Data Structures and Algorithms for Engineers

Module 7: Graphs

Lecture 1: Types of graph. Adjacency matrix representation. Adjacency list representation.

David Vernon Carnegie Mellon University Africa

> vernon@cmu.edu www.vernon.eu

Important way of modelling and representing the organization of many systems and problems

- Road networks
- Electronic circuits
- Telecommunication networks
- Human interaction
- Social networks
- Eco-system networks
- Robot navigation paths
- Any relationship ...

- A graph G = (V, E) consists of
 - A set of *vertices* V
 - A set *E* of vertex pairs or *edges*
- Vertex: node in a graph
- Edge (arc): a pair of vertices representing a connection between two nodes in a graph
- Undirected graph: a graph in which the edges have no direction
- Directed graph (digraph): a graph in which each edge is directed from one vertex to another (or the same) vertex

- The key to solving many algorithmic problems is to think of them in terms of graphs
- The key to using graphs algorithms effectively in applications is to model your problem correctly to take advantage of **existing** graph algorithms

Undirected graph G

$$V = \{A, B, C, D\}$$

E = {(A, B), (A, D), (B, C), (B, D)}

Directed graph G

 $V = \{1, 3, 5, 7, 9, 11\}$ $E = \{(1, 3), (3, 1), (5, 7), (5, 9), (9, 9), (9, 11), (11, 1)\}$

Directed graph G

 $V = \{A, B, C, D, E, F, G, H, I, J\}$ $E = \{(G, D), (G, I), (D, B), (D, F), (I, H), (I, J), (B, A), (B, C), (F, E)\}$

- Adjacent vertices
 - Two vertices in a graph that are connected by an edge
- Path
 - A sequence of vertices that connects two nodes in a graph
- Complete graph
 - A graph in which every vertex is directly connected to every other vertex
- Weighted graph
 - A graph in which each edge carries a value

A complete directed graph G

A complete undirected graph G

A weighted graph G

A graph G is undirected if edge (x, y) is an element of E implies (y, x) is an element of E

For unweighted graphs, the shortest path must have the fewest number of edges and can be found using breadth-first search (see later)

Shortest paths in weighted graphs requires more sophisticated algorithms (see later)

Certain types of edges complicate the task of working with graphs

A self-loop is an edge (x, x) involving only one vertex

An edge (x, y) is a multi-edge if it occurs more than once in the graph

Graphs that do not have these types of edges are called simple

Typically, dense graphs has a quadratic number of edges, sparse graphs are linear in size

An acyclic graph does not contain any cycles: trees are connected, acyclic undirected graphs

Directed acyclic graphs are called DAGs. They arise in scheduling problems where a directed edge (x, y) indicates that activity x must occur before activity y

A topological sort orders the vertices of a DAG w.r.t. these precedence constraints

A graph is embedded if the vertices and edges are assigned geometric positions

Certain graphs are not explicitly constructed and then traversed, but built as we use them (e.g., in a backtrack search; see later)

Each vertex is assigned a unique name in a labelled graph to distinguish it from other vertices. In unlabelled graphs, no such distinctions are made.

Sub-graph isomorphism testing: determine whether the topological structure of two (sub-) graphs are identical if we ignore any labels (typically solved using backtracking, by trying to assign each vertex in each graph a label such that the structures are identical)

- Assuming a graph G = (V, E) with *n* vertices and *m* edges, there are two basic choices for data structures
 - Adjacency Matrix: an $n \times n$ matrix M, where element M[i, j] = 1 if (i, j) is an edge of G, and 0 if it isn't (or, alternatively M[i, j] = w, the weight of the edge)
 - Adjacency List: a linked list that stores the neighbours that are adjacent to each vertex

