
Trees 4 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 6: Trees

Lecture 5: Optimal Code Trees. Huffman’s Algorithm.

Trees 4 2 Data Structures and Algorithms for Engineers

Optimal Code Trees

• First application: coding and data compression

• We will define optimal variable-length binary codes and code trees

• We will study Huffman’s algorithm which constructs them

• Huffman’s algorithm is an example of a Greedy Algorithm,
an important class of simple optimization algorithms

Trees 4 3 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Computer systems represent data as bit strings

• Encoding: transformation of data into bit strings

• Decoding: transformation of bit strings into data

• The code defines the transformation

Trees 4 4 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• For example: ASCII, the international coding standard, uses a 7-bit code

• HEX Code – Character

• 20 - <space>

• 41 – A

• 42 – B

• 61 - a

Trees 4 5 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Such encodings are called

– fixed-length or

– block codes

• They are attractive because the encoding and decoding is extremely simple

– For coding, we can use a block of integers or codewords indexed by characters

– For decoding, we can use a block of characters indexed by codewords

Trees 4 6 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• For example: the sentence
The cat sat on the mat

is encoded in ASCII as

1010100 110100 011001 0101

• Note that the spaces are there simply to improve readability ... they don’t appear in
the encoded version.

ASCII, stands for American Standard Code for Information Interchange.
There are 7-bit and 8-bit versions; see https://www.ascii-code.com/

Trees 4 7 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

The following bit string is an ASCII encoded message:

100010011001011100011110111111001001101001110111011001110
1000001101001111001101000001100101110000111100111111001

Trees 4 8 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

And we can decode it by chopping it into smaller strings each of 7 bits in length and
by replacing the bit strings with their corresponding characters:

1000100(D)1100101(e)1100011(c)1101111(o)1100100(d)1101001(i)11011
10(n)1100111(g)0100000()1101001(i)1110011(s)0100000()1100101(e)110
0001(a)1110011(s)1111001(y)

Trees 4 9 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Every code can be thought of in terms of

• a finite alphabet of source symbols

• a finite alphabet of code symbols

• Each code maps every finite sequence or string of source symbols into a string of
code symbols

Trees 4 10 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Let A be the source alphabet

• Let B be the code alphabet

• A code f is an injective map

f: SA ® SB

• where SA is the set of all strings of symbols from A

• where SB is the set of all strings of symbols from B

Trees 4 11 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

Injectivity ensures that each encoded string can be decoded uniquely (we do not want
two source strings that are encoded as the same string)

Injective Mapping: each element in the range is related to at most one
element in the domain

A B

Trees 4 12 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

We are primarily interested in the code alphabet {0, 1} since we want to code source
symbols strings as bit strings

Trees 4 13 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• There is a problem with block codes:
n symbols produce nb bits with a block code of length b

• For example,

– if n = 100,000 (the number of characters in a typical 200-page book)

– b = 7 (e.g., 7-bit ASCII code)

– then the characters are encoded as 700,000 bits

Trees 4 14 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• While we cannot encode the ASCII characters with fewer than 7 bits

• We can encode the characters with a different number of bits, depending on their
frequency of occurrence

• Use fewer bits for the more frequent characters

• Use more bits for the less frequent characters

• Such a code is called a variable-length code

Trees 4 15 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• First problem with variable length codes:

– when scanning an encoded text from left to right (decoding it) ...

– How do we know when one codeword finishes and another starts?

• We require each codeword not be a prefix of any other codeword

• So, for the binary code alphabet, we should base the codes on binary code trees

Trees 4 16 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Binary code trees:

• Binary tree whose external nodes are labelled uniquely with the source alphabet
symbols

• Left branches are labelled 0

• Right branches are labelled 1

Trees 4 17 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

A binary code tree and its prefix code

0 1

0 1

c

a

b

a 0
b 11
c 10

Trees 4 18 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• The codeword corresponding to a symbol is the bit string given by the path from
the root to the external node labeled with the symbol

• Note that, as required, no codeword is a prefix for any other codeword

– This follows directly from the fact that source symbols are only on external nodes

– and there is only one (unique) path to that symbol

Trees 4 19 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Codes that satisfy the prefix property are called prefix codes

• Prefix codes are important because

– we can uniquely decode an encoded text with a left-to-right scan of the encoded text

– by considering only the current bit in the encoded text

– decoder uses the code tree for this purpose

Trees 4 20 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Read the encoded message bit by bit

• Start at the root

• if the bit is a 0, move left

• if the bit is a 1, move right

• if the node is external, output the corresponding symbol and begin again at the
root

Trees 4 21 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

• Encoded message:

0 0 1 1 1 0 0

• Decoded message:

A A B C A

0 1

0 1

c

a

b

Trees 4 22 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• What makes a good variable length code?

