
Graphs 2 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 7: Graphs

Lecture 2: Breadth-First Search (BFS) traversal & application of BFS

Graphs 2 2 Data Structures and Algorithms for Engineers

Traversing a Graph

• Visit every vertex and edge in a systematic way

• Key idea: mark each vertex when we first visit it &
keep track of what we have not yet completely explored

• Each vertex will exist in one of three states
1. Undiscovered – the vertex is in its initial untouched state

2. Discovered – the vertex has been found, but we have not yet processed all its edges

3. Processed – the vertex after we have visited all its edges

Graphs 2 3 Data Structures and Algorithms for Engineers

Traversing a Graph

• Keep a record of all the vertices discovered but not yet completely processed

• Begin with a starting vertex

• Explore each vertex

– Evaluate each edge leaving it
– If the edge goes to an undiscovered vertex

• Mark it discovered
• Add it to the list of work to do

– If the edge goes to a processed vertex, ignore it
– If the edge goes to a discovered unprocessed vertex, ignore it

You have to decide where to start
or be told where to start

Graphs 2 4 Data Structures and Algorithms for Engineers

Traversing a Graph

• There are two primary graph traversal algorithms

– Breadth-first search (BFS)

– Depth-first search (DFS)

• The difference is the order in which they explore vertices

Graphs 2 5 Data Structures and Algorithms for Engineers

Traversing a Graph

The order depends completely on the container data structure used to store the discovered but not
processed vertices

– BFS uses a queue

• By storing the vertices in a FIFO queue, we explore the oldest unexplored vertices first

• Thus explorations radiate out slowly from the starting vertex

– DFS uses a stack

• By storing the vertices in a LIFO stack, we explore the vertices by diving down a path, visiting a new neighbour if one is
available, and backing up only when we are
surrounded by (i.e. connected by edges to) previously discovered vertices

• Thus explorations quickly wander away from out starting vertex

Graphs 2 6 Data Structures and Algorithms for Engineers

Traversing a Graph

Breadth-first search (BFS)

Start at node 1

Graphs 2 7 Data Structures and Algorithms for Engineers

Traversing a Graph

Breadth-first search (BFS)

Graphs 2 8 Data Structures and Algorithms for Engineers

Traversing a Graph

Depth-first search (DFS)

Start at node 1

Graphs 2 9 Data Structures and Algorithms for Engineers

Traversing a Graph

Depth-first search (DFS)

Graphs 2 10 Data Structures and Algorithms for Engineers

Breadth-First Search

• Assign a direction to each edge, from discoverer vertex u to discovered vertex v

• Since each node has exactly one parent, except for the root (i.e., start vertex), this defines a tree on
the vertices of the graph

• This tree defines the shortest path from the root to every other node in the tree

• This makes the BFS very useful for in shortest path problems
(in unweighted graphs)

Graphs 2 11 Data Structures and Algorithms for Engineers

Breadth-First Search

Graphs 2 12 Data Structures and Algorithms for Engineers

Breadth-First Search

/* Breadth-First Search */

bool processed[MAXV+1]; /* which vertices have been processed */
bool discovered[MAXV+1]; /* which vertices have been found */
int parent[MAXV+1]; /* discovery relation */

/* Each vertex is initialized as undiscovered: */

initialize_search(graph *g){

 int i; /* counter */

 for (i=1; i<=g->nvertices; i++) {
 processed[i] = discovered[i] = false;
 parent[i] = -1;
 }
}

Graphs 2 13 Data Structures and Algorithms for Engineers

.

.

.

.

.

.

2

2

2

2

0

0

edgesdegree

1
0

3
0false

false

false

false

false

false

discovered

false

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

44

nedgesnvertices

false

directed

Graphs 2 14 Data Structures and Algorithms for Engineers

Breadth-First Search

/* Once a vertex is discovered, it is placed on a queue. */
/* Since we process these vertices in first-in, first-out order, */
/* the oldest vertices are expanded first, which are exactly those */
/* closest to the root */

bfs(graph *g, int start)
{
 queue q; /* queue of vertices to visit */
 int v; /* current vertex */
 int y; /* successor vertex */
 edgenode *p; /* temporary pointer */

 init_queue(&q);
 enqueue(&q,start);
 discovered[start] = true;

Graphs 2 15 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

false

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

1

q

yv

Graphs 2 16 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == FALSE) || g->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 17 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

false

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

1
yv

Graphs 2 18 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == FALSE) || g->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 19 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == FALSE) || g->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 20 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

1
yv

Graphs 2 21 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == FALSE) || g->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 22 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

1
yv

p

Graphs 2 23 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == FALSE) || g->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 24 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

31
yv

p

Graphs 2 25 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 26 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 27 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Graphs 2 28 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 29 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Graphs 2 30 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 31 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Graphs 2 32 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 33 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Graphs 2 34 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = TRUE;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == FALSE) || g->directed)
 process_edge(v,y);
 if (discovered[y] == FALSE) {
 enqueue(&q,y);
 discovered[y] = TRUE;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 35 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

21
yv

p

Graphs 2 36 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 37 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 38 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p

Graphs 2 39 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 40 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p

Graphs 2 41 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 42 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p

Graphs 2 43 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 44 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p == NULL

Graphs 2 45 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 46 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 47 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p == NULL

