
Trees 3 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 3: Height Balanced Trees: AVL Trees

Trees 3 2 Data Structures and Algorithms for Engineers

AVL Trees

• We know from our study of Binary Search Trees (BST) that the average search
and insertion time is O(log n)

– If there are n nodes in the binary tree it will take, on average, log2n comparisons/probes to find
a particular node (or find out that it isn’t there)

• However, this is only true if the tree is ‘balanced’

– Such as occurs when the elements are inserted in random order

Trees 3 3 Data Structures and Algorithms for Engineers

AVL Trees

JULY

FEB MAY

AUG JAN MAR OCT

APR DEC JUN NOV SEPT

A Balanced Tree for the Months of the Year

Trees 3 4 Data Structures and Algorithms for Engineers

AVL Trees

• However, if the elements are inserted in lexicographic order (i.e., in sorted order)
then the tree degenerates into a skinny tree

Trees 3 5 Data Structures and Algorithms for Engineers

AVL Trees

JULY

FEB

MAY

AUG

JAN

MAR

OCT

APR

DEC

JUN

NOV

SEPT

A Degenerate Tree for the Months of the Year

Trees 3 6 Data Structures and Algorithms for Engineers

AVL Trees

• If we are dealing with a dynamic tree ...

• nodes are being inserted and deleted over time

– For example, directory of files
– For example, index of university students

• we may need to restructure - balance - the tree so that we keep it
– Fat
– Full
– Complete

Trees 3 7 Data Structures and Algorithms for Engineers

AVL Trees

• Adelson-Velskii and Landis in 1962 introduced a binary tree structure that is
balanced with respect to the heights of its subtrees

• Insertions (and deletions) are made such that the tree
– starts off

– and remains

• Height-Balanced

Trees 3 8 Data Structures and Algorithms for Engineers

AVL Trees

• Definition of AVL Tree

• An empty tree is height-balanced

• If T is a non-empty binary tree with left and right sub-trees T1 and T2, then T is
height-balanced iff (if and only if)

– T1 and T2 are height-balanced, and

– |height(T1) - height(T2)| £ 1

Trees 3 9 Data Structures and Algorithms for Engineers

AVL Trees

• So, every sub-tree in a height-balanced tree is also height-balanced

Trees 3 10 Data Structures and Algorithms for Engineers

Recall: Binary Tree Terminology

• The height of T is defined recursively as

0 if T is empty and

1 + max(height(T1), height(T2)) otherwise,
where T1 and T2 are the subtrees of the root

• The height of a tree is the length of a longest chain of descendents

Trees 3 11 Data Structures and Algorithms for Engineers

Recall: Binary Tree Terminology

• Height Numbering
– Number all external nodes 0
– Number each internal node to be one more than the maximum of the numbers of its children

– Then the number of the root is the height of T

• The height of a node u in T is the height of the subtree rooted at u

Trees 3 12 Data Structures and Algorithms for Engineers

AVL Trees

JULY

FEB

MAY

AUG

JAN

MAR

OCT

APR

DEC

JUN

NOV

SEPT

Trees 3 13 Data Structures and Algorithms for Engineers

AVL Trees

JULY

FEB

MAY

AUG

JAN

MAR

OCT

APR

DEC

JUN

NOV

SEPT

1 2

1

1 3

2 4

2

4

3

6

5

Trees 3 14 Data Structures and Algorithms for Engineers

AVL Trees

JULY

FEB MAY

AUG JAN MAR OCT

APR DEC JUN NOV SEPT

A Balanced Tree for the Months of the Year

Trees 3 15 Data Structures and Algorithms for Engineers

AVL Trees

JULY

FEB MAY

AUG JAN MAR OCT

APR DEC JUN NOV SEPT

A Balanced Tree for the Months of the Year

2

3

4

3

12

11

2

111

Trees 3 16 Data Structures and Algorithms for Engineers

AVL Trees

• Let’s construct a height-balanced tree

• Order of insertions:

March, May, November, August, April, January, December, July, February, June,
October, September

