Data Structures and Algorithms for Engineers

Module 7: Graphs

Lecture 2: Breadth-First Search (BFS) traversal & application of BFS

Traversing a Graph

* Visit every vertex and edge in a systematic way

* Key idea: mark each vertex when we first visit it &
keep track of what we have not yet completely explored

 Each vertex will exist in one of three states

1. Undiscovered - the vertex is in its initial untouched state

2. Discovered - the vertex has been found, but we have not yet processed all its edges
3. Processed - the vertex after we have visited all its edges

Traversing a Graph

* Keep a record of all the vertices discovered but not yet completely processed

* Begin with a starting vertex

T

You have to decide where to start
° EXD|OI"8 each vertex or be told where to start

— Evaluate each edge leaving it

— If the edge goes to an undiscovered vertex
* Mark it discovered
* Add it to the list of work to do

— If the edge goes to a processed vertex, ignore it
— If the edge goes to a discovered unprocessed vertex, ignore it

Traversing a Graph

* There are two primary graph traversal algorithms

— Breadth-first search (BFS]

— Depth-first search (DFS]

* The difference is the order in which they explore vertices

Traversing a Graph

The order depends completely on the container data structure used to store the discovered but not
processed vertices

— BFS uses a queue
* By storing the vertices in a FIFO queue, we explore the oldest unexplored vertices first

* Thus explorations radiate out slowly from the starting vertex

— DFS uses a stack

* By storing the vertices in a LIFO stack, we explore the vertices by diving down a path, visiting a new neighbour if one is
available, and backing up only when we are
surrounded by (i.e. connected by edges to) previously discovered vertices

* Thus explorations quickly wander away from out starting vertex

Traversing a Graph

Breadth-first search [BFS]

Start at node 1

Traversing a Graph

Breadth-first search [BFS]

Traversing a Graph

Depth-first search (DFS]

Start at node 1 /%
2 \
3 \

\ - \ @

o
/7
1 7/
/
4 /
|
\
\ (’:\\)
N\
N\
\

- e - -

1

/
7
7
7

Traversing a Graph

Depth-first search (DFS]

Breadth-First Search

Assign a direction to each edge, from discoverer vertex u to discovered vertex v

Since each node has exactly one parent, except for the root [i.e., start vertex], this defines a tree on
the vertices of the graph

This tree defines the shortest path from the root to every other node in the tree

This makes the BFS very useful for in shortest path problems
(in unweighted graphs]

Breadth-First Search

BFS(G, s)
for each vertex u € V|G| — {s} do
state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
p[s] = nil
Q = {s}
while Q # () do
u = dequeue|Q)]
process vertex u as desired
for each v € Adj[u| do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v]| = “discovered”
plv] = u

enqueue(Q, v|
state[u] = “processed”

Breadth-First Search

/* Breadth-First Search

bool processed[MAXV+1]; /* which vertices have been processed
bool discovered[MAXV+1l]; /* which vertices have been found
int parent[MAXV+1]; /* discovery relation

/* Each vertex is initialized as undiscovered:
initialize search(graph *g) {
int i; /* counter */
for (i=1; i<=g->nvertices; i++) {

processed[i] = discovered[i] = false;
parent[i] = -1;

*/
*/

*/
*/

*/

edges

processed discovered parent degree
false false -1 2
false false -1 2
false false -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 4
directed nvertices nedges

3 2
10 10
| 4 |1
10 10

4 1
10 10

3 | 2
» 0 |l 0

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

/* Once a vertex is discovered, it is placed on a queue. */
/* Since we process these vertices in first-in, first-out order, *x/
/* the oldest vertices are expanded first, which are exactly those */
/* closest to the root */

bfs (graph *g, int start)
{

queue q; /* queue of vertices to visit */
int v; /* current vertex */
int y; /* successor vertex */
edgenode *p; /* temporary pointer */

init queue(&q) ;
enqueue (&q,start) ;
discovered[start] = true;

processed discovered parent degree
false true -1 2
false false -1 2
false false -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
v

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed[v] = TRUE;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == FALSE) || g->directed)
process_edge(v,y) ;

if (discovered[y] == FALSE) {

enqueue (&q,y) ;
discovered[y] = TRUE;

parently] = v;

