Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 3: Height Balanced Trees: AVL Trees

David Vernon Carnegie Mellon University Africa

> vernon@cmu.edu www.vernon.eu

- We know from our study of Binary Search Trees (BST) that the average search and insertion time is $O(\log n)$
 - If there are n nodes in the binary tree it will take, on average, log_2n comparisons/probes to find a particular node (or find out that it isn't there)
- However, this is only true if the tree is 'balanced'
 - Such as occurs when the elements are inserted in random order

A Balanced Tree for the Months of the Year

• However, if the elements are inserted in lexicographic order (i.e., in sorted order) then the tree degenerates into a skinny tree

- If we are dealing with a dynamic tree ...
- nodes are being inserted and deleted over time
 - For example, directory of files
 - For example, index of university students
- we may need to restructure balance the tree so that we keep it
 - Fat
 - Full
 - Complete

- Adelson-Velskii and Landis in 1962 introduced a binary tree structure that is balanced with respect to the heights of its subtrees
- Insertions (and deletions) are made such that the tree
 - starts off
 - and remains
- Height-Balanced

- Definition of AVL Tree
- An empty tree is height-balanced
- If T is a non-empty binary tree with left and right sub-trees T₁ and T₂, then T is height-balanced iff (if and only if)
 - T_1 and T_2 are height-balanced, and
 - $|\text{height}(T_1) \text{height}(T_2)| \le 1$

• So, every sub-tree in a height-balanced tree is also height-balanced

Recall: Binary Tree Terminology

• The height of T is defined recursively as

 $0 \ \mbox{if T}$ is empty and

 $1 + \max(\text{height}(T_1), \text{height}(T_2))$ otherwise, where T_1 and T_2 are the subtrees of the root

• The height of a tree is the length of a longest chain of descendents

Recall: Binary Tree Terminology

- Height Numbering
 - Number all external nodes 0
 - Number each internal node to be one more than the maximum of the numbers of its children
 - Then the number of the root is the height of T
- The height of a node u in T is the height of the subtree rooted at u

A Balanced Tree for the Months of the Year

A Balanced Tree for the Months of the Year

- Let's construct a height-balanced tree
- Order of insertions:

March, May, November, August, April, January, December, July, February, June, October, September

• Before we do, we need a definition of a balance factor

• Balance Factor BF(T) of a node T in a binary tree is defined to be

 $height(T_1) - height(T_2)$

where T_1 and T_2 are the left and right subtrees of T

• For any node T in an AVL tree

BF(T) = -1, 0, +1

- All re-balancing operations are carried out with respect to the closest ancestor of the new node having balance factor +2 or -2
- There are 4 types of re-balancing operations (called rotations)
 - RR
 - LL (symmetric with RR)
 - RL
 - LR (symmetric with RL)

New Identifier After Insertion After Rebalancing

MARCH

AUG

APR

BF = 0 (APR

After Rebalancing

Rebalancing

After

NO REBALANCING NEEDED

New Identifier After Insertion After Rebalancing

FEBRUARY

After Rebalancing

FEBRUARY

FEBRUARY

RL rebalancing

After Insertion After Rebalancing

JUNE

After Rebalancing

JUNE

JUNE

LR rebalancing

Rebalancing

After Rebalancing

- Let's refer to the node inserted as Y
- Let's refer to the nearest ancestor having balance factor +2 or -2 as A

- LL: Y is inserted in the Left subtree of the Left subtree of A
 - LL: the path from A to Y
 - Left subtree then Left subtree
- LR: Y is inserted in the Right subtree of the Left subtree of A
 - LR: the path from A to Y
 - Left subtree then Right subtree

- RR: Y is inserted in the Right subtree of the Right subtree of A
 - RR: the path from A to Y
 - Right subtree then Right subtree
- RL: Y is inserted in the Left subtree of the Right subtree of A
 - RL: the path from A to Y
 - Right subtree then Left subtree

Balanced Subtree

Unbalanced following insertion

AVL Trees - LL rotation

Unbalanced following insertion

Rebalanced subtree

Balanced Subtree

Unbalanced following insertion

AVL Trees - RR Rotation

Rebalanced subtree Unbalanced following insertion 0 В Α -1 A В A B_L \mathbf{B}_{R}

O
A

A
B

Height of B_R inceases to h+1

Balanced Subtree

AVL Trees - LR rotation (a)

AVL Trees - LR rotation (c)

Data Structures and Algorithms for Engineers

- To carry out this rebalancing we need to locate A, i.e., to window A
 - A is the nearest ancestor to Y whose balance factor becomes +2 or -2 following insertion
 - Equally, A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion
- We also need to locate F, the parent of A ... (why?)