• Before we do, we need a definition of a balance factor

Trees 3 17 Data Structures and Algorithms for Engineers

AVL Trees

• Balance Factor BF(T) of a node T in a binary tree is defined to be

height(T1) - height(T2)

 where T1 and T2 are the left and right subtrees of T

• For any node T in an AVL tree

BF(T) = -1, 0, +1

Trees 3 18 Data Structures and Algorithms for Engineers

AVL Trees

• All re-balancing operations are carried out with respect to the closest ancestor of
the new node having balance factor +2 or -2

• There are 4 types of re-balancing operations (called rotations)

– RR

– LL (symmetric with RR)

– RL

– LR (symmetric with RL)

Trees 3 19 Data Structures and Algorithms for Engineers

MARMARCH

New After After
Identifier Insertion Rebalancing

Trees 3 20 Data Structures and Algorithms for Engineers

BF = 0MARCH NO REBALANCING NEEDED

New After After
Identifier Insertion Rebalancing

MAR

Trees 3 21 Data Structures and Algorithms for Engineers

MAR BF = 0MARCH NO REBALANCING NEEDED

MARMAY

MAY

New After After
Identifier Insertion Rebalancing

Trees 3 22 Data Structures and Algorithms for Engineers

MAR BF = 0MARCH NO REBALANCING NEEDED

MAR BF = -1MAY NO REBALANCING NEEDED

MAY BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 23 Data Structures and Algorithms for Engineers

MARCH NO REBALANCING NEEDED

MAY NO REBALANCING NEEDED

NOVEMBER MAR

MAY

NOV

MAR BF = 0

MAR BF = -1

MAY BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 24 Data Structures and Algorithms for Engineers

MARCH NO REBALANCING NEEDED

MAY NO REBALANCING NEEDED

MAR BF = -2NOVEMBER

MAY BF = -1

NOV BF = 0

MAR BF = 0

MAR BF = -1

MAY BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 25 Data Structures and Algorithms for Engineers

MARCH NO REBALANCING NEEDED

MAY NO REBALANCING NEEDED

NOVEMBER

RR rebalancing

MARBF = 0

MAY BF = 0

NOV BF = 0

MAR BF = 0

MAR BF = -1

MAY BF = 0

MAR BF = -2

MAY BF = -1

NOV BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 26 Data Structures and Algorithms for Engineers

AUGUST

MAR

MAY

NOV

AUG

New After After
Identifier Insertion Rebalancing

Trees 3 27 Data Structures and Algorithms for Engineers

AUGUST
NO REBALANCING NEEDEDMARBF = +1

MAY BF = +1

NOV BF = 0

AUGBF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 28 Data Structures and Algorithms for Engineers

AUGUST
NO REBALANCING NEEDEDMARBF = +1

MAY BF = +1

NOV BF = 0

AUGBF = 0

APRIL

MAR

MAY

NOV

AUG

APR

New After After
Identifier Insertion Rebalancing

Trees 3 29 Data Structures and Algorithms for Engineers

AUGUST
NO REBALANCING NEEDEDMARBF = +1

MAY BF = +1

NOV BF = 0

AUGBF = 0

APRIL

MARBF = +2

MAY BF = +2

NOV BF = 0

AUGBF = +1

APRBF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 30 Data Structures and Algorithms for Engineers

NO REBALANCING NEEDED

LL rebalancing

MAR BF = 0

MAY BF = +1

NOV BF = 0AUGBF = 0

APRBF = 0

AUGUST

MARBF = +1

MAY BF = +1

NOV BF = 0

AUGBF = 0

APRIL

MARBF = +2

MAY BF = +2

NOV BF = 0

AUGBF = +1

APRBF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 31 Data Structures and Algorithms for Engineers

JANUARY

MAR

MAY

NOVAUG

APR

JAN

New After After
Identifier Insertion Rebalancing

Trees 3 32 Data Structures and Algorithms for Engineers

JANUARY

MAR BF = +1

MAY BF = +2

NOV BF = 0AUGBF = -1

APR

JAN BF = 0

BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 33 Data Structures and Algorithms for Engineers

