
Graphs 1 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 7: Graphs

Lecture 1: Types of graph. Adjacency matrix representation.
Adjacency list representation.

Graphs 1 2 Data Structures and Algorithms for Engineers

Graphs

Important way of modelling and representing the organization of many systems and
problems

– Road networks

– Electronic circuits

– Telecommunication networks

– Human interaction

– Social networks

– Eco-system networks

– Robot navigation paths

– Any relationship …

Graphs 1 3 Data Structures and Algorithms for Engineers

Graphs

• A graph G = (V, E) consists of

– A set of vertices V

– A set E of vertex pairs or edges

• Vertex: node in a graph

• Edge (arc): a pair of vertices representing a connection between two nodes in a graph

• Undirected graph: a graph in which the edges have no direction

• Directed graph (digraph): a graph in which each edge is directed from one vertex to another (or the
same) vertex

Graphs 1 4 Data Structures and Algorithms for Engineers

Graphs

• The key to solving many algorithmic problems is to think of them in terms of
graphs

• The key to using graphs algorithms effectively in applications is to model your
problem correctly to take advantage of existing graph algorithms

Graphs 1 5 Data Structures and Algorithms for Engineers

Graphs 1 6 Data Structures and Algorithms for Engineers

Graphs

Undirected graph G

V = {A, B, C, D}
E = {(A, B), (A, D), (B, C), (B, D)}

Graphs 1 7 Data Structures and Algorithms for Engineers

Graphs

Directed graph G

V = {1, 3, 5, 7, 9, 11}
E = {(1, 3), (3, 1), (5, 7), (5, 9), (9, 9), (9, 11), (11, 1)}

Graphs 1 8 Data Structures and Algorithms for Engineers

Graphs

Directed graph G

V = {A, B, C, D, E, F, G, H, I, J}
E = {(G, D), (G, I), (D, B), (D, F), (I, H), (I, J), (B, A), (B, C), (F, E)}

Graphs 1 9 Data Structures and Algorithms for Engineers

Graphs

• Adjacent vertices
– Two vertices in a graph that are connected by an edge

• Path
– A sequence of vertices that connects two nodes in a graph

• Complete graph
– A graph in which every vertex is directly connected to every other vertex

• Weighted graph
– A graph in which each edge carries a value

Graphs 1 10 Data Structures and Algorithms for Engineers

Graphs

A complete directed graph G

Graphs 1 11 Data Structures and Algorithms for Engineers

Graphs

A complete undirected graph G

Graphs 1 12 Data Structures and Algorithms for Engineers

Graphs

A weighted graph G

Graphs 1 13 Data Structures and Algorithms for Engineers

Graphs

A graph G is undirected if edge (x, y) is an element of E implies (y, x) is an element of E

Graphs 1 14 Data Structures and Algorithms for Engineers

Graphs

For unweighted graphs, the shortest path must have the fewest number of edges and can be found using
breadth-first search (see later)

Shortest paths in weighted graphs requires more sophisticated algorithms (see later)

Graphs 1 15 Data Structures and Algorithms for Engineers

Graphs

Certain types of edges complicate the task of working with graphs

A self-loop is an edge (x, x) involving only one vertex

An edge (x, y) is a multi-edge if it occurs more than once in the graph

Graphs that do not have these types of edges are called simple

Graphs 1 16 Data Structures and Algorithms for Engineers

Graphs

n
2

= n!
(n-2)! 2!There are possible vertex pairs in a simple undirected graph with n vertices.