}
P = p->next;
}

process vertex late(v);

processed discovered parent degree
false true -1 2
false false -1 2
false false -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed[v] = TRUE;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == FALSE) || g->directed)
process_edge(v,y) ;

if (discovered[y] == FALSE) {

enqueue (&q,y) ;
discovered[y] = TRUE;

parently] = v;

}
P = p->next;
}

process vertex late(v);

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed[v] = TRUE;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == FALSE) || g->directed)
process_edge(v,y) ;

if (discovered[y] == FALSE) {

enqueue (&q,y) ;
discovered[y] = TRUE;

parently] = v;

}
P = p->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false false -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed[v] = TRUE;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == FALSE) || g->directed)
process_edge(v,y) ;

if (discovered[y] == FALSE) {

enqueue (&q,y) ;
discovered[y] = TRUE;

parently] = v;

}
P = p->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false false -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed[v] = TRUE;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == FALSE) || g->directed)
process_edge(v,y) ;

if (discovered[y] == FALSE) {

enqueue (&q,y) ;
discovered[y] = TRUE;

parently] = v;

}
P = p->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false false -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 3

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p->y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,VY) ;
discovered[y] = true;

parently] = v;

}
P = p->next;
}

process vertex late(v);

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
P = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false false -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 3

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
P = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false true -1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 3

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parent[y] = v;

}
P = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 3

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
p = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 3

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed[v] = TRUE;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == FALSE) || g->directed)
process_edge(v,y) ;

if (discovered[y] == FALSE) {

enqueue (&q,y) ;
discovered[y] = TRUE;

parently] = v;

}
P = p->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 2

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p->y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,VY) ;
discovered[y] = true;

parently] = v;

}
P = p->next;
}

process vertex late(v);

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
P = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false false -1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 2

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
P = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false true -1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 2

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parent[y] = v;

}
P = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false true 1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
. 4 . 1
))
4 1
10 10
3 . 2
1 2

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
p = p—->next;
}

process vertex late(v);

BFS(G, s)

processed discovered parent degree
true true -1 2
false true 1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges for each vertex u € V[G] — {s} do
. state[u] = “undiscovered”
P == plu] = nil, i.e. no parent is in the BFS tree

state[s] = “discovered”

pls] = nil

Q={s}

while Q # 0 do

u = dequeue[Q)]
3 2 process vertex u as desired
for each v € Adj[u] do
> > process edge (u,v) as desired
0 0 if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =
4 1 enqueue[Q, v]
> > state[u] = “processed”
0 0
4 1
0 0
3 2
0 0
1 2

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
P = p—->next;
}

process _vertex late(v);

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
P = p—->next;
}

process vertex late(v);

BFS(G, s)

processed discovered parent degree
true true -1 2
false true 1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges for each vertex u € V[G] — {s} do
. state[u] = “undiscovered”
P == plu] = nil, i.e. no parent is in the BFS tree

state[s] = “discovered”

pls] = nil

Q={s}

while Q # 0 do

u = dequeue[Q)]
3 2 process vertex u as desired
for each v € Adj[u] do
> > process edge (u,v) as desired
0 0 if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =
4 1 enqueue[Q, v]
> > state[u] = “processed”
0 0
4 1
0 0
3 2
0 0
1 2

BFS(G, s)

processed discovered parent degree
true true -1 2
false true 1 2
false true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges for each vertex u € V[G] — {s} do
. state[u] = “undiscovered”
P == plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]
3 2 process vertex u as desired
for each v € Adj[u] do
> > process edge (u,v) as desired
0 0 if state[v] = “undiscovered” then
state[v] = “discovered”
o] =u
4 1 enqueuelQ, v]
> > state[u] = “processed”
0 0
4 1
0 0
3 2
0 0
3 2
\Y

Breadth-First Search

while (empty queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex early(v);
processed|[v] = true;
p = g->edges|[v];

while (p '= NULL) {

y = p~>y;

if ((processed[y] == false) || g->directed)
process_edge(v,y) ;

if (discovered[y] == false) {
enqueue (&q,y) ;
discovered[y] = true;

parently] = v;