JANUARY

LR rebalancing

MAR BF = 0

MAY BF = -1

NOV BF = 0

AUGBF = 0

APR JAN

BF = 0
BF = 0MAR BF = +1

MAY BF = +2

NOV BF = 0AUGBF = -1

APR

JAN BF = 0

BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 34 Data Structures and Algorithms for Engineers

DECEMBER
MAR

MAY

NOV

AUG

APR JAN

DEC

New After After
Identifier Insertion Rebalancing

Trees 3 35 Data Structures and Algorithms for Engineers

DECEMBER

NO REBALANCING NEEDED

MAR BF = +1

MAY BF = -1

NOV BF = 0

AUGBF = -1

APR JAN
BF = +1

BF = 0

DECBF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 36 Data Structures and Algorithms for Engineers

JULY
MAR

MAY

NOV

AUG

APR JAN

DEC JUL

New After After
Identifier Insertion Rebalancing

Trees 3 37 Data Structures and Algorithms for Engineers

JULY

NO REBALANCING NEEDED

MAR BF = +1

MAY BF = -1

NOV BF = 0

AUGBF = -1

APR JANBF = 0

DECBF = 0 JUL BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 38 Data Structures and Algorithms for Engineers

FEBRUARY

MAR

MAY

NOV

AUG

APR JAN

DEC JUL

FEB

New After After
Identifier Insertion Rebalancing

Trees 3 39 Data Structures and Algorithms for Engineers

FEBRUARY

MAR BF = +1

MAY BF = -1

NOV BF = 0

AUGBF = -2

APR JANBF = +1BF = 0

DECBF = -1 JUL BF = 0

FEB BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 40 Data Structures and Algorithms for Engineers

FEBRUARY

RL rebalancing

MAR BF = +1

MAY BF = -1

NOV BF = 0

BF = 0

JANBF = 0

BF = 0

DEC

BF = +1

JUL BF = 0FEB
BF = 0

AUG

APR

MAR BF = +2

MAY BF = -1

NOV BF = 0

AUGBF = -2

APR JANBF = +1BF = 0

DECBF = -1 JUL BF = 0

FEB BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 41 Data Structures and Algorithms for Engineers

JUNE

MAR

MAY

NOVJAN

DEC

JULFEB

AUG

APR

JUN

New After After
Identifier Insertion Rebalancing

Trees 3 42 Data Structures and Algorithms for Engineers

JUNE

MAR BF = +2

MAY BF = -1

NOV BF = 0

BF = -1

JANBF = -1

BF = 0

DEC

BF = +1

JUL BF = -1FEB
BF = 0

AUG

APR

JUN BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 43 Data Structures and Algorithms for Engineers

JUNE

LR rebalancing

BF = 0

MAR

BF = 0

MAY BF = -1

NOV
BF = 0

BF = +1
JAN

BF = 0

BF = 0

DEC

BF =
+1 JUL

BF = -1
FEB

BF = 0

AUG

APR JUN
BF = 0

MAR BF = +2

MAY BF = -1

NOV

BF = -1

JANBF = -1

BF = 0

DEC

BF = +1

JUL BF = -1FEB
BF = 0

AUG

APR

JUN BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 44 Data Structures and Algorithms for Engineers

OCTOBER

MAR

MAY

NOV

JAN

DEC

JULFEBAUG

APR JUN

OCT

New After After
Identifier Insertion Rebalancing

Trees 3 45 Data Structures and Algorithms for Engineers

OCTOBER

MAR

BF = -1

MAY
BF = -2

NOV
BF = -1

BF = +1
JAN

BF = -1

BF =
0

DEC

BF =
+1 JUL

BF = -1
FEB

BF = 0
AUG

APR JUN
BF = 0

OCT
BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 46 Data Structures and Algorithms for Engineers