Graphs where a large fraction of the vertex pairs define edges are called dense

Typically, dense graphs has a quadratic number of edges, sparse graphs are linear in size

Graphs 1 17 Data Structures and Algorithms for Engineers

Graphs

An acyclic graph does not contain any cycles: trees are connected, acyclic undirected graphs

Directed acyclic graphs are called DAGs. They arise in scheduling problems where a directed edge (x, y)
indicates that activity x must occur before activity y

A topological sort orders the vertices of a DAG w.r.t. these precedence constraints

Graphs 1 18 Data Structures and Algorithms for Engineers

Graphs

A graph is embedded if the vertices and edges are assigned geometric positions

Graphs 1 19 Data Structures and Algorithms for Engineers

Graphs

Certain graphs are not explicitly constructed and then traversed, but built as we use them (e.g., in a backtrack
search; see later)

Graphs 1 20 Data Structures and Algorithms for Engineers

Graphs

Each vertex is assigned a unique name in a labelled graph to distinguish it from other vertices. In unlabelled
graphs, no such distinctions are made.

Sub-graph isomorphism testing: determine whether the topological structure of two (sub-) graphs are identical if
we ignore any labels (typically solved using backtracking, by trying to assign each vertex in each graph a label such
that the structures are identical)

Graphs 1 21 Data Structures and Algorithms for Engineers

Graphs

• Assuming a graph G = (V, E) with n vertices and m edges, there are two basic
choices for data structures

– Adjacency Matrix: an n × n matrix M, where element M[i, j] = 1 if (i, j) is an edge of G, and 0 if
it isn’t (or, alternatively M[i, j] = w, the weight of the edge)

– Adjacency List: a linked list that stores the neighbours that are adjacent to each vertex

Graphs 1 22 Data Structures and Algorithms for Engineers

Graphs

Adjacency Matrix for Flight Connections

Graphs 1 23 Data Structures and Algorithms for Engineers

Graphs

Adjacency List for Flight Connections

Graphs 1 24 Data Structures and Algorithms for Engineers

Graphs

While Adjacency Matrices are simpler, Adjacency Lists are the right data
structure for most applications of graphs

Graphs 1 25 Data Structures and Algorithms for Engineers

Worst-case and average-case complexity

Graphs 1 26 Data Structures and Algorithms for Engineers

Worst-case and average-case complexity

Graphs 1 27 Data Structures and Algorithms for Engineers

Graphs

/* Adjacency list representation of a graph of degree MAXV */
/* */
/* Directed edge (x, y) is represented by edgenode y in x’s */
/* adjacency list. Vertices are numbered 1 .. MAXV */

#define MAXV 1000 /* maximum number of vertices */

typedef struct {
 int y; /* adjacent vertex number */
 int weight; /* edge weight, if any */
 struct edgenode *next; /* next edge in list */
} edgenode;

typedef struct {
 edgenode *edges[MAXV+1]; /* adjacency info: list of edges */
 int degree[MAXV+1]; /* number of edges for each vertex */
 int nvertices; /* number of vertices in graph */
 int nedges; /* number of edges in graph */
 bool directed; /* is the graph directed? */
} graph;

Graphs 1 28 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

y

nedgesnverticesdirected

edgesdegree

weight next

0

1

2

3

4

5

6

Graphs 1 29 Data Structures and Algorithms for Engineers

Graphs

/* Initialize graph from data in a file */

initialize_graph(graph *g, bool directed){

 int i; /* counter */

 g -> nvertices = 0; // (*g).nvertices = 0;
 g -> nedges = 0;
 g -> directed = directed;

 for (i=1; i<=MAXV; i++)
 g->degree[i] = 0;

 for (i=1; i<=MAXV; i++)
 g->edges[i] = NULL;
}

Graphs 1 30 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

0

0

0

0

0

0

0

0

nedgesnvertices

false

directed

edgesdegree

0

1

2

3

4

5

6

Graphs 1 31 Data Structures and Algorithms for Engineers

Graphs

/* build graph from data */

read_graph(graph *g, bool directed) {

 int i; /* counter */
 int m; /* number of edges */
 int x, y; /* vertices in edge (x,y) */

 initialize_graph(g, directed);

 scanf("%d %d",&(g->nvertices),&m);