- Note in passing that, since A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion, the balance factor of all other nodes on the path from A to Y must be O
- When we re-balance the tree, the balance factors change (see diagrams above)
 - But changes only occur in sub-tree which is being rebalanced

- The balance factors also change following an insertion which requires no rebalancing
- BF(A) is +1 or -1 before insertion
- Insertion causes height of one of A's sub-trees to increase by 1
- Thus, BF(A) must be O after insertion (since, in this case, it's not +2 or -2)
```
PROCEDURE AVL_insert(e:elementtype; w:windowtype;
T: BINTREE);
```

```
(* We assume that variables of element type have two *)
(* data fields: the information field and a balance
                                                        *)
(* factor
                                                        *)
(* Assume also existence of two ADT functions to
                                                        *)
(* examine these fields:
                                                        *)
(*
                          Examine BF(w, T)
                                                        *)
(*
                          Examine data(w, T)
                                                        *)
(* and one to modify the balance factor field
                                                        *)
                          Replace_BF(bf, w, T)
(*
                                                        *)
var newnode: linktype;
begin
```

```
IF isEmpty(tree) /* special case */
   THEN
      insert(e, w, tree); /*insert with window */
      replace BF(0, w, tree)
  ELSE
      /* Phase 1: locate insertion point
                                              *)
      /* A keeps track of most recent node with *)
      (* balance factor +1 or -1
                                                 *)
     A := w;
      WHILE ((NOT ISExternal(w, T)) AND
             (NOT (e.data = Examine Data(w, T))) DO
         IF Examine BF(w, T) <> 0 (* non-zero BF *)
            THEN
              A := w;
         ENDIF;
```

```
IF (e.data < Examine Data(w, T) )</pre>
      THEN
         Child(0, w, T)
      ELSE IF (e.data > Examine_Data(w, T) )
         Child(1, w, T)
      ENDIF
   ENDIF
ENDWHILE
(* If not found, then embark on Phase 2: *)
(* insert & rebalance
                                            *)
IF IsExternal (w, T)
   THEN
      Insert(e, w, T); (*insert as before *)
      Replace_BF(0, w, T)
ENDIF
```

```
(* adjust balance factors of nodes on path *)
(* from A to parent of newly-inserted node *)
(* By definition, they will have had BF=0 *)
(* and so must now change to +1 or -1 *)
(* Let d = this change, *)
(* d = +1 ... insertion in A's left subtree *)
(* d = -1 ... insertion in A's right subtree *)
```

```
IF (e.data < Examine_Data(A, T) )
THEN
v:= A;</pre>
```

```
Child(0, v, T)
```

```
B:= v;
```

```
ELSE
      v := A; Child(1, v, T)
      B := v;
      d := −1
ENDIF
WHILE ((NOT IsEqual(w, v))) DO
   IF (e.data < Examine Data(v, T) )</pre>
      THEN
         ReplaceBF(+1, v, T);
         Child(0, v, T) (* height of Left ^ *)
      ELSE
         ReplaceBF(-1, v, T);
         Child(1, v, T) (* height of Right ^ *)
   ENDIF
ENDWHILE
```

```
(* check to see if tree is unbalanced *)
```

```
IF (ExamineBF(A, T) = 0 )
THEN
    ReplaceBF(d, A, T) (* still balanced *)
ELSE
    IF ((ExamineBF(A, T) + d) = 0)
    THEN
        ReplaceBF(0, A, T)(*still balanced*)
    ELSE
```

```
(* Tree is unbalanced *)
(* determine rotation type *)
```

```
(* Tree is unbalanced ... determine rotation type *)
IF d = +1
   THEN (* left imbalance *)
      IF ExamineBF(B) = +1
         THEN (* LL Rotation *)
            (* replace left subtree of A *)
            (* with right subtree of B *)
            temp := B; Child(1, temp, T);
            ReplaceChild(0, A, T, temp);
            (* replace right subtree of B with A *)
            ReplaceChild(1, B, T, A);
            ReplaceBF(0, A, T);
            ReplaceBF(0, B, T);
```

```
ELSE (* LR Rotation *)
C := B; Child(1, C, T);
C_L := C; Child(0, C_L, T);
C_R := C; Child(1, C_R, T);
ReplaceChild(1, B, T, C_L);
ReplaceChild(0, A, T, C_R);
ReplaceChild(0, C, T, B);
ReplaceChild(1, C, T, A);
```

```
IF ExamineBF(C,T) = +1 (* LR(b) *)
   THEN
      ReplaceBF(-1, A, T);
      ReplaceBF(0, B, T);
  ELSE
      IF ExamineBF(C,T) = -1 (* LR(c) *)
         THEN
            ReplaceBF(+1, B, T);
            ReplaceBF(0, A, T);
                            (* LR(a) *)
         ELSE
            ReplaceBF(0, A, T);
            ReplaceBF(0, B, T);
      ENDIF
ENDIF
```

(* B is new root *)
ReplaceBF(0, C, T);
B := C
ENDIF (* LR rotation *)
ELSE (* right imbalance *)

(* this is symmetric to left imbalance *)
(* and is left as an exercise! *)

ENDIF (* d = +1 *)

```
(* the subtree with root B has been *)
(* rebalanced and it now replaces *)
(* A as the root of the originally *)
(* unbalanced tree *)
```

```
ReplaceTree(A, T, B)
 (* Replace subtree A with B in T *)
 (* Note: this is a trivial operation *)
 (* since we are using a complex *)
 (* window variable *)
ENDIF
```

ENDIF

ENDIF

```
END (* AVL Insert() *)
```