Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 3: Height Balanced Trees: AVL Trees

AVL Trees

We know from our study of Binary Search Trees (BST) that the average search
and insertion time is O(log n)

— If there are n nodes in the binary tree it will take, on average, log,n comparisons/ probes to find
a particular node (or find out that it isn't there]

However, this is only true if the tree is ‘balanced’

— Such as occurs when the elements are inserted in random order

AVL Trees

(s> <D A= 5
CORCED

A Balanced Tree for the Months of the Year

AVL Trees

* However, if the elements are inserted in lexicographic order (i.e., in sorted order]
then the tree degenerates into a skinny tree

AVL Trees

A Degenerate Tree for the Months of the Year

AVL Trees

* If we are dealing with a dynamic tree ...

* nodes are being inserted and deleted over time

— For example, directory of files
— For example, index of university students

* we may need to restructure - balance - the tree so that we keep It
— Fat
— Full
— Complete

AVL Trees

* Adelson-Velskii and Landis in 1362 introduced a binary tree structure that is
balanced with respect to the heights of its subtrees

* Insertions [and deletions] are made such that the tree
— starts off

— and remains

* Height-Balanced

AVL Trees

 Definition of AVL Tree

* An empty tree is height-balanced

* If T is a non-empty binary tree with left and right sub-trees T, and T,, then T is
height-balanced iff (if and only if]

— T, and T, are height-balanced, and

— |height(T,) - height(T,) | <I

AVL Trees

* 350, every sub-tree in a height-balanced tree is also height-balanced

Recall: Binary Tree Terminology

The height of T is defined recursively as
0 if T is empty and

1 + max(height(T,), height(T,)) otherwise,
where T, and T, are the subtrees of the root

The height of a tree is the length of a longest chain of descendents

Recall: Binary Tree Terminology

* Height Numbering

— Number all external nodes 0
— Number each internal node to be one more than the maximum of the numbers of its children
— Then the number of the root is the height of T

* The height of a node u in T is the height of the subtree rooted at u

AVL Trees

AVL Trees

AVL Trees

< <D (tani
CGORCD

A Balanced Tree for the Months of the Year

AVL Trees

\
11

A Balanced Tree for the Months of the Year

AVL Trees

Let’'s construct a height-balanced tree

Order of insertions:

March, May, November, August, April, January, December, July, February, June,
October, September

Before we do, we need a definition of a balance factor

AVL Trees

Balance Factor BF(T) of a node T in a binary tree is defined to be
height(T,) - height(T,)

where T, and T, are the left and right subtrees of T

For any node T in an AVL tree

BF(T)=-1, 0, +1

AVL Trees

* All re-balancing operations are carried out with respect to the closest ancestor of
the new node having balance factor +2 or -2

* There are 4 types of re-balancing operations (called rotations]

— RR
— LL [symmetric with BRR]
— RL
— LR [symmetric with RL]

New After After
Ildentifier Insertion Rebalancing

MARCH

New After After
Ildentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED

New After After
Ildentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED

MAY (MAR)
(MAY)

New After After

Ildentifier Insertion Rebalancing
MARCH BF =0 NO REBALANCING NEEDED
MAY (MAR) BF = -1 NO REBALANCING NEEDED

(MAY) BF =0

New
Identifier

MARCH

MAY

NOVEMBER

After
Insertion

(MAR) BF =0

(MAR) BF =-1
(MAY) BF =0

(AR
(MAY)

(Nov)

After
Rebalancing

NO REBALANCING NEEDED

NO REBALANCING NEEDED

New
Identifier

MARCH

MAY

NOVEMBER

After
Insertion

After
Rebalancing

NO REBALANCING NEEDED

NO REBALANCING NEEDED

New
Identifier

MARCH

MAY

NOVEMBER

After After
Insertion Rebalancing

(MAR) BF =0 NO REBALANCING NEEDED

(MAR) BF = - NO REBALANCING NEEDED
(MAY) BF =0

(MAY) BF =0
=0(MAR) (NOV) BF =0

RR rebalancing

New After After
Ildentifier Insertion Rebalancing

AUGUST
S
s

New After After
Ildentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

New After After
Ildentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

APRIL @

New After After
Ildentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

APRIL

New After After
Ildentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

APRIL

LL rebalancing

New After After
Ildentifier Insertion Rebalancing

JANUARY @
CTORNGEY
@PR) (AR

AN

New After After
Ildentifier Insertion Rebalancing

JANUARY

New After After
Ildentifier Insertion Rebalancing

BF=0

BF=0(AUG) (MAY) BF =-1
=0 (APR) (UAN) BF=O

BF =0

JANUARY

LR rebalancing

New After After

Ildentifier Insertion Rebalancing
DECEMBER

New After After
Ildentifier Insertion Rebalancing

DECEMBER

NO REBALANCING NEEDED

New After After

Ildentifier Insertion Rebalancing
JULY

New After After
Ildentifier Insertion Rebalancing

JULY

NO REBALANCING NEEDED

New After After
Ildentifier Insertion Rebalancing

FEBRUARY

New After After
Ildentifier Insertion Rebalancing

FEBRUARY

New After After
Ildentifier Insertion Rebalancing

FEBRUARY

RL rebalancing

New After
Identifier Insertion

JUNE

CEC) (wav)

