Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 3: Height Balanced Trees: AVL Trees



AVL Trees

We know from our study of Binary Search Trees (BST) that the average search
and insertion time is O(log n)

— If there are n nodes in the binary tree it will take, on average, log,n comparisons/ probes to find
a particular node (or find out that it isn't there]

However, this is only true if the tree is ‘balanced’

— Such as occurs when the elements are inserted in random order



AVL Trees
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AVL Trees

* However, if the elements are inserted in lexicographic order (i.e., in sorted order]
then the tree degenerates into a skinny tree



AVL Trees

A Degenerate Tree for the Months of the Year



AVL Trees

* If we are dealing with a dynamic tree ...

* nodes are being inserted and deleted over time

— For example, directory of files
— For example, index of university students

* we may need to restructure - balance - the tree so that we keep It
— Fat
— Full
— Complete



AVL Trees

* Adelson-Velskii and Landis in 1362 introduced a binary tree structure that is
balanced with respect to the heights of its subtrees

* Insertions [and deletions] are made such that the tree
— starts off

— and remains

* Height-Balanced



AVL Trees

 Definition of AVL Tree

* An empty tree is height-balanced

* If T is a non-empty binary tree with left and right sub-trees T, and T,, then T is
height-balanced iff (if and only if]

— T, and T, are height-balanced, and

— |height(T,) - height(T,) | <I



AVL Trees

* 350, every sub-tree in a height-balanced tree is also height-balanced



Recall: Binary Tree Terminology

The height of T is defined recursively as
0 if T is empty and

1 + max(height(T,), height(T,)) otherwise,
where T, and T, are the subtrees of the root

The height of a tree is the length of a longest chain of descendents



Recall: Binary Tree Terminology

* Height Numbering

— Number all external nodes 0
— Number each internal node to be one more than the maximum of the numbers of its children
— Then the number of the root is the height of T

* The height of a node u in T is the height of the subtree rooted at u



AVL Trees



AVL Trees
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AVL Trees

Let’'s construct a height-balanced tree

Order of insertions:

March, May, November, August, April, January, December, July, February, June,
October, September

Before we do, we need a definition of a balance factor



AVL Trees

Balance Factor BF(T) of a node T in a binary tree is defined to be
height(T,) - height(T,)

where T, and T, are the left and right subtrees of T

For any node T in an AVL tree

BF(T)=-1, 0, +1



AVL Trees

* All re-balancing operations are carried out with respect to the closest ancestor of
the new node having balance factor +2 or -2

* There are 4 types of re-balancing operations (called rotations]

— RR
— LL [symmetric with BRR]
— RL
— LR [symmetric with RL]
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New After After
Ildentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED



New After After
Ildentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED

MAY (MAR)
(MAY)



New After After

Ildentifier Insertion Rebalancing
MARCH BF =0 NO REBALANCING NEEDED
MAY (MAR) BF = -1 NO REBALANCING NEEDED

(MAY) BF =0
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New
Identifier

MARCH

MAY

NOVEMBER

After After
Insertion Rebalancing

(MAR) BF =0 NO REBALANCING NEEDED

(MAR) BF = - NO REBALANCING NEEDED
(MAY) BF =0

(MAY) BF =0
=0(MAR)  (NOV) BF =0

RR rebalancing
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New After After
Ildentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED




New After After
Ildentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

APRIL @



New After After
Ildentifier Insertion Rebalancing
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NO REBALANCING NEEDED
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New After After
Ildentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

APRIL

LL rebalancing
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New After After
Ildentifier Insertion Rebalancing

JANUARY




New After After
Ildentifier Insertion Rebalancing
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LR rebalancing
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New After After
Ildentifier Insertion Rebalancing

DECEMBER

NO REBALANCING NEEDED
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New After After
Ildentifier Insertion Rebalancing

JULY

NO REBALANCING NEEDED
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New After After
Ildentifier Insertion Rebalancing

