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Module 6: Trees

Lecture 5: Optimal Code Trees. Huffman’s Algorithm.
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Optimal Code Trees

• First application: coding and data compression

• We will define optimal variable-length binary codes and code trees

• We will study Huffman’s algorithm which constructs them

• Huffman’s algorithm is an example of a Greedy Algorithm, 
an important class of simple optimization algorithms
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Text, Codes, and Compression

• Computer systems represent data as bit strings

• Encoding: transformation of data into bit strings

• Decoding: transformation of bit strings into data

• The code defines the transformation
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Text, Codes, and Compression

• For example: ASCII, the international coding standard, uses a 7-bit code

• HEX Code – Character

• 20 - <space>

• 41 – A

• 42 – B

• 61 - a
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Text, Codes, and Compression

• Such encodings are called 

– fixed-length or 

– block codes

• They are attractive because the encoding and decoding is extremely simple

– For coding, we can use a block of integers or codewords indexed by characters

– For decoding, we can use a block of characters indexed by codewords
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Text, Codes, and Compression

• For example: the sentence 
The cat sat on the mat

is encoded in ASCII as

1010100 110100 011001 0101 .....

• Note that the spaces are there simply to improve readability ... they don’t appear in 
the encoded version.

ASCII, stands for American Standard Code for Information Interchange. 
There are 7-bit and 8-bit versions; see https://www.ascii-code.com/
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Text, Codes, and Compression

The following bit string is an ASCII encoded message:

100010011001011100011110111111001001101001110111011001110
1000001101001111001101000001100101110000111100111111001
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Text, Codes, and Compression

And we can decode it by chopping it into smaller strings each of 7 bits in length and 
by replacing the bit strings with their corresponding characters:

1000100(D)1100101(e)1100011(c)1101111(o)1100100(d)1101001(i)11011
10(n)1100111(g)0100000()1101001(i)1110011(s)0100000()1100101(e)110
0001(a)1110011(s)1111001(y)



Trees 4                         9                       Data Structures and  Algorithms for Engineers 

Text, Codes, and Compression

• Every code can be thought of in terms of

• a finite alphabet of source symbols

• a finite alphabet of code symbols

• Each code maps every finite sequence or string of source symbols into a string of 
code symbols
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Text, Codes, and Compression

• Let A be the source alphabet

• Let B be the code alphabet

• A code f is an injective map

f: SA ® SB

• where SA  is the set of all strings of symbols from A

• where SB  is the set of all strings of symbols from B
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Text, Codes, and Compression

Injectivity ensures that each encoded string can be decoded uniquely (we do not want 
two source strings that are encoded as the same string)

Injective Mapping: each element in the range is related to at most one 
element in the domain

A B
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Text, Codes, and Compression

We are primarily interested in the code alphabet {0, 1} since we want to code source 
symbols strings as bit strings
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Text, Codes, and Compression

• There is a problem with block codes:
n symbols produce nb bits with a block code of length b

• For example, 

– if n = 100,000 (the number of characters in a typical 200-page book) 

– b  = 7 (e.g., 7-bit ASCII code)

– then the characters are encoded as 700,000 bits
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Text, Codes, and Compression

• While we cannot encode the ASCII characters with fewer than 7 bits

• We can encode the characters with a different number of bits, depending on their 
frequency of occurrence

• Use fewer bits for the more frequent characters

• Use more bits for the less frequent characters

• Such a code is called a variable-length code
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Text, Codes, and Compression

• First problem with variable length codes:

– when scanning an encoded text from left to right (decoding it) ...

– How do we know when one codeword finishes and another starts?

• We require each codeword not be a prefix of any other codeword

• So, for the binary code alphabet, we should base the codes on binary code trees
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Text, Codes, and Compression

• Binary code trees:

• Binary tree whose external nodes are labelled uniquely with the source alphabet 
symbols

• Left branches are labelled  0

• Right branches are labelled 1



Trees 4                         17                       Data Structures and  Algorithms for Engineers 

Text, Codes, and Compression

A binary code tree and its prefix code

0 1

0 1

c

a

b

a   0
b  11
c  10
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Text, Codes, and Compression

• The codeword corresponding to a symbol is the bit string given by the path from 
the root to the external node labeled with the symbol

• Note that, as required, no codeword is a prefix for any other codeword

– This follows directly from the fact that source symbols are only on external nodes 

– and there is only one (unique) path to that symbol
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Text, Codes, and Compression

• Codes that satisfy the prefix property are called prefix codes

• Prefix codes are important because

– we can uniquely decode an encoded text with a left-to-right scan of the encoded text

– by considering only the current bit in the encoded text

– decoder uses the code tree for this purpose
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Text, Codes, and Compression

• Read the encoded message bit by bit

• Start at the root

• if the bit is a 0, move left

• if the bit is a 1, move right

• if the node is external, output the corresponding symbol and begin again at the 
root
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Text, Codes, and Compression

• Encoded message:

0 0 1 1 1 0 0 

• Decoded message:

A A B C A

0 1

0 1

c

a

b
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Optimal Variable-Length Codes

• What makes a good variable length code?