• Let A = a1, ..., an, n>=1, be the alphabet of source symbols

• Let P = p1, ..., pn, n>=1, be their probability of occurrence

• We obtain these probabilities by analysing are representative sample of the type of
text we wish to encode

Trees 4 23 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• Any binary tree with n external nodes labelled with the n symbols defines a prefix
code

• Any prefix code for the n symbols defines a binary tree with at least n external
nodes

• Such a binary tree with exactly n external nodes is a reduced prefix code (tree)

• Good prefix codes are always reduced (and we can always transform a non-
reduced prefix code into a reduced one)

Trees 4 24 Data Structures and Algorithms for Engineers

Non-Reduced Prefix Code (Tree)

0

0 1 0

0 1

1

1

a

c b

a 00
b 111
c 110

Trees 4 25 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• Comparison of prefix codes - compare the number of bits in the encoded text

• Let A = a1, ..., an, n>=1, be the alphabet of source symbols

• Let P = p1, ..., pn be their probability of occurrence

• Let W = w1, ..., wn be a prefix code for A = a1, ..., an

• Let L = l1, ..., ln be the lengths of W = w1, ..., wn

Trees 4 26 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• Given a source text T with f1, ..., fn occurrences of a1, ..., an respectively

• The total number of bits when T is encoded is

Sn

i = 1 fi li

• The total number of source symbols is

Sn

i = 1 fi

• The average length of the W-encoding is

Alength(T, W) = Sn

i = 1 fi li / Sn

i = 1 fi

Trees 4 27 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• For long enough texts, the probability pi of a given symbol occurring isapproximately

pi = fi / Sn

i = 1 fi

• So, the expected length of the W-encoding is

Elength(W, P) = Sn

i = 1 pi li

Trees 4 28 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• To compare two different codes W1 and W2 we can compare either

– Alength(T, W1) and Alength(T, W2) or
– Elength(W1, P) and Elength(W2 , P)

• We say W1 is no worse than W2 if

Elength(W1, P) <= Elength(W2 , P)

• We say W1 is optimal if

Elength(W1, P) <= Elength(W2 , P)
for all possible prefix codes W2 of A

Trees 4 29 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• Huffman’s Algorithm

• We wish to solve the following problem:

• Given n symbols A = a1, ..., an, n>=1

and the probability of their occurrence
P = p1, ..., pn , respectively,

construct an optimal prefix code for A and P

Trees 4 30 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• This problem is an example of a global optimization problem

• Brute force (or exhaustive search) techniques are too expensive to compute:

– Given A and P
– Compute the set of all reduced prefix codes

– Choose the minimal expected length prefix code

Trees 4 31 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• This algorithm takes O(nn) time, where n is the size of the alphabet

• Why? because any binary tree of size n-1 (i.e. with n external nodes) is a valid
reduced prefix tree and there are n! ways of labelling the external nodes

• Since n! is approximately nn we see that there are approximately O(nn) steps to go
through when constructing all the trees to check

Trees 4 32 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• Huffman’s Algorithm is only O(n2)

• This is significant: if n = 128 (number of symbols in a 7-bit ASCII code)

– O(nn) = 128128 = 5.28 x 10269

– O(n2) = 1282 = 1.6384 x 104

– There are 31536000 seconds in a year and if we could compute 1000 000 000 steps a
second then the brute force technique would still take 1.67 x 10253 years

Trees 4 33 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• The age of the universe is estimated to be 13 billion years, i.e., 1.3x1010 years

• A long way off 1.67 x 10253 years!

Trees 4 34 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• Huffman’s Algorithm uses a technique called Greedy

• It uses local optimization to achieve a globally optimum solution

– Build the code incrementally

– Reduce the code by one symbol at each step

– Merge the two symbols that have the smallest probabilities into one new symbol

Trees 4 35 Data Structures and Algorithms for Engineers

Optimal Variable-Length Codes

• Before we begin, note that we’d like a tree with the symbols which have the lowest
probability to be on the longest path

• Why?