RR rebalancing

MAR

BF = -1

MAY

NOV
BF=0

BF = +1
JAN

BF = 0

BF = 0

DEC
BF =
+1 JUL

BF= -1
FEB

BF = 0

AUG

APR JUN

BF=0

OCT
BF=0 BF=0

OCTOBER

MAR

BF = -1

MAY
BF = -2

NOV
BF = -1

BF = +1
JAN

BF = -1

BF =
0

DEC

BF =
+1 JUL

BF = -1
FEB

BF = 0
AUG

APR JUN
BF = 0

OCT
BF = 0

New After After
Identifier Insertion Rebalancing

Trees 3 47 Data Structures and Algorithms for Engineers

SEPTEMBER

MAR

MAY

NOV

JAN

DEC

JULFEBAUG

APR JUN OCT

SEPT

New After After
Identifier Insertion Rebalancing

Trees 3 48 Data Structures and Algorithms for Engineers

New After After
Identifier Insertion Rebalancing

SEPTEMBER NO REBALANCING NEEDED

MAR

BF= -1

MAY

NOV
BF= -1

BF = +1

JAN

BF = -1

BF = 0

DEC

BF =
+1 JUL

BF= -1
FEB

BF = 0
AUG

APR JUN

BF=0

OCT

BF=0

BF= -1

SEPT

BF=0

Trees 3 49 Data Structures and Algorithms for Engineers

AVL Trees

• Let’s refer to the node inserted as Y

• Let’s refer to the nearest ancestor having balance factor +2 or -2 as A

Trees 3 50 Data Structures and Algorithms for Engineers

AVL Trees

• LL: Y is inserted in the
Left subtree of the Left subtree of A

– LL: the path from A to Y

– Left subtree then Left subtree

• LR: Y is inserted in the
Right subtree of the Left subtree of A

– LR: the path from A to Y

– Left subtree then Right subtree

Trees 3 51 Data Structures and Algorithms for Engineers

AVL Trees

• RR: Y is inserted in the
Right subtree of the Right subtree of A

– RR: the path from A to Y

– Right subtree then Right subtree

• RL: Y is inserted in the
Left subtree of the Right subtree of A

– RL: the path from A to Y

– Right subtree then Left subtree

Trees 3 52 Data Structures and Algorithms for Engineers

AVL Trees

+1

A

0

B

BL BR

AR

h

h+2

Balanced Subtree

Why?

Hint:
balance factor
of A is +1

Trees 3 53 Data Structures and Algorithms for Engineers

AVL Trees

+2

A

+1

B

BL BR

AR

Unbalanced following insertion

Height of BL increases to h+1

Trees 3 54 Data Structures and Algorithms for Engineers

AVL Trees - LL rotation

+2

A

+1

B

BL BR

AR

Unbalanced following insertion

Height of BL inceases to h+1

Rebalanced subtree

0

B

0

A
BL

BR AR

h+2

Trees 3 55 Data Structures and Algorithms for Engineers

AVL Trees

-1

A

0

B

BRBL

AL

h+2

Balanced Subtree

Trees 3 56 Data Structures and Algorithms for Engineers

AVL Trees

Unbalanced following insertion

-2

A

-1

B

BRBL

AL

Height of BR inceases to h+1

Trees 3 57 Data Structures and Algorithms for Engineers

AVL Trees - RR Rotation

Unbalanced following insertion

Height of BR inceases to h+1

0

B

0

A

AL BL

BR

Rebalanced subtree

-2

A

-1

B

BRBL

AL

Trees 3 58 Data Structures and Algorithms for Engineers

AVL Trees

+1

A

Balanced Subtree

0

B

Trees 3 59 Data Structures and Algorithms for Engineers

AVL Trees

+2

A

0

C

Unbalanced following insertion

-1

B

Trees 3 60 Data Structures and Algorithms for Engineers

AVL Trees - LR rotation (a)

+2

A

0

C

-1

B
0

A

0

C

0

B

Trees 3 61 Data Structures and Algorithms for Engineers

AVL Trees

+1

A

0

C

CRCL

BL

h+2

Balanced Subtree

0

B AR

h

h-1

h

Trees 3 62 Data Structures and Algorithms for Engineers

AVL Trees

+2

A

+1

C

CRCL

BL

h+2

Unbalanced following insertion

-1

B AR

h

h-1

h

Trees 3 63 Data Structures and Algorithms for Engineers

AVL Trees - LR rotation (b)