• Let A = a1, ..., an, n>=1, be the alphabet of source symbols

• Let P = p1, ..., pn, n>=1, be their probability of occurrence

• We obtain these probabilities by analysing are representative sample of the type of 
text we wish to encode
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Optimal Variable-Length Codes

• Any binary tree with n external nodes labelled with the n symbols defines a prefix 
code

• Any prefix code for the n symbols defines a binary tree with at least n external 
nodes

• Such a binary tree with exactly n external nodes is a reduced prefix code (tree)

• Good prefix codes are always reduced (and we can always transform a non-
reduced  prefix code into a reduced one)
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Non-Reduced Prefix Code (Tree)

0

0 1 0

0 1

1

1

a

c b

a  00
b  111
c  110
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Optimal Variable-Length Codes

• Comparison of prefix codes - compare the number of bits in the encoded text

• Let A = a1, ..., an, n>=1, be the alphabet of source symbols

• Let P = p1, ..., pn be their probability of occurrence

• Let W = w1, ..., wn be a prefix code for A = a1, ..., an

• Let L = l1, ..., ln be the lengths of  W = w1, ..., wn 
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Optimal Variable-Length Codes

• Given a source text T with f1, ..., fn occurrences of a1, ..., an respectively

• The total number of bits when T is encoded is

Sn

i = 1  fi li

• The total number of source symbols is 

Sn

i = 1  fi

• The average length of the W-encoding is

Alength(T, W) = Sn

i = 1 fi li /  Sn

i = 1 fi 
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Optimal Variable-Length Codes

• For long enough texts, the probability pi of a given symbol occurring isapproximately

pi = fi /  Sn

i = 1 fi 

• So, the expected length of the W-encoding is

Elength(W, P) = Sn

i = 1 pi li 
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Optimal Variable-Length Codes

• To compare two different codes W1 and W2 we can compare either 

– Alength(T, W1 ) and Alength(T, W2 ) or 
– Elength(W1, P) and Elength(W2 , P)

• We say W1 is no worse than W2 if 

Elength(W1, P) <= Elength(W2 , P)

• We say W1 is optimal if 

Elength(W1, P) <= Elength(W2 , P) 
for all possible prefix codes W2 of A
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Optimal Variable-Length Codes

• Huffman’s Algorithm

• We wish to solve the following problem:

• Given n symbols A = a1, ..., an, n>=1 

and the probability of their occurrence 
P = p1, ..., pn , respectively, 

construct an optimal prefix code for A and P
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Optimal Variable-Length Codes

• This problem is an example of a global optimization problem

• Brute force (or exhaustive search) techniques are too expensive to compute:

– Given A and P
– Compute the set of all reduced prefix codes

– Choose the minimal expected length prefix code
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Optimal Variable-Length Codes

• This algorithm takes O(nn) time, where n is the size of the alphabet

• Why? because any binary tree of size n-1 (i.e. with n external nodes) is a valid 
reduced prefix tree and there are n! ways of labelling the external nodes

• Since n! is approximately nn we see that there are approximately O(nn) steps to go 
through when constructing all the trees to check
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Optimal Variable-Length Codes

• Huffman’s Algorithm is only O(n2) 

• This is significant: if n = 128 (number of symbols in a 7-bit ASCII code)

– O(nn) = 128128 = 5.28 x 10269

– O(n2) = 1282 = 1.6384 x 104

– There are 31536000 seconds in a year and if we could compute 1000 000 000 steps a 
second then the brute force technique would still take 1.67 x 10253 years
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Optimal Variable-Length Codes

• The age of the universe is estimated to be 13 billion years, i.e., 1.3x1010  years

• A long way off 1.67 x 10253 years!



Trees 4                         34                       Data Structures and  Algorithms for Engineers 

Optimal Variable-Length Codes

• Huffman’s Algorithm uses a technique called Greedy

• It uses local optimization to achieve a globally optimum solution

– Build the code incrementally

– Reduce the code by one symbol at each step

– Merge the two symbols that have the smallest probabilities into one new symbol
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Optimal Variable-Length Codes

• Before we begin, note that we’d like a tree with the symbols which have the lowest 
probability to be on the longest path

• Why?