FEBRUARY




New After After
Ildentifier Insertion Rebalancing

FEBRUARY

RL rebalancing
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New After After
Ildentifier Insertion Rebalancing

JUNE




New After After
Ildentifier Insertion Rebalancing

JUNE

LR rebalancing
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New After After
Ildentifier Insertion Rebalancing

OCTOBER



New After After
Ildentifier Insertion Rebalancing

RR rebalancing

BF=0 BF=0 BF=0
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New After After
|dentifier Insertion Rebalancing

SEPTEMBER NO REBALANCING NEEDED




AVL Trees

e |Let’'s refer to the node inserted as Y

* Let's refer to the nearest ancestor having balance factor +2 or -2 as A



AVL Trees

LL: Y I1s inserted in the
Left subtree of the Left subtree of A

— LL: the path from Ato Y
— Left subtree then Left subtree

LR: Y Is inserted In the
Right subtree of the Left subtree of A

— LR: the path from Ato Y
— Left subtree then Right subtree



AVL Trees

RR: Y Is inserted in the
Right subtree of the Right subtree of A

— RR: the path from Ato Y
— Right subtree then Right subtree

RL: Y Is inserted In the
Left subtree of the Right subtree of A

— RL: the path from Ato Y
— Right subtree then Left subtree



AVL Trees
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AVL Trees

Unbalanced following insertion
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AVL Trees - LL rotation
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AVL Trees
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AVL Trees

Unbalanced following insertion
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AVL Trees - RR Rotation
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AVL Trees

Balanced Subtree



AVL Trees

Unbalanced following insertion



AVL Trees - LR rotation (a]
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AVL Trees
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Unbalanced following insertion

AVL Trees
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AVL Trees - LR rotation (b])
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AVL Trees
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AVL Trees

Unbalanced following insertion
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AVL Trees
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AVL Trees - RL rotation
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AVL Trees

* To carry out this rebalancing we need to locate A, I.e., to window A

— Ais the nearest ancestor to Y whose balance factor becomes +2 or -2 following insertion

— Equally, A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion

* \We also need to locate F, the parent of A ... (why?]



AVL Trees

* Note in passing that, since A is the nearest ancestor to Y whose balance factor
was +1 or -1 before insertion, the balance factor of all other nodes on the path
from A to Y must be O

* When we re-balance the tree, the balance factors change (see diagrams above]

— But changes only occur in sub-tree which is being rebalanced



AVL Trees

The balance factors also change following an insertion which requires no
rebalancing

BF(A) is +1 or -1 before insertion
Insertion causes height of one of A's sub-trees to increase by 1

Thus, BF(A) must be O after insertion (since, in this case, it's not +2 or -2)



Pseudo-code Implementation of AVL_Insert(]

PROCEDURE AVL insert (e:elementtype; w:windowtype;
T: BINTREE) ;

* We assume that variables of element type have two *

*

data fields: the information field and a balance *

( )
( )
(* factor *)
(* Assume also existence of two ADT functions to *)
(* examine these fields: *)
(* Examine BF (w, T) )
(* Examine data(w, T) *)
(* and one to modify the balance factor field *)
(* Replace BF (bf, w, T) *)

var newnode: linktype;
begin



Pseudo-code Implementation of AVL_Insert(]

IF isEmpty (tree) /* special case */
THEN
insert (e, w, tree); /*insert with window */
replace BF (0, w, tree)
ELSE
/* Phase 1: locate insertion point *)

/* A keeps track of most recent node with *)

(* balance factor +1 or -1 *)
A = w;
WHILE ((NOT IsExternal (w, T)) AND
(NOT (e.data = Examine Data(w, T))) DO
IF Examine BF(w, T) <> 0 (* non-zero BF *)
THEN
A = w;

ENDIE;



Pseudo-code Implementation of AVL_Insert(]

IF (e.data < Examine Data(w, T) )
THEN
Child (0, w, T)
ELSE IF (e.data > Examine Data(w, T) )
Child(l, w, T)
ENDIF
ENDIF

