
Trees 4 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 4: Height Balanced Trees: Red-Black Trees

Trees 4 2 Data Structures and Algorithms for Engineers

Red-Black Trees

• The goal of height-balancing is to ensure that the tree is as complete as possible
and that, consequently, it has minimal height for the number of nodes in the tree

• As a result, the number of probes it takes to search the tree (and the time it
takes) is minimized.

Trees 4 3 Data Structures and Algorithms for Engineers

Red-Black Trees

• A perfect or a complete tree with n nodes has height O(log2n)

– So, the time it takes to search a perfect or a complete tree with n nodes is O(log2n)

• A skinny tree could have height O(n)

– So, the time it takes to search a skinny tree can be O(n)

• Red-Black trees are similar to AVL trees in that they allow us to construct trees which
have a guaranteed search time O(log2n)

Trees 4 4 Data Structures and Algorithms for Engineers

Red-Black Trees

A red-black tree is a binary tree whose nodes can be coloured either red or black to
satisfy the following three conditions:

1. Black condition:
Each root-to-frontier path contains exactly the same number of black nodes

2. Red condition:
Each red node that is not the root has a black parent

3. Each external node is black

Trees 4 5 Data Structures and Algorithms for Engineers

Red-Black Trees

• A red-black search tree is a red-black tree that is also a binary search tree

• For all n >= 1, every red-black tree of size n has height O(log2n)

– Thus, red-black trees provide a guaranteed worst-case search time of O(log2n)

Trees 4 6 Data Structures and Algorithms for Engineers

Red-Black Trees

Red-black tree (condition 3)

Trees 4 7 Data Structures and Algorithms for Engineers

Red-Black Trees

Red-black tree (condition 3)

Undetermined colour (both red and black satisfy conditions 1 & 2)

Trees 4 8 Data Structures and Algorithms for Engineers

Red-Black Trees

If root was red, then right child would have to be black
(because if it was red, by Condition 2 it would have to have a
black parent) but then Condition 1, the black condition, would
be violated ... so the root can’t be red in this case.

Trees 4 9 Data Structures and Algorithms for Engineers

Red-Black Trees

Trees 4 10 Data Structures and Algorithms for Engineers

Red-Black Trees

a

b

c

To satisfy black condition, either

(1) node a is black and nodes b and c are red, or

(2) nodes a, b, and c are red

In both cases, a red condition is violated

Therefore, this is not a red-black tree (i.e., it cannot be
coloured in a way that satisfies all three conditions)

Trees 4 11 Data Structures and Algorithms for Engineers

Red-Black Trees

• Insertions and deletions can cause red and black conditions to be violated

• Trees then have to be restructured

• Restructuring called a promotion (or rotation)

– Single promotion

– 2 promotion

Trees 4 12 Data Structures and Algorithms for Engineers

Red-Black Trees

• Single promotion

• Also referred to as

– single (left) rotation

– single (right) rotation

• Promotes a node one level

Trees 4 13 Data Structures and Algorithms for Engineers

Red-Black Trees

u

v

1 2

3

T

v

u

32

1

T’

Promote v
(Left Rotation)

Promote u
(Right Rotation)

Trees 4 14 Data Structures and Algorithms for Engineers

Red-Black Trees

• A single promotion (Left Rotation or Right Rotation) preserves the binary-search
condition

• Same manner as an AVL rotation

Trees 4 15 Data Structures and Algorithms for Engineers

Red-Black Trees

u

v

1 2

3

T

v

u

32

1

T’

Promote v
(Left Rotation)

Promote u
(Right Rotation)

keys(1) < key(v) < key(u)
key(v) < keys(2) < key(u)
key(u) < keys(3)

keys(1) < key(v)
key(v) < keys(2) < key(u)
key(v) < key(u) < keys(3)

Trees 4 16 Data Structures and Algorithms for Engineers

Red-Black Trees

• 2-Promotion

• Zig-zag promotion

• Composed of two single promotions

• And hence preserves the binary-search condition

Trees 4 17 Data Structures and Algorithms for Engineers

Red-Black Trees

u

v

1

4

Zig-zag promote w

w

2 3

w

v

1 2

u

3 4

Trees 4 18 Data Structures and Algorithms for Engineers

Red-Black Trees

u

v

1

4

single promote w

w

2 3

u

w

3

4

v

1 2

Trees 4 19 Data Structures and Algorithms for Engineers

Red-Black Trees

single promote w
u

w

3

4

v

1 2

w

v

1 2

u

3 4

Trees 4 20 Data Structures and Algorithms for Engineers

Red-Black Trees

Zig-zag promote w

u

v

4

1

w

32

w

u

1 2

v

3 4

Trees 4 21 Data Structures and Algorithms for Engineers

Red-Black Trees

Insertions

– A red-black tree can be searched in logarithmic time, worst case

– Insertions may violate the red-black conditions necessitating restructuring

– This restructuring can also be effected in logarithmic time

– Thus, an insertion (or a deletion) can be effected in logarithmic time

Trees 4 22 Data Structures and Algorithms for Engineers

Red-Black Trees

• Just as with AVL trees, we perform the insertion by

– first searching the tree until an external node is reached (if the key is not already in the tree)

– then inserting the new (internal) node

• We then have to recolour and restructure, if necessary

Trees 4 23 Data Structures and Algorithms for Engineers

Red-Black Trees

insertion at v

v ?

v
If new node is red, is the tree red-black?
If the new node is black, is the tree red-black?