graph .num Vertices 7 .vertices		.edges										
[0]	"Atlanta "	[0]	0	0	0	0	0	800	600	•	•	•
[1]	"Austin "	[1]	0	0	0	200	0	160	0	•	•	•
[2]	"Chicago "	[2]	0	0	0	0	1000	0	0	•	•	•
[3]	"Dallas "	[3]	0	200	900	0	780	0	0	•	•	•
[4]	"Denver "	[4]	1400	0	1000	0	0	0	0	•	•	•
[5]	"Houston "	[5]	800	0	0	0	0	0	0	•	•	•
[6]	"Washington"	[6]	600	0	0	1300	0	0	0	•	•	•
[7]		[7]	•	•	•	•	•	•	•	•	•	•
[8]		[8]	•	•	•	•	•	•	•	•	•	•
[9]		[9]	•	•	•	•	•	•	•	•	•	•
			[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
	(Array positions marked '•' are undefined)											

Adjacency Matrix for Flight Connections

Adjacency List for Flight Connections

While Adjacency Matrices are simpler, Adjacency Lists are the right data structure for most applications of graphs

Comparison	Winner				
Faster to test if (x, y) is in graph?	adjacency matrices				
Faster to find the degree of a vertex?	adjacency lists				
Less memory on small graphs?	adjacency lists $(m+n)$ vs. (n^2)				
Less memory on big graphs?	adjacency matrices (a small win)				
Edge insertion or deletion?	adjacency matrices $O(1)$ vs. $O(d)$				
Faster to traverse the graph?	adjacency lists $\Theta(m+n)$ vs. $\Theta(n^2)$				
Better for most problems?	adjacency lists				

Worst-case and average-case complexity

f(n) = O(g(n)) means $c \cdot g(n)$ is an *upper bound* on f(n). Thus there exists some constant c such that f(n) is always $\leq c \cdot g(n)$, for large enough n (i.e., $n \geq n_0$ for some constant n_0).

 $f(n) = \Omega(g(n))$ means $c \cdot g(n)$ is a *lower bound* on f(n). Thus there exists some constant c such that f(n) is always $\geq c \cdot g(n)$, for all $n \geq n_0$.

 $f(n) = \Theta(g(n))$ means $c_1 \cdot g(n)$ is an upper bound on f(n) and $c_2 \cdot g(n)$ is a lower bound on f(n), for all $n \ge n_0$. Thus there exist constants c_1 and c_2 such that $f(n) \le c_1 \cdot g(n)$ and $f(n) \ge c_2 \cdot g(n)$. This means that g(n) provides a nice, tight bound on f(n).

Worst-case and average-case complexity

: Illustrating the big (a) O, (b) $\Omega,$ and (c) Θ notations

```
*/
/* Adjacency list representation of a graph of degree MAXV
/*
                                                         */
/* Directed edge (x, y) is represented by edgenode y in x's
                                                         */
/* adjacency list. Vertices are numbered 1 .. MAXV
                                                         */
#define MAXV 1000 /* maximum number of vertices */
typedef struct {
                         /* adjacent vertex number
                                                         */
  int y;
                                                         */
  int weight;
                         /* edge weight, if any
  */
} edgenode;
typedef struct {
      edgenode *edges[MAXV+1]; /* adjacency info: list of edges
                                                         */
      int degree [MAXV+1]; /* number of edges for each vertex */
      int nvertices; /* number of vertices in graph
                                                         */
      int nedges; /* number of edges in graph
                                                         */
      bool directed; /* is the graph directed?
                                                         */
} graph;
```



```
/* Initialize graph from data in a file
```

```
initialize_graph(graph *g, bool directed){
```

```
for (i=1; i<=MAXV; i++)
g->edges[i] = NULL;
```