+2

A

+1

C

CRCL

BL

h+2

-1

B AR

h

h-1

0

A

0

C

CRCLBL

h+2

0

B

AR

h

Should be
-1

A

Trees 3 64 Data Structures and Algorithms for Engineers

AVL Trees

+1

A

0

C

CRCL

BL

h+2

Balanced Subtree

0

B AR

h

h-1

h

Trees 3 65 Data Structures and Algorithms for Engineers

AVL Trees

+2

A

-1

C

CRCL

BL

h+2

Unbalanced following insertion

-1

B AR

h

h-1

h

Trees 3 66 Data Structures and Algorithms for Engineers

AVL Trees - LR rotation (c)

+2

A

-1

C

CRCL

BL

h+2

-1

B AR

h

h-1

0

A

0

C

CRCLBL

h+2

+1

B

AR

h

Trees 3 67 Data Structures and Algorithms for Engineers

AVL Trees

Balanced Subtree

-1

A

0

C

CL CR

BR

h+2

0

BAL

h

h-1

h

Trees 3 68 Data Structures and Algorithms for Engineers

AVL Trees

Unbalanced following insertion

-2

A

-1

C

CR CL

BR

h+2

+1

BAL

h

h-1

h

Trees 3 69 Data Structures and Algorithms for Engineers

AVL Trees - RL rotation

-2

A

-1

C

CL CR

BL

h+2

+1

BAL

h

h-1

+1

A

0

C

CL CR BL

h+2

0

B

AL

Trees 3 70 Data Structures and Algorithms for Engineers

AVL Trees

• To carry out this rebalancing we need to locate A, i.e., to window A

– A is the nearest ancestor to Y whose balance factor becomes +2 or -2 following insertion

– Equally, A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion

• We also need to locate F, the parent of A ... (why?)

– This is where our complex window variable is of use to us ... it gives us this automatically

Trees 3 71 Data Structures and Algorithms for Engineers

AVL Trees

• Note in passing that, since A is the nearest ancestor to Y whose balance factor
was +1 or -1 before insertion, the balance factor of all other nodes on the path
from A to Y must be 0

• When we re-balance the tree, the balance factors change (see diagrams above)

– But changes only occur in sub-tree which is being rebalanced

Trees 3 72 Data Structures and Algorithms for Engineers

AVL Trees

• The balance factors also change following an insertion which requires no
rebalancing

• BF(A) is +1 or -1 before insertion

• Insertion causes height of one of A’s sub-trees to increase by 1

• Thus, BF(A) must be 0 after insertion (since, in this case, it’s not +2 or -2)

Trees 3 73 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

PROCEDURE AVL_insert(e:elementtype; w:windowtype;
 T: BINTREE);

(* We assume that variables of element type have two *)
(* data fields: the information field and a balance *)
(* factor *)
(* Assume also existence of two ADT functions to *)
(* examine these fields: *)
(* Examine_BF(w, T) *)
(* Examine_data(w, T) *)
(* and one to modify the balance factor field *)
(* Replace_BF(bf, w, T) *)
var newnode: linktype;
begin

Trees 3 74 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

IF isEmpty(tree) /* special case */
 THEN
 insert(e, w, tree); /*insert with window */
 replace_BF(0, w, tree)
 ELSE
 /* Phase 1: locate insertion point *)
 /* A keeps track of most recent node with *)
 (* balance factor +1 or -1 *)
 A := w;
 WHILE ((NOT IsExternal(w, T)) AND
 (NOT (e.data = Examine_Data(w, T))) DO
 IF Examine_BF(w, T) <> 0 (* non-zero BF *)
 THEN
 A := w;
 ENDIF;