Trees 4 24 Data Structures and Algorithms for Engineers

Red-Black Trees

• Recolouring:

– Colour new node red

– This preserves the black condition

– but may violate the red condition

• Red condition can be violated only if the parent of an internal node is also red

• Must transform this ‘almost red-black tree’ into a red-black tree

Trees 4 25 Data Structures and Algorithms for Engineers

Red-Black Trees

insertion at v

v

Trees 4 26 Data Structures and Algorithms for Engineers

Red-Black Trees

Recolouring and restructuring algorithm

– The node u is a red node in a BST, T

– u is the only candidate violating node

– Apart from u, the tree T is red-black

Trees 4 27 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 1:

– u is the root

– T is red-black

insertion at v

v

Trees 4 28 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 2:

– u is not the root

– its parent v is the root

– Colour v black

• Since v is the parent and the root,
it is on the path to all external nodes
and, therefore, the black condition is satisfied

v

u

Trees 4 29 Data Structures and Algorithms for Engineers

Red-Black Trees

v

u

Recolour
v

u

Is there anything unexpected about this figure?

Trees 4 30 Data Structures and Algorithms for Engineers

Red-Black Trees

v

u

Recolour
v

u

Is there anything unexpected about this figure?

Trees 4 31 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3:

– u is not the root,

– its parent v is not the root,

– v is the left child of its parent w

– (x is the right child of w,
i.e., x is v’s sibling)

w

v x

u

Trees 4 32 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3.1:

– x is red

– Colour v and x black and w red

– Now repeat the restructuring with u := w

(since the recolouring of w to red may cause a red violation)

Trees 4 33 Data Structures and Algorithms for Engineers

Red-Black Trees

Recolour

Note:
w must be black,
v must be red,
u must be red.
Why?

w

v x

u

Trees 4 34 Data Structures and Algorithms for Engineers

Red-Black Trees

• u must be red because we colour new nodes that way by convention (to preserve
the black condition)

• v must be red because otherwise it would be black and then we wouldn’t have
violated the red condition and we wouldn’t be restructuring anything!

• w must be black because every red node (that isn’t the root) has a black parent
(and x is red so w must be black)

Trees 4 35 Data Structures and Algorithms for Engineers

Red-Black Trees

w

v x

u

Trees 4 36 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3.2:

– x is black

– u is the left child of v

Trees 4 37 Data Structures and Algorithms for Engineers

Red-Black Trees

w

v x

u

Trees 4 38 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3.2:

– x is black

– u is the left child of v

– Promote v

– Colour v black

– Colour w red

Trees 4 39 Data Structures and Algorithms for Engineers

Red-Black Trees

Restructure and recolour

w

v x

u
Promote v;
colour v black;
colour w red

Trees 4 40 Data Structures and Algorithms for Engineers

Red-Black Trees

v

wu

x

Trees 4 41 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3.3:

– x is red

– u is the right child of v

Trees 4 42 Data Structures and Algorithms for Engineers

Red-Black Trees

w

v x

u

Trees 4 43 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3.3:

– x is red

– u is the right child of v

– Colour v and x black

– Colour w red

– Repeat the restructuring with u := w

(since the recolouring of w to red may cause a red violation)

Trees 4 44 Data Structures and Algorithms for Engineers

Red-Black Trees

Recolour

w

v x

u Colour v and x black
Colour w red

Trees 4 45 Data Structures and Algorithms for Engineers

Red-Black Trees

w

v x

u

Trees 4 46 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3.4:

– x is black

– u is the right child of v

Trees 4 47 Data Structures and Algorithms for Engineers

Red-Black Trees

w

v x

u

Trees 4 48 Data Structures and Algorithms for Engineers

Red-Black Trees

Case 3.4:

– x is black

– u is the right child of v

– Zig-zag promote u

– Colour u black

– Colour w red

Trees 4 49 Data Structures and Algorithms for Engineers

Red-Black Trees

Restructure and recolour

w

v x

u Zig-zag promote u;
colour u black;
colour w red

Trees 4 50 Data Structures and Algorithms for Engineers

Red-Black Trees

u

v w

x

Trees 4 51 Data Structures and Algorithms for Engineers

Red-Black Trees

• Case 4:

– u is not the root

– its parent v is not the root

– v is the right child of its parent w

– (x is the left child of w, i.e., x is v’s sibling)

• This case is symmetric to case 3