*/

}


```
/* build graph from data */
read graph(graph *g, bool directed) {
   int i; /* counter
                                       */
   int m; /* number of edges
                                       */
   int x, y; /* vertices in edge (x,y) */
   initialize graph(g, directed);
   scanf("%d %d",&(g->nvertices),&m);
   for (i=1; i<=m; i++) {</pre>
      scanf("%d %d",&x,&y);
      insert edge(g,x,y,directed);
   }
}
```

```
/* Initialize graph from data in a file
                                                                   */
insert edge(graph *g, int x, int y, bool directed) {
                                /* temporary pointer */
  edgenode *p;
  p = malloc(sizeof(edgenode)); /* allocate edgenode storage
                                                                 */
  p->weight = 0;
  p \rightarrow y = y;
  p->next = g->edges[x];
                               /* edge node points to the
                                                                 */
                                                                 */
                                /* existing edge list
                               /* insert at head of list
                                                                 */
  g->edges[x] = p;
  q->degree[x] ++;
   if (directed == false) /* NB: if undirected add
                                                                 */
      insert edge(g,y,x,true); /* the reverse edge recursively */
                                /* but directed TRUE so we do it */
  else
                                /* only once
                                                                 */
     g->nedges ++;
```

}

insert_edge(g, 1, 2, false)


```
/* Initialize graph from data in a file
                                                                        */
insert edge(graph *g, int x, int y, bool directed) {
                                   /* temporary pointer */
   edgenode *p;
   p = malloc(sizeof(edgenode)); /* allocate edgenode storage */
  p->weight = 0;
  p \rightarrow y = y;
   p \rightarrow next = q \rightarrow edges[x];
   q \rightarrow edges[x] = p;
                                  /* insert at head of list
                                                                      */
   q->degree[x]++;
   if (directed == false) /* NB: if undirected add
                                                                      */
      insert edge(g,y,x,true); /* the reverse edge recursively */
   else
                                  /* but directed TRUE so we do it */
                                  /* only once
                                                                      */
      g->nedges ++;
```

}

insert_edge(g, 1, 2, false)


```
/* Initialize graph from data in a file
                                                                        */
insert edge(graph *g, int x, int y, bool directed) {
                                   /* temporary pointer */
   edgenode *p;
   p = malloc(sizeof(edgenode)); /* allocate edgenode storage */
  p->weight = 0;
  p \rightarrow y = y;
   p \rightarrow next = q \rightarrow edges[x];
                                  /* insert at head of list
                                                                      */
   g \rightarrow edges[x] = p;
   q->degree[x] ++;
   if (directed == false) /* NB: if undirected add
                                                                      */
      insert edge(g,y,x,true); /* the reverse edge recursively */
   else
                                  /* but directed true so we do it */
                                  /* only once
                                                                      */
      g->nedges ++;
```

}

insert_edge(g, 2, 1, true)


```
/* Initialize graph from data in a file
                                                                       */
insert edge(graph *g, int x, int y, bool directed) {
                                  /* temporary pointer */
   edgenode *p;
   p = malloc(sizeof(edgenode)); /* allocate edgenode storage */
  p->weight = 0;
  p \rightarrow y = y;
   p \rightarrow next = q \rightarrow edges[x];
                                  /* insert at head of list
                                                                     */
   g->edges[x] = p;
   q->degree[x] ++;
   if (directed == false) /* NB: if undirected add
                                                                     */
      insert edge(g,y,x,true); /* the reverse edge recursively */
   else
                                  /* but directed true so we do it */
                                  /* only once
                                                                     */
      g->nedges ++;
```

}

insert_edge(g, 2, 1, true)

insert_edge(g, 1, 3, false)


```
/* Print a graph
                                                                      */
print_graph(graph *g) {
   int i;
                                       /* counter
                                                             */
                                       /* temporary pointer */
   edgenode *p;
   for (i=1; i<=g->nvertices; i++) {
      printf("%d: ",i);
      p = g->edges[i];
      while (p != NULL) {
         printf(" %d",p->y);
         p = p - next;
      }
      printf("\n");
   }
}
```

Consider using a well-established graph library for implementing graph-based applications

For example, Boost Graph Library

www.boost.org www.boost.org/libs/graph/doc