Trees 3 75 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

IF (e.data < Examine_Data(w, T))
 THEN
 Child(0, w, T)
 ELSE IF (e.data > Examine_Data(w, T))
 Child(1, w, T)
 ENDIF
 ENDIF
 ENDWHILE
 (* If not found, then embark on Phase 2: *)
 (* insert & rebalance *)
 IF IsExternal(w, T)
 THEN
 Insert(e, w, T); (*insert as before *)
 Replace_BF(0, w, T)
 ENDIF

Trees 3 76 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

(* adjust balance factors of nodes on path *)
 (* from A to parent of newly-inserted node *)
 (* By definition, they will have had BF=0 *)
 (* and so must now change to +1 or -1 *)
 (* Let d = this change, *)
 (* d = +1 ... insertion in A’s left subtree *)
 (* d = -1 ... insertion in A’s right subtree *)

 IF (e.data < Examine_Data(A, T))
 THEN
 v:= A;
 Child(0, v, T)
 B:= v;
 d := +1
 ELSE

Trees 3 77 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

ELSE
 v:= A; Child(1, v, T)
 B:= v;
 d := -1
 ENDIF
 WHILE ((NOT IsEqual(w, v))) DO
 IF (e.data < Examine_Data(v, T))
 THEN
 ReplaceBF(+1, v, T);
 Child(0, v, T) (* height of Left ^ *)
 ELSE
 ReplaceBF(-1, v, T);
 Child(1, v, T) (* height of Right ^ *)
 ENDIF
 ENDWHILE

Trees 3 78 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

(* check to see if tree is unbalanced *)

 IF (ExamineBF(A, T) = 0)

 THEN

 ReplaceBF(d, A, T) (* still balanced *)

 ELSE

 IF ((ExamineBF(A, T) + d) = 0)

 THEN

 ReplaceBF(0, A, T)(*still balanced*)

 ELSE

 (* Tree is unbalanced *)

 (* determine rotation type *)

Trees 3 79 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

(* Tree is unbalanced ... determine rotation type *)

IF d = +1
 THEN (* left imbalance *)
 IF ExamineBF(B) = +1
 THEN (* LL Rotation *)
 (* replace left subtree of A *)
 (* with right subtree of B *)
 temp := B; Child(1, temp, T);
 ReplaceChild(0, A, T, temp);

 (* replace right subtree of B with A *)
 ReplaceChild(1, B, T, A);
 ReplaceBF(0, A, T);
 ReplaceBF(0, B, T);

Trees 3 80 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

ELSE (* LR Rotation *)

 C := B; Child(1, C, T);

 C_L := C; Child(0, C_L, T);

 C_R := C; Child(1, C_R, T);

 ReplaceChild(1, B, T, C_L);

 ReplaceChild(0, A, T, C_R);

 ReplaceChild(0, C, T, B);

 ReplaceChild(1, C, T, A);

Trees 3 81 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

IF ExamineBF(C,T) = +1 (* LR(b) *)
 THEN
 ReplaceBF(-1, A, T);
 ReplaceBF(0, B, T);
 ELSE
 IF ExamineBF(C,T) = -1 (* LR(c) *)
 THEN
 ReplaceBF(+1, B, T);
 ReplaceBF(0, A, T);
 ELSE (* LR(a) *)
 ReplaceBF(0, A, T);
 ReplaceBF(0, B, T);
 ENDIF
 ENDIF

Trees 3 82 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

 (* B is new root *)

 ReplaceBF(0, C, T);

 B := C

 ENDIF (* LR rotation *)

 ELSE (* right imbalance *)

 (* this is symmetric to left imbalance *)

 (* and is left as an exercise! *)

ENDIF (* d = +1 *)

Trees 3 83 Data Structures and Algorithms for Engineers

Pseudo-code Implementation of AVL_Insert()

 (* the subtree with root B has been *)
 (* rebalanced and it now replaces *)
 (* A as the root of the originally *)
 (* unbalanced tree *)

 ReplaceTree(A, T, B)
 (* Replace subtree A with B in T *)
 (* Note: this is a trivial operation *)
 (* since we are using a complex *)
 (* window variable *)
 ENDIF
 ENDIF
 ENDIF
END (* AVL_Insert() *)