• Because the length of the codeword is equal to the path length and we want

– short codewords for high-probability symbols

– longer codewords for low-probability symbols

Trees 4 36 Data Structures and Algorithms for Engineers

Text, Codes, and Compression

A binary code tree and its prefix code

0 1

0 1

c

a

b

a 0
b 11
c 10

Trees 4 37 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

• We will treat Huffman’s Algorithm for just six letters, i.e, n = 6, and there are six
symbols in the source alphabet

• These are, with their probabilities,

E 0.1250

T 0.0925

A 0.0805

O 0.0760

I 0.0729

N 0.0710

Trees 4 38 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

E

0.1250
T

0.0925
A

0.0805
O

0.0760
I

0.0729
N

0.0710

Step 1:

• Create a forest of code trees, one for each symbol

• Each tree comprises a single external node (empty tree) labelled with its symbol
and weight (probability)

Trees 4 39 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Step 2:
– Choose the two binary trees, B1 and B2, that have the smallest weights

– Create a new root node with B1 and B2 as its children and with weight equal to the sum of
these two weights

E

0.1250
T

0.0925
A

0.0805
O

0.0760
I N

0.1439

Trees 4 40 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Step 3:

– Repeat step 2!

Trees 4 41 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

E

0.1250
T

0.0925
A O I N

0.14390.1565

Trees 4 42 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

E T A O I N

0.14390.15650.2175

Trees 4 43 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

E T A O I N

0.2175

0.3004

Trees 4 44 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

E T

A O I N

0.5179

Trees 4 45 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

The final prefix code is:

A 100

E 00

I 110

N 111

O 101

T 01

Trees 4 46 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Three phases in the algorithm

1. Initialize the forest of code trees

2. Construct an optimal code tree

3. Compute the encoding map

Trees 4 47 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Phase 1: Initialize the forest of code trees

– How will we represent the forest of trees?

– Better question: how will we represent our tree ...
have to store both alphanumeric characters and probabilities?

– Need some kind of composite node

– Opt to represent this composite node as an INTERNAL node

Trees 4 48 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

– Consequently, the initial tree is simply one internal node

– That is, it is a root (with two external nodes)

Char 0.nnn

Trees 4 49 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

So, to create such a tree we simply invoke the following operations:

– Initialize the tree … tree()

– Add a node … addnode(char, weight, T)

Trees 4 50 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

• We must also keep track of our forest

• We could represent it as a linked list of pointers to Binary trees ...

Trees 4 51 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Represented as:

Trees 4 52 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

• Is there an alternative?

• Question: why do we use dynamic data structures?

• Answer:
– When we don’t know in advance how many elements are in our data set
– When the number of elements varies significantly

• Is this the case here?

• No!

Trees 4 53 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

• So, our alternatives are?

• An array, indexed by number, of type ...

• binary_tree, i.e., each element in the array can point to a binary code tree

Trees 4 54 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Trees 4 55 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

• What will be the dimension of this array?

• n, the number of symbols in our source alphabet since this is the number of trees
we start out with in our forest initially

Trees 4 56 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Phase 2: construct the optimal code tree

Trees 4 57 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Find the tree with the smallest weight - A, at element i
Find the tree with the next smallest weight - B, at element j

Construct a tree, with right sub-tree A, left sub-tree B,
with root having weight = sum of the roots of A and B

Let array element i point to the new tree
Remove tree at element j
(delete it if you made a copy of left sub-tree B)

Trees 4 58 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Find the tree with the smallest weight - A, at element i
Find the tree with the next smallest weight - B, at element j

Construct a tree, with right sub-tree A, left sub-tree B,
with root having weight = sum of the roots of A and B

Let array element i point to the new tree
Remove tree at element j
(delete it if you made a copy of left sub-tree B)

let n be the number of trees initially
Repeat

Until only one tree left in the array

Trees 4 59 Data Structures and Algorithms for Engineers

Huffman’s Algorithm

Phase 3: Compute the encoding map

– We need to write out a list of source symbols together with their prefix code

– We need to write out the contents of each external node (or each frontier internal node)
together with the path to that node

– We need to traverse the binary code tree in some manner

Trees 4 60 Data Structures and Algorithms for Engineers

But …. we want to print out the symbol and the prefix code:

i.e., the symbol at the leaf node

and the path by which we got to that node

Trees 4 61 Data Structures and Algorithms for Engineers

• How will we represent the path?

• As an array of binary values
(representing the left and right links on the path)