@D D Gioy

GONGHRTD
(U

After
Rebalancing

New After After
Ildentifier Insertion Rebalancing

JUNE

New After After
Ildentifier Insertion Rebalancing

JUNE

LR rebalancing

New After After
Ildentifier Insertion Rebalancing

OCTOBER (JAN
(OECS WMARY

New After After
Ildentifier Insertion Rebalancing

OCTOBER

New After After
Ildentifier Insertion Rebalancing

RR rebalancing

BF=0 BF=0 BF=0

New After After
|dentifier Insertion Rebalancing

SEPTEMBER

New After After
|dentifier Insertion Rebalancing

SEPTEMBER NO REBALANCING NEEDED

AVL Trees

e |Let’'s refer to the node inserted as Y

* Let's refer to the nearest ancestor having balance factor +2 or -2 as A

AVL Trees

LL: Y I1s inserted in the
Left subtree of the Left subtree of A

— LL: the path from Ato Y
— Left subtree then Left subtree

LR: Y Is inserted In the
Right subtree of the Left subtree of A

— LR: the path from Ato Y
— Left subtree then Right subtree

AVL Trees

RR: Y Is inserted in the
Right subtree of the Right subtree of A

— RR: the path from Ato Y
— Right subtree then Right subtree

RL: Y Is inserted In the
Left subtree of the Right subtree of A

— RL: the path from Ato Y
— Right subtree then Left subtree

AVL Trees

Balanced Subtree

A

Hint:
AR balance factor
of Ais +1
h
B,

Br

AVL Trees

Unbalanced following insertion

/
\

Br

Height of B, increases to h+1

AVL Trees - LL rotation

Unbalanced following insertion Rebalanced subtree

=

/
\

. (o
h+2
E @

B, By

Height of B, inceases to h+1

AVL Trees

\

Balanced Subtree

AVL Trees

Unbalanced following insertion

A
AN
L B/

Height of By inceases to h+1

R

AVL Trees - RR Rotation

Unbalanced following insertion

B,

Height of By inceases to h+1

AN
=

Rebalanced subtree

/

Br

{1

B,

AVL Trees

Balanced Subtree

AVL Trees

Unbalanced following insertion

AVL Trees - LR rotation (a]

3 aa
8

AVL Trees

Balanced Subtree

Unbalanced following insertion

AVL Trees

h-1

AVL Trees - LR rotation (b])

|
h+2

A

B,

6 N2 1 ghould be
» Rl
/ N\
Cr| | Ar

C,

>

AVL Trees

Balanced Subtree

AVL Trees

Unbalanced following insertion

o

AVL Trees - LR rotation (c]

|
h+2

>

>

AVL Trees

Balanced Subtree

| (A
A
AL
h+2

AVL Trees

Unbalanced following insertion

| (A
A
AL
h+2

! h-1

AVL Trees - RL rotation

&

h+2 \ h+2 6
A D ®?a
A L C L

Cr| | BL

v | .

AVL Trees

* To carry out this rebalancing we need to locate A, I.e., to window A

— Ais the nearest ancestor to Y whose balance factor becomes +2 or -2 following insertion

— Equally, A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion

* \We also need to locate F, the parent of A ... (why?]

AVL Trees

* Note in passing that, since A is the nearest ancestor to Y whose balance factor
was +1 or -1 before insertion, the balance factor of all other nodes on the path
from A to Y must be O

* When we re-balance the tree, the balance factors change (see diagrams above]

— But changes only occur in sub-tree which is being rebalanced

AVL Trees

The balance factors also change following an insertion which requires no
rebalancing

BF(A) is +1 or -1 before insertion
Insertion causes height of one of A's sub-trees to increase by 1

Thus, BF(A) must be O after insertion (since, in this case, it's not +2 or -2)

Pseudo-code Implementation of AVL_Insert(]

PROCEDURE AVL insert (e:elementtype; w:windowtype;
T: BINTREE) ;

* We assume that variables of element type have two *

*

data fields: the information field and a balance *

()
()
(* factor *)
(* Assume also existence of two ADT functions to *)
(* examine these fields: *)
(* Examine BF (w, T))
(* Examine data(w, T) *)
(* and one to modify the balance factor field *)
(* Replace BF (bf, w, T) *)

var newnode: linktype;
begin

Pseudo-code Implementation of AVL_Insert(]

