Algorithms for Engineers

Example: Inorder Traversal

Sun

Mon

Tue

Fri Sat

Thur Wed

Trees 2 36 Data Structures and Algorithms for Engineers

Depth-First Traversals

• Recursive definition of postorder traversal

Given a binary tree T
 if T is empty

 visit the external node

 otherwise

 perform a postorder traversal of Left(T)
 perform a postorder traversal of Right(T)
 visit the root of T

Trees 2 37 Data Structures and Algorithms for Engineers

Example: Postorder Traversal

´

´+

- -+

A B D E F G

C

Trees 2 38 Data Structures and Algorithms for Engineers

Example: Postorder Traversal

´

´+

- -+

A B D E F G

C

Trees 2 39 Data Structures and Algorithms for Engineers

Depth-First Traversals

• Recursive definition of preorder traversal

Given a binary tree T
 if T is empty

 visit the external node

 otherwise

 visit the root of T
 perform a preorder traversal of Left(T)
 perform a preorder traversal of Right(T)

Trees 2 40 Data Structures and Algorithms for Engineers

Example: Preorder Traversal

´

´+

- -+

A B D E F G

C

Trees 2 41 Data Structures and Algorithms for Engineers

Example: Preorder Traversal

´

´+

- -+

A B D E F G

C

Trees 2 42 Data Structures and Algorithms for Engineers

BST Implementation

Trees 2 43 Data Structures and Algorithms for Engineers

BST Implementation

Trees 2 44 Data Structures and Algorithms for Engineers

Trees 2 45 Data Structures and Algorithms for Engineers

BST Implementation

Trees 2 46 Data Structures and Algorithms for Engineers

BST Implementation

Trees 2 47 Data Structures and Algorithms for Engineers

BST Implementation

Trees 2 48 Data Structures and Algorithms for Engineers

BST Implementation

Trees 2 49 Data Structures and Algorithms for Engineers

Trees 2 50 Data Structures and Algorithms for Engineers

postorder
xxxxxx

Trees 2 51 Data Structures and Algorithms for Engineers

Trees 2 52 Data Structures and Algorithms for Engineers

Trees 2 53 Data Structures and Algorithms for Engineers

Trees 2 54 Data Structures and Algorithms for Engineers

BST Implementation

Trees 2 55 Data Structures and Algorithms for Engineers

BINARY_TREE Implementation

3

Trees 2 56 Data Structures and Algorithms for Engineers

BINARY_TREE Implementation

3

1

Trees 2 57 Data Structures and Algorithms for Engineers

BINARY_TREE Implementation

3

51

Trees 2 58 Data Structures and Algorithms for Engineers

BINARY_TREE Implementation

3

51

2

Trees 2 59 Data Structures and Algorithms for Engineers

BINARY_TREE Implementation

3

5

4

1

2

Trees 2 60 Data Structures and Algorithms for Engineers

BINARY_TREE Implementation

3

5

4 6

1

2

Trees 2 61 Data Structures and Algorithms for Engineers

BINARY_TREE Implementation

4

5

6

1

2