 for (i=1; i<=m; i++) {
 scanf("%d %d",&x,&y);
 insert_edge(g,x,y,directed);
 }
}

Graphs 1 32 Data Structures and Algorithms for Engineers

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

 edgenode *p; /* temporary pointer */

 p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

 p->weight = 0;
 p->y = y;
 p->next = g->edges[x]; /* edge node points to the */
 /* existing edge list */
 g->edges[x] = p; /* insert at head of list */

 g->degree[x] ++;

 if (directed == false) /* NB: if undirected add */
 insert_edge(g,y,x,true); /* the reverse edge recursively */
 else /* but directed TRUE so we do it */
 g->nedges ++; /* only once */
}

Graphs 1 33 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

0

0

0

0

0

0

0

3

nedgesnvertices

false

directed

edgesdegree

p

insert_edge(g, 1, 2, false)

2
0

0

1

2

3

4

5

6

This graph has three vertices and no edges

Graphs 1 34 Data Structures and Algorithms for Engineers

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

 edgenode *p; /* temporary pointer */

 p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

 p->weight = 0;
 p->y = y;
 p->next = g->edges[x];

 g->edges[x] = p; /* insert at head of list */

 g->degree[x]++;

 if (directed == false) /* NB: if undirected add */
 insert_edge(g,y,x,true); /* the reverse edge recursively */
 else /* but directed TRUE so we do it */
 g->nedges ++; /* only once */
}

Graphs 1 35 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

2

0

0

1

0

0

0

0

0

3

nedgesnvertices

false

directed

edgesdegree

p

insert_edge(g, 1, 2, false)

0

1

2

3

4

5

6

Graphs 1 36 Data Structures and Algorithms for Engineers

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

 edgenode *p; /* temporary pointer */

 p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

 p->weight = 0;
 p->y = y;
 p->next = g->edges[x];

 g->edges[x] = p; /* insert at head of list */

 g->degree[x] ++;

 if (directed == false) /* NB: if undirected add */
 insert_edge(g,y,x,true); /* the reverse edge recursively */
 else /* but directed true so we do it */
 g->nedges ++; /* only once */
}

Graphs 1 37 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

0

1

1

0

0

0

0

3

nedgesnvertices

false

directed

edgesdegree

insert_edge(g, 2, 1, true)

1
0

2
0

0

1

2

3

4

5

6

Graphs 1 38 Data Structures and Algorithms for Engineers

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

 edgenode *p; /* temporary pointer */

 p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

 p->weight = 0;
 p->y = y;
 p->next = g->edges[x];

 g->edges[x] = p; /* insert at head of list */

 g->degree[x] ++;

 if (directed == false) /* NB: if undirected add */
 insert_edge(g,y,x,true); /* the reverse edge recursively */
 else /* but directed true so we do it */
 g->nedges ++; /* only once */
}

Graphs 1 39 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

1

1

1

0

0

0

0

3

nedgesnvertices

false

directed

edgesdegree

insert_edge(g, 2, 1, true)

1
0

2
0

0

1

2

3

4

5

6

Graphs 1 40 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

2

2

1

1

0

0

0

3

nedgesnvertices

false

directed

edgesdegree

insert_edge(g, 1, 3, false)

1
0

3
0

0

1

2

3

4

5

6

2
0

1
0

Graphs 1 41 Data Structures and Algorithms for Engineers

Graphs

/* Print a graph */

print_graph(graph *g) {

 int i; /* counter */
 edgenode *p; /* temporary pointer */

 for (i=1; i<=g->nvertices; i++) {
 printf("%d: ",i);
 p = g->edges[i];
 while (p != NULL) {
 printf(" %d",p->y);
 p = p->next;
 }
 printf("\n");
 }
}

Graphs 1 42 Data Structures and Algorithms for Engineers

Graphs

Consider using a well-established graph library for implementing graph-based
applications

For example, Boost Graph Library

 www.boost.org
 www.boost.org/libs/graph/doc