IF isEmpty (tree) /* special case */
THEN
insert (e, w, tree); /*insert with window */
replace BF (0, w, tree)
ELSE
/* Phase 1: locate insertion point *)

/* A keeps track of most recent node with *)

(* balance factor +1 or -1 *)
A = w;
WHILE ((NOT IsExternal (w, T)) AND
(NOT (e.data = Examine Data(w, T))) DO
IF Examine BF(w, T) <> 0 (* non-zero BF *)
THEN
A = w;

ENDIE;

Pseudo-code Implementation of AVL_Insert(]

IF (e.data < Examine Data(w, T))
THEN
Child (0, w, T)
ELSE IF (e.data > Examine Data(w, T))
Child(l, w, T)
ENDIF
ENDIF

ENDWHILE
(* If not found, then embark on Phase 2: *)

(* insert & rebalance *)
IF IsExternal (w, T)
THEN
Insert (e, w, T); (*1nsert as before *)
Replace BF (0, w, T)

ENDIF

Pseudo-code Implementation of AVL_Insert(]

(* adjust balance factors of nodes on path
(* from A to parent of newly-inserted node
(* By definition, they will have had BF=0

(* and so must now change to +1 or -1

(* Let d = this change,

(* d =+1 ... insertion 1n A’s left subtree
(* d = -1 ... insertion 1n A’s right subtree

IF (e.data < Examine Data (A, T))

THEN
vi= Ay
Child (0, v, T)
B:= v;
d = +1

ELSE

Pseudo-code Implementation of AVL_Insert(]

ELSE
v:= A; Child (1, v, T)
B:= v;
d := -1
ENDIF
WHILE ((NOT IsEqual(w, wv))) DO
IF (e.data < Examine Data(v, T))
THEN

ReplaceBF (+1, v, T);
Child (0, v, T) (* height of Left ~ ¥*)
ELSE
ReplaceBF (-1, v, T);
Child (1, v, T) (* height of Right © ¥*)
ENDIF
ENDWHILE

Pseudo-code Implementation of AVL_Insert(]

(* check to see if tree i1s unbalanced ¥*)

IF (ExamineBF (A, T) = 0)
THEN
ReplaceBF (d, A, T) (* still balanced *)
ELSE
IF ((ExamineBF (A, T) + d) = 0)
THEN
ReplaceBF (0, A, T) (*still balanced¥*)
ELSE
(* Tree 1s unbalanced *)

(* determine rotation type *)

Pseudo-code Implementation of AVL_Insert(]

(* Tree 1s unbalanced ... determine rotation type *)
IF d = +1
THEN (* left imbalance ¥*)
IF ExamineBF (B) = +1

THEN (* LL Rotation ¥*)
(* replace left subtree of A *)
(* with right subtree of B *)
temp := B; Child (1, temp, T);
ReplaceChild (0, A, T, temp);

(* replace right subtree of B with A *)
ReplaceChild(l, B, T, A);

ReplaceBF (0, A, T);

ReplaceBF (0, B, T);

Pseudo-code Implementation of AVL_Insert(]

ELSE (* LR Rotation *)

C := B; Child(1l, C, T);

CL :=¢C; Child(0, C L, T);
C R :=C; Child(l, CR, T);
ReplaceChild (1, B, T, C L);
ReplaceChild (0, A, T, C R);
ReplaceChild (0, C, T, B);
ReplaceChild (1, C, T, A);

Pseudo-code Implementation of AVL_Insert(]

IF ExamineBF (C,T) = +1 (* LR(b) *)
THEN
ReplaceBF (-1, A, T);
ReplaceBF (0, B, T);
ELSE
IF ExamineBF(C,T) = -1 (* LR(c) *)

THEN
ReplaceBF (+1, B, T);
ReplaceBF (0, A, T);

ELSE (* LR(a) *)
ReplaceBF (0, A, T);
ReplaceBF (0, B, T);

ENDIF
ENDIF

Pseudo-code Implementation of AVL_Insert(]

(* B 1s new root ¥*)
ReplaceBF (0, C, T);
B := C
ENDIF (* LR rotation *)
ELSE (* right imbalance *)

(* this 1s symmetric to left imbalance *)

(* and 1s left as an exercise! *)

ENDIF (* d = +1 *)

END

Pseudo-code Implementation of AVL_Insert(]

* the subtree with root B has been *
* rebalanced and 1t now replaces *
* A as the root of the originally *

*

* unbalanced tree

()
()
()
()

ReplaceTree (A, T, B)

(* Replace subtree A with B in T *)
(* Note: this i1s a trivial operation ¥*)
(* since we are using a complex *)
(* window wvariable *)
ENDIF
ENDIF
ENDIF
(* AVL Insert () *)