}
P = p—->next;
}

process vertex late(v);

processed discovered parent degree
true true -1 2
false true 1 2
true true 1 2
false false -1 2
false false -1 0
false false -1 0
false 4 8
directed nvertices nedges

edges
3 2
10 10
R 4 R 1
))
4 1
10 10
/ 3 R 2
3 2
v

BFS(G, s)
for each vertex u € V[G] — {s} do

state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
pls] = nil
Q={s}
while Q # 0 do
u = dequeue[Q)]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
pl] =u
enqueue[Q, v]
state[u] = “processed”

Breadth-First Search

/* The exact behaviour of bfs depends on the functions

/* process vertex early()
/* process vertex late()
/* process edge ()

/* These functions allow us to customize what the traversal does
/* as it makes its official visit to each edge and each vertex.
/* Here, e.g., we will do all of vertex processing on entry

/* (to print each vertex and edge exactly once)

/* so process vertex late() returns without action

process vertex late(int v) {

}

process_vertex early(int v) {
printf ("processed vertex %d\n",v);

}

process_edge(int x, int y) {
printf ("processed edge (%d,%d)\n",x,y);
}

*/
*/
*/
*/
*/
*/
*/
*/
*/

Breadth-First Search

/* this version just counts the number of edges

process edge(int x, int y) {
nedges = nedges + 1;

}

*/

Breadth-First Search

Finding Paths

— The parent arrayinbfs () isveryuseful for finding interesting paths through a graph

— The vertex that discovered vertex i is defined as parent [1i]

AT AN

©)

V
<

©
v
®

vertex | 1 2
1

3
parent | -1 2

Ot >
= O
el K2

Breadth-First Search

Finding Paths

— Every vertex is discovered during the course of a traversal, so every node has a parent (except the
root)

— The parent relation defines a tree of discovery with the initial search node as the root of the tree

— Because vertices are discovered in order of increasing distance from the root, this tree has a very
important property

* The unique tree path from the root to each node uses the smallest number of edges (and intermediate
nodes) possible on any path from the root to that vertex

* Thus, BFS can be used to find shortest paths in an unweighted graph

Breadth-First Search

Finding Paths

— To reconstruct a path, we follow the chain of ancestors from the destination node x to the root
— Note we have to work backwards (we only know the parents]

— We find the path from the target vertex to the root and

* Either store it and explicitly reverse it using a stack

* Or construct the path recursively (in which case the stack is implicit)

Breadth-First Search

bool find path(int start, int end, int parents[]) ({
bool is path;

if (end == -1) {
is_path = false; // some vertex on the path back from the end
// has no parent (not counting start)
}
else if ((start == end)) {
printf ("\n%d" ,start); // or store start in a path DS

is path = true; // we have reached the start vertex
}
else {
is path = find path(start,parents[end], parents);
printf (" %d",end); // or store end in a path DS
}
return(is_path) ;

vertex.| 1 2 3 4 5 6
parent]—1 1 2 5 1 1

Breadth-First Search

find path(1l,4,parent)

-> find path(1l,5,parent) -> find path(l,1,parent) -> printf (1)
printf (4) printf (5)

4 %»i o

5 (3r >(4

Breadth-First Search

Applications of Breadth-First Search

— ldentifying connected components

* A graph is connected if there Is a path between any two vertices

* A connected component of an undirected graph is a maximal set of vertices such that there is a path
between every pair of vertices

* The components are separate “pieces” of the graph such that there is no connection between the
pieces

* Many complicated problems reduce to finding or counting connected components

* How would you find and label all the components in a graph?

Breadth-First Search

Applications of Breadth-First Search

— Two-Colouring Graphs

* The vertex-colouring problem seeks to assign a label (or U vV

colour) to each vertex of a graph such that no edge links any
two vertices of the same colour

* The goal is use as few colours as possible

* A graph is bipartite if it can be coloured without conflicts
using only two colours

Gene network

Breadth-First Search

DISEASOME

Orolaryngeal cancer

Li Fraumeni syndrome

GENOME e

Prostate cancer

(BRCA2

| Colon cancer

Leukemia

! Melnoma

|Fanconi anemia
Pancreatic cancer

Bladder cancer
Breast cancer

Histiocyloma

Lung cancer]
Polyposis
Hepatic adenoma

Juvenile palyposis

Stomach cancer

Adrenal cortical carcinoma

Peutz-Jeghers syndrome

Goh, Cusick, Valle, Childs, Vidal & Barabasi, PNAS (2007)

