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Lecture 4: Height Balanced Trees: Red-Black Trees
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Red-Black Trees

• The goal of height-balancing is to ensure that the tree is as complete as possible 
and that, consequently, it has minimal height for the number of nodes in the tree

• As a result, the number of probes it takes to search the tree (and the time it 
takes) is minimized.
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Red-Black Trees

• A perfect or a complete tree with n nodes has height O(log2n)

– So, the time it takes to search a perfect or a complete tree with n nodes is O(log2n)

• A skinny tree could have height O(n)

– So, the time it takes to search a skinny tree can be O(n)

• Red-Black trees are similar to AVL trees in that they allow us to construct trees which 
have a guaranteed search time O(log2n)
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Red-Black Trees

A red-black tree is a binary tree whose nodes can be coloured either red or black to 
satisfy the following three conditions:

1. Black condition: 
Each root-to-frontier path contains exactly the same number of black nodes

2. Red condition: 
Each red node that is not the root has a black parent

3. Each external node is black
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Red-Black Trees

• A red-black search tree is a red-black tree that is also a binary search tree

• For all n >= 1, every red-black tree of size n has height O(log2n)

– Thus, red-black trees provide a guaranteed worst-case search time of O(log2n)
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Red-Black Trees

Red-black tree (condition 3)
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Red-Black Trees

Red-black tree (condition 3)

Undetermined colour (both red and black satisfy conditions 1 & 2)
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Red-Black Trees

If root was red, then right child would have to be black 
(because if it was red, by Condition 2 it would have to have a
black parent) but then Condition 1, the black condition, would
be violated ... so the root can’t be red in this case.
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Red-Black Trees
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Red-Black Trees

a

b

c

To satisfy black condition, either

(1) node a is black and nodes b and c are red, or 

(2) nodes a, b, and c are red

In both cases, a red condition is violated

Therefore, this is not a red-black tree (i.e., it cannot be 
coloured in a way that satisfies all three conditions)
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Red-Black Trees

• Insertions and deletions can cause red and black conditions to be violated

• Trees then have to be restructured

• Restructuring called a promotion (or rotation)

– Single promotion

– 2 promotion
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Red-Black Trees

• Single promotion

• Also referred to as

– single (left) rotation

– single (right) rotation

• Promotes a node one level
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Red-Black Trees
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Red-Black Trees

• A single promotion (Left Rotation or Right Rotation) preserves the binary-search 
condition

• Same manner as an AVL rotation
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Red-Black Trees
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Red-Black Trees

• 2-Promotion 

• Zig-zag promotion

• Composed of two single promotions

• And hence preserves the binary-search condition
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Red-Black Trees
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Red-Black Trees
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Red-Black Trees
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Red-Black Trees
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Red-Black Trees

Insertions

– A red-black tree can be searched in logarithmic time, worst case

– Insertions may violate the red-black conditions necessitating restructuring

– This restructuring can also be effected in logarithmic time

– Thus, an insertion (or a deletion) can be effected in logarithmic time
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Red-Black Trees

• Just as with AVL trees, we perform the insertion by

– first searching the tree until an external node is reached (if the key is not already in the tree)

– then inserting the new (internal) node

• We then have to recolour and restructure, if necessary
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Red-Black Trees

insertion at v

v ?

v
If new node is red, is the tree red-black?
If the new node is black, is the tree red-black?
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Red-Black Trees

• Recolouring:

– Colour new node red

– This preserves the black condition

– but may violate the red condition

• Red condition can be violated only if the parent of an internal node is also red

• Must transform this ‘almost red-black tree’ into a red-black tree
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Red-Black Trees

insertion at v

v
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Red-Black Trees

Recolouring and restructuring algorithm

– The node u is a red node in a BST, T

– u is the only candidate violating node

– Apart from u, the tree T is red-black
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Red-Black Trees

Case 1: 

– u is the root

– T is red-black

insertion at v

v
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Red-Black Trees

Case 2: 

– u is not the root 

– its parent v is the root

– Colour v black

• Since v is the parent and the root, 
it is on the path to all external nodes 
and, therefore, the black condition is satisfied

v

u
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Red-Black Trees
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Red-Black Trees
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Red-Black Trees

Case 3: 

– u is not the root, 

– its parent v is not the root,

– v is the left child of its parent w 

– (x is the right child of w, 
i.e., x is v’s sibling)

w

v x

u
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Red-Black Trees

Case 3.1: 

– x is red

– Colour v and x black and w red

– Now repeat the restructuring with u := w 

(since the recolouring of w to red may cause a red violation)
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Red-Black Trees

Recolour

Note: 
w must be black, 
v must be red, 
u must be red. 
Why?

w

v x

u
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Red-Black Trees

• u must be red because we colour new nodes that way by convention (to preserve 
the black condition)

• v must be red because otherwise it would be black and then we wouldn’t have 
violated the red condition and we wouldn’t be restructuring anything!

• w must be black because every red node (that isn’t the root) has a black parent 
(and x is red so w must be black)
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Red-Black Trees
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Red-Black Trees

Case 3.2: 

– x is black

– u is the left child of v
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Red-Black Trees
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Red-Black Trees

Case 3.2: 

– x is black

– u is the left child of v

– Promote v

– Colour v black

– Colour w red
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Red-Black Trees

Restructure and recolour

w

v x

u
Promote v; 
colour v black;
colour w red
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Red-Black Trees
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Red-Black Trees

Case 3.3: 

– x is red

– u is the right child of v
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Red-Black Trees
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Red-Black Trees

Case 3.3: 

– x is red

– u is the right child of v

– Colour v and x black

– Colour w red

– Repeat the restructuring with u := w 

(since the recolouring of w to red may cause a red violation)
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Red-Black Trees

Recolour

w

v x

u Colour v and x black
Colour w red
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Red-Black Trees
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Red-Black Trees

Case 3.4: 

– x is black

– u is the right child of v
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Red-Black Trees
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Red-Black Trees

Case 3.4: 

– x is black

– u is the right child of v

– Zig-zag promote u

– Colour u black

– Colour w red
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Red-Black Trees

Restructure and recolour

w

v x

u Zig-zag promote u; 
colour u black;
colour w red
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Red-Black Trees
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Red-Black Trees

• Case 4: 

– u is not the root

– its parent v is not the root

– v is the right child of its parent w 

– (x is the left child of w, i.e., x is v’s sibling)

• This case is symmetric to case 3