Graphs 2 48 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

2

q

23
yv

p == NULL

Graphs 2 49 Data Structures and Algorithms for Engineers

Breadth-First Search

while (empty_queue(&q) == FALSE) {
 v = dequeue(&q);
 process_vertex_early(v);
 processed[v] = true;
 p = g->edges[v];

 while (p != NULL) {
 y = p->y;
 if ((processed[y] == false) || g->directed)
 process_edge(v,y);
 if (discovered[y] == false) {
 enqueue(&q,y);
 discovered[y] = true;
 parent[y] = v;
 }
 p = p->next;
 }
 process_vertex_late(v);
 }
}

Graphs 2 50 Data Structures and Algorithms for Engineers

8

2

2

2

2

0

0

4

nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

true

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

2

q

23
yv

p

Graphs 2 51 Data Structures and Algorithms for Engineers

Breadth-First Search

/* The exact behaviour of bfs depends on the functions */
/* process vertex early() */
/* process vertex late() */
/* process edge() */
/* These functions allow us to customize what the traversal does */
/* as it makes its official visit to each edge and each vertex. */
/* Here, e.g., we will do all of vertex processing on entry */
/* (to print each vertex and edge exactly once) */
/* so process vertex late() returns without action */

process_vertex_late(int v) {
}

process_vertex_early(int v){
 printf("processed vertex %d\n",v);
}

process_edge(int x, int y) {
 printf("processed edge (%d,%d)\n",x,y);
}

Graphs 2 52 Data Structures and Algorithms for Engineers

Breadth-First Search

/* this version just counts the number of edges */

process_edge(int x, int y) {
 nedges = nedges + 1;
}

Graphs 2 53 Data Structures and Algorithms for Engineers

Breadth-First Search

Finding Paths

– The parent array in bfs() is very useful for finding interesting paths through a graph

– The vertex that discovered vertex i is defined as parent[i]

Graphs 2 54 Data Structures and Algorithms for Engineers

Breadth-First Search

Finding Paths

– Every vertex is discovered during the course of a traversal, so every node has a parent (except the
root)

– The parent relation defines a tree of discovery with the initial search node as the root of the tree

– Because vertices are discovered in order of increasing distance from the root, this tree has a very
important property

• The unique tree path from the root to each node uses the smallest number of edges (and intermediate
nodes) possible on any path from the root to that vertex

• Thus, BFS can be used to find shortest paths in an unweighted graph

Graphs 2 55 Data Structures and Algorithms for Engineers

Breadth-First Search

Finding Paths

– To reconstruct a path, we follow the chain of ancestors from the destination node x to the root

– Note we have to work backwards (we only know the parents)

– We find the path from the target vertex to the root and

• Either store it and explicitly reverse it using a stack

• Or construct the path recursively (in which case the stack is implicit)

Graphs 2 56 Data Structures and Algorithms for Engineers

Breadth-First Search

bool find_path(int start, int end, int parents[]) {

 bool is_path;

 if (end == -1) {
 is_path = false; // some vertex on the path back from the end
 // has no parent (not counting start)
 }
 else if ((start == end)) {
 printf("\n%d",start); // or store start in a path DS
 is_path = true; // we have reached the start vertex
 }
 else {
 is_path = find_path(start,parents[end],parents);
 printf(" %d",end); // or store end in a path DS
 }
 return(is_path);
}

Graphs 2 57 Data Structures and Algorithms for Engineers

Breadth-First Search

find_path(1,4,parent)

-> find_path(1,5,parent) -> find_path(1,1,parent) -> printf(1)
 printf(4) printf(5)

Graphs 2 58 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

– Identifying connected components

• A graph is connected if there is a path between any two vertices

• A connected component of an undirected graph is a maximal set of vertices such that there is a path
between every pair of vertices

• The components are separate “pieces” of the graph such that there is no connection between the
pieces

• Many complicated problems reduce to finding or counting connected components

• How would you find and label all the components in a graph?

Graphs 2 59 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

– Two-Colouring Graphs

• The vertex-colouring problem seeks to assign a label (or
colour) to each vertex of a graph such that no edge links any
two vertices of the same colour

• The goal is use as few colours as possible

• A graph is bipartite if it can be coloured without conflicts
using only two colours

Graphs 2 60 Data Structures and Algorithms for Engineers

Breadth-First Search

Gene network

GENOME

PHENOMEDISEASOME

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

Graphs 2 61 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

– Robot path-planning

Graphs 2 62 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

Map recreated from the following papers:

Joho, D., Senk, M., & Burgard, W. (2009). Learning wayfinding heuristics
based on local information of object maps. Proceedings of the European
Conference on Mobile Robots (ECMR) 2009, 117–122.

Kalff, C., & Strube, G. (2009). Background knowledge in human navigation:
a study in a supermarket. Cognitive Processing, 10(2), 225-228.

Graphs 2 63 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Represent the map of the environment as an occupancy grid

1 1

Graphs 2 64 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Represent the map of the environment as an occupancy grid

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

Graphs 2 65 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Convert this to a graph

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

Graphs 2 66 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Convert this to a graph

1 1

Graphs 2 67 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Do a BFS from the robot start position ...
To find the shortest path to all other vertices

1 1

Start

Goal

Graphs 2 68 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Mark the path from the robot start position to the goal position on the occupancy grid

2

2

2

2

0

1

0

2

0

1

0

2

0

0

0

2

Graphs 2 69 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Mark the path from the robot start position to the goal position on the occupancy grid

2

2

2

2

0

1

0

2

0

1

0

2

0

0

0

2

Graphs 2 70 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

Graphs 2 71 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

Graphs 2 72 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

Graphs 2 73 Data Structures and Algorithms for Engineers

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