ENDWHILE
(* If not found, then embark on Phase 2: *)

(* insert & rebalance *)
IF IsExternal (w, T)
THEN
Insert (e, w, T); (*1nsert as before *)
Replace BF (0, w, T)

ENDIF



Pseudo-code Implementation of AVL_Insert(]

(* adjust balance factors of nodes on path
(* from A to parent of newly-inserted node
(* By definition, they will have had BF=0

(* and so must now change to +1 or -1

(* Let d = this change,

(* d =+1 ... insertion 1n A’s left subtree
(* d = -1 ... insertion 1n A’s right subtree

IF (e.data < Examine Data (A, T) )

THEN
vi= Ay
Child (0, v, T)
B:= v;
d = +1

ELSE



Pseudo-code Implementation of AVL_Insert(]

ELSE
v:= A; Child (1, v, T)
B:= v;
d := -1
ENDIF
WHILE ((NOT IsEqual(w, wv))) DO
IF (e.data < Examine Data(v, T) )
THEN

ReplaceBF (+1, v, T);
Child (0, v, T) (* height of Left ~ ¥*)
ELSE
ReplaceBF (-1, v, T);
Child (1, v, T) (* height of Right © ¥*)
ENDIF
ENDWHILE



Pseudo-code Implementation of AVL_Insert(]

(* check to see if tree i1s unbalanced ¥*)

IF (ExamineBF (A, T) = 0 )
THEN
ReplaceBF (d, A, T) (* still balanced *)
ELSE
IF ((ExamineBF (A, T) + d) = 0)
THEN
ReplaceBF (0, A, T) (*still balanced¥*)
ELSE
(* Tree 1s unbalanced *)

(* determine rotation type *)



Pseudo-code Implementation of AVL_Insert(]

(* Tree 1s unbalanced ... determine rotation type *)
IF d = +1
THEN (* left imbalance ¥*)
IF ExamineBF (B) = +1

THEN (* LL Rotation ¥*)
(* replace left subtree of A *)
(* with right subtree of B *)
temp := B; Child (1, temp, T);
ReplaceChild (0, A, T, temp);

(* replace right subtree of B with A *)
ReplaceChild(l, B, T, A);

ReplaceBF (0, A, T);

ReplaceBF (0, B, T);



Pseudo-code Implementation of AVL_Insert(]

ELSE (* LR Rotation *)

C := B; Child(1l, C, T);

CL :=¢C; Child(0, C L, T);
C R :=C; Child(l, CR, T);
ReplaceChild (1, B, T, C L);
ReplaceChild (0, A, T, C R);
ReplaceChild (0, C, T, B);
ReplaceChild (1, C, T, A);



Pseudo-code Implementation of AVL_Insert(]

IF ExamineBF (C,T) = +1 (* LR(b) *)
THEN
ReplaceBF (-1, A, T);
ReplaceBF (0, B, T);
ELSE
IF ExamineBF(C,T) = -1 (* LR(c) *)

THEN
ReplaceBF (+1, B, T);
ReplaceBF (0, A, T);

ELSE (* LR(a) *)
ReplaceBF (0, A, T);
ReplaceBF (0, B, T);

ENDIF
ENDIF



Pseudo-code Implementation of AVL_Insert(]

(* B 1s new root ¥*)
ReplaceBF (0, C, T);
B := C
ENDIF (* LR rotation *)
ELSE (* right imbalance *)

(* this 1s symmetric to left imbalance *)

(* and 1s left as an exercise! *)

ENDIF (* d = +1 *)



END

Pseudo-code Implementation of AVL_Insert(]

* the subtree with root B has been *
* rebalanced and 1t now replaces *
* A as the root of the originally *

*

* unbalanced tree

( )
( )
( )
( )

ReplaceTree (A, T, B)

(* Replace subtree A with B in T *)
(* Note: this i1s a trivial operation ¥*)
(* since we are using a complex *)
(* window wvariable *)
ENDIF
ENDIF
ENDIF
(* AVL Insert () *)