PHENOME

Juvenile polyposis Li Fraumeni syndrome

Ofolaryngeal cancer
Polyposis

Malnoms Wilms tumor

Prostate cancer

Peuiz-Jeghers syndrome-
Fanconi anemia

Pancreatic cancer
~L ___| Breast cancer
LAdrenal cortical
carcinoma

Lerukemlé Bladder cancer
‘Stomach cancer
Colon cancer | Lung cancer

Histiocytoma |

Hepatic adenoma

Disease network

Breadth-First Search

Applications of Breadth-First Search

— Robot path-planning

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

Map recreated from the following papers:

Joho, D., Senk, M., & Burgard, W. (2009). Learning wayfinding heuristics
based on local information of object maps. Proceedings of the European
Conference on Mobile Robots (ECMR) 2009, 117-122.

Kalff, C., & Strube, G. (2009). Background knowledge in human navigation:

a study in a supermarket. Cognitive Processing, 10(2), 225-228.

—

| | Goal

|

I ——

Start ‘ ym— ! =

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Represent the map of the environment as an occupancy grid

-

OO OO
OO0
OORO
OO OO

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

Represent the map of the environment as an occupancy grid

0

0

0

OO OO
OO0

OO O
OO0

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Convert this to a graph

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Convert this to a graph

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

Do a BFS from the robot start position ...
To find the shortest path to all other vertices

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Mark the path from the robot start position to the goal position on the occupancy grid

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning
Mark the path from the robot start position to the goal position on the occupancy grid

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

OO OO OO OO ODOOOOOOO
OO OO O OO AIr1OOCOCODOOO
OO OO T Ir-IOCOOOOO O
OO OO OO rTO O OO ODODOOO
OO OO OO OO0 OOODOOOO
OO O OO OOrIOCOOOO O
OC OO OO OO r-TOC OO ODODOOO
OCOOr-TOOOr-1O0COOOOOOOO
COOr1O OO r-IOCOODODODOOO
OCOOTIrOOrTOCOOOOOOOO
OCOOTIr1OO0OrArdr{ OO OO OO
OO O OO OOOOOOOr—OOO
Ordr1 OO O OO OO OOr—OOO
OO OO OO OO ODOOODOOOO

OO OO OO OOOOOODOOOO
OO OO OO OOOOOODOOOO

I
I

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

OO OO OO OO ODOOOOOOO
OO OO O OO AIr1OOCOCODOOO
OO OO T Ir-IOCOOOOO O
OO OO OO rTO O OO ODODOOO
OO OO OO OO0 OOODOOOO
OO O OO OOrIOCOOOO O
OC OO OO OO r-TOC OO ODODOOO
OCOOr-TOOOr-1O0COOOOOOOO
COOr1O OO r-IOCOODODODOOO
OCOOTIrOOrTOCOOOOOOOO
OCOOTIr1OO0OrArdr{ OO OO OO
OO O OO OOOOOOOr—OOO
Ordr1 OO O OO OO OOr—OOO
OO OO OO OO ODOOODOOOO

OO OO OO OOOOOODOOOO
OO OO OO OOOOOODOOOO

I
I

Breadth-First Search

Applications of Breadth-First Search

Robot path-planning

OO OO O OO0 OODOOOOOO
OCOOOOOCOOTArI OO OCDODOOO
OO ONNTIr1OOOOOO O
O OO OONTr1TOOODODODODOOO
OCOOOOONNANANNNNOOOO
OO0 OO OO OrIOONOO—HO
OO0 OO OO r1OOONOOOO
OCOOr-10O 0O r10OOOOODODOOO
OCOOr 1O OO r-TOCOODODOOOO
OCOOrMIrOOr OO OO OOOO
OCOOM OO rIr{1 OO OO OO
O OO OO OO O OO OOrOOO
Ordr1 OO0 OO O OO OOr—OOO
OO OO OO0 ODOOOOOOO
SO OO O OO0 ODODOOOOOO
OO OO OO0 ODODOOOOOO

I
n N

Applications of Breadth-First Search

Robot path-planning

Breadth-First Search

'

= =

L