• Because the length of the codeword is equal to the path length and we want 

– short codewords for high-probability symbols

– longer codewords for low-probability symbols
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Text, Codes, and Compression

A binary code tree and its prefix code

0 1

0 1

c

a

b

a   0
b  11
c  10
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Huffman’s Algorithm

• We will treat Huffman’s Algorithm for just six letters, i.e, n = 6, and there are six 
symbols in the source alphabet

• These are, with their probabilities,

E 0.1250

T 0.0925

A 0.0805

O 0.0760

I 0.0729

N 0.0710



Trees 4                         38                       Data Structures and  Algorithms for Engineers 

Huffman’s Algorithm

E

0.1250
T

0.0925
A

0.0805
O

0.0760
I

0.0729
N

0.0710

Step 1:

• Create a forest of code trees, one for each symbol

• Each tree comprises a single external node (empty tree) labelled with its symbol 
and weight (probability)
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Huffman’s Algorithm

Step 2: 
– Choose the two binary trees, B1 and B2, that have the smallest weights

– Create a new root node with B1 and B2 as its children and with weight equal to the sum of 
these two weights

E

0.1250
T

0.0925
A

0.0805
O

0.0760
I N

0.1439



Trees 4                         40                       Data Structures and  Algorithms for Engineers 

Huffman’s Algorithm

Step 3: 

– Repeat step 2!
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Huffman’s Algorithm

E

0.1250
T

0.0925
A O I N

0.14390.1565
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Huffman’s Algorithm

E T A O I N

0.14390.15650.2175
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Huffman’s Algorithm

E T A O I N

0.2175

0.3004
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Huffman’s Algorithm

E T

A O I N

0.5179
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Huffman’s Algorithm

The final prefix code is:

A   100

E   00

I    110

N  111

O   101

T   01
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Huffman’s Algorithm

Three phases in the algorithm

1. Initialize the forest of code trees

2. Construct an optimal code tree

3. Compute the encoding map
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Huffman’s Algorithm

Phase 1: Initialize the forest of code trees

– How will we represent the forest of trees?

– Better question: how will we represent our tree ... 
have to store both alphanumeric characters and probabilities?

– Need some kind of composite node

– Opt to represent this composite node as an INTERNAL node
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Huffman’s Algorithm

– Consequently, the initial tree is simply one internal node

– That is, it is a root (with two external nodes)

Char       0.nnn
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Huffman’s Algorithm

So, to create such a tree we simply invoke the following operations:

– Initialize the tree … tree()

– Add a node … addnode(char, weight, T)
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Huffman’s Algorithm

• We must also keep track of our forest

• We could represent it as a linked list of pointers to Binary trees ...



Trees 4                         51                       Data Structures and  Algorithms for Engineers 

Huffman’s Algorithm

Represented as:
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Huffman’s Algorithm

• Is there an alternative?

• Question: why do we use dynamic data structures?

• Answer: 
– When we don’t know in advance how many elements are in our data set
– When the number of elements varies significantly

• Is this the case here?

• No!
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Huffman’s Algorithm

• So, our alternatives are? ......

• An array, indexed by number, of type ...

• binary_tree, i.e., each element in the array can point to a binary code tree
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Huffman’s Algorithm
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Huffman’s Algorithm

• What will be the dimension of this array?

• n, the number of symbols in our source alphabet since this is the number of trees 
we start out with in our forest initially
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Huffman’s Algorithm

Phase 2: construct the optimal code tree
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Huffman’s Algorithm

Find the tree with the smallest weight - A, at element i
Find the tree with the next smallest weight - B, at element j

Construct a tree, with right sub-tree A, left sub-tree B, 
with root having weight = sum of the roots of A and B

Let array element i point to the new tree
Remove tree at element j 
(delete it if you made a copy of left sub-tree B)
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Huffman’s Algorithm

Find the tree with the smallest weight - A, at element i
Find the tree with the next smallest weight - B, at element j

Construct a tree, with right sub-tree A, left sub-tree B, 
with root having weight = sum of the roots of A and B

Let array element i point to the new tree
Remove tree at element j 
(delete it if you made a copy of left sub-tree B)

let n be the number of trees initially
Repeat

Until only one tree left in the array
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Huffman’s Algorithm

Phase 3: Compute the encoding map

– We need to write out a list of source symbols together with their prefix code

– We need to write out the contents of each external node (or each frontier internal node) 
together with the path to that node

– We need to traverse the binary code tree in some manner
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But …. we want to print out the symbol and the prefix code:

i.e., the symbol at the leaf node

and the path by which we got to that node
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• How will we represent the path?

• As an array of binary values 
(representing the left and right links on the path)


