
Graphs 3 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 7: Graphs

Lecture 3: Depth-First Search (DFS) traversal & Topological Sort

Graphs 3 2 Data Structures and Algorithms for Engineers

Depth-First Search

• This implementation of DFS uses the idea of a traversal time for each vertex

• The clock ticks each time we enter or exit any vertex

• We keep track of the entry and exit time for each vertex

• These entry and exit times are useful in many applications of DFS (e.g., topological sort; see later)

– process_vertex_early() … take action on entry
– process_vertex_late() … take action on exit

• DFS uses a stack but we can avoid using an explicit stack if we use recursion

Graphs 3 3 Data Structures and Algorithms for Engineers

Depth-First Search

• DFS partitions edges of an undirected graph into exactly two classes

– Tree edges

– Back edges

• Tree edges discover new vertices
– Encoded in the parent relation

• Back edges link a vertex to an ancestor of the vertex being expanded

Graphs 3 4 Data Structures and Algorithms for Engineers

Depth-First Search

Graphs 3 5 Data Structures and Algorithms for Engineers

Depth-First Search

/* Depth-First Search */

dfs(graph *g, int v){

 edgenode *p; /* temporary pointer */
 int y; /* successor vertex */

 if (finished) return; /* allow for search termination */

 discovered[v] = TRUE;
 time = time + 1;
 entry_time[v] = time;

 process_vertex_early(v);

Graphs 3 6 Data Structures and Algorithms for Engineers

Depth-First Search

p = g->edges[v];
 while (p != NULL) {
 y = p->y;
 if (discovered[y] == FALSE) {
 parent[y] = v;
 process_edge(v,y); // not discovered: tree edge
 dfs(g,y);
 }
 else if ((!processed[y]) // discovered but not processed: back edge
 // e.g. (5,1) (5,2)
 || (g->directed)) // discovered, possibly processed, but directed edge
 // also a back edge,
 process_edge(v,y);

 if (finished) return;
 p = p->next;
 }

 process_vertex_late(v);
 time = time + 1;
 exit_time[v] = time;

 processed[v] = TRUE;
}

Graphs 3 7 Data Structures and Algorithms for Engineers

Depth-First Search

• Depth-First Search uses essentially the same idea as backtracking

– Exhaustively searching all possibilities by advancing if it is possible

– And backing up as soon as there is no unexplored possibility for further advancement

– Both are most easily understood as recursive algorithms

• DFS organizes vertices by entry/exit times

• DFS classifies edges as either tree edges or back edges

Graphs 3 8 Data Structures and Algorithms for Engineers

Depth-First Search

Applications of Depth-First Search

– Finding Cycles

• If there are no back edges,
then all edges are tree edges
and no cycles exist

• Finding a back edge identifies a cycle

Graphs 3 9 Data Structures and Algorithms for Engineers

Depth-First Search

Applications of Depth-First Search

– Finding Articulation Vertices (also known as a cut node):
weakest points in a graph/network

– v is an articulation vertex if
• v is root of the DFS traversal tree and has 2 or more children, or

• v has a child s such that there is no back edge from s or any descendent of s to a proper ancestor of v

v

Graphs 3 10 Data Structures and Algorithms for Engineers

Depth-First Search

Applications of Depth-First Search

– Finding Articulation Vertices (also known as a cut node):
weakest points in a graph/network

– v is an articulation vertex if
• v is root of the DFS traversal tree & has 2 or more children, or

• v has a child s such that there is no back edge from s or any descendent of s to a proper ancestor of v

v

Graphs 3 11 Data Structures and Algorithms for Engineers

Depth-First Search

Applications of Depth-First Search

– Finding Articulation Vertices (also known as a cut node):
weakest points in a graph/network

– v is an articulation vertex if
• v is root of the DFS traversal tree & has 2 or more children, or

• v has a child s such that there is no back edge from s or any descendent of s to a proper ancestor of v

v

Graphs 3 12 Data Structures and Algorithms for Engineers

Depth-First Search

Applications of Depth-First Search

– Finding Articulation Vertices (also known as a cut node):
weakest points in a graph/network

– v is an articulation vertex if
• v is the root of the DFS traversal tree & has 2 or more children, or

• v has any child s such that there is no back edge from s or any descendent of s to a
proper ancestor of v

• No back edge from 5, 8, 10, 9, 7, 6 to 1, 2; so, v is an articulation vertex

1

2

3

4
5

6

8

7
9

10

1

2

3

4

5

7

9

8

10

6

v

Graphs 3 13 Data Structures and Algorithms for Engineers

Depth-First Search

Depth-First Search on Directed Graphs

– When traversing undirected graphs,
every edge is either in the depth-first
search tree or it is a back edge to
an ancestor in the tree

– For directed graphs, there are 4 depth-first search labellings

Graphs 3 14 Data Structures and Algorithms for Engineers

Depth-First Search

int edge_classification(int x, int y){

 /* if x is the parent of y, it’s a tree edge */
 if (parent[y] == x) return(TREE);

 /* if y is discovered but not processed, this means we’ve */
 /* already encountered on the traversal so it’s a back edge */
 if (discovered[y] && !processed[y]) return(BACK);

 /* if y has been processed, and its entry time is greater than x’s */
 /* then it’s a forward edge */
 if (processed[y] && (entry_time[y]>entry_time[x])) return(FORWARD);

 /* if y has been processed, and its entry time is less than x’s */
 /* then it’s a cross edge */
 if (processed[y] && (entry_time[y]<entry_time[x])) return(CROSS);

 /* otherwise we have an invalid condition and it’s unclassified. */
 printf("Warning: unclassified edge (%d,%d)\n",x,y);
}

Graphs 3 15 Data Structures and Algorithms for Engineers

Topological Sorting

• The most important operation on directed acyclic graphs (DAGs)

• It orders the vertices on a line such that all directed edges go from left to right

– Not possible if the graph contains a directed cycle

– It provides an ordering to process each vertex before any of its successors

– E.g., edges represent precedence constraints, such that the edge (x, y) means job x must be done before job y

– Any topological sort defines a valid schedule

• Each DAG has at least one topological sort

Graphs 3 16 Data Structures and Algorithms for Engineers

Topological Sorting

Graphs 3 17 Data Structures and Algorithms for Engineers

Topological Sorting

• Topological sorting can be performed using DFS

• A directed graph is a DAG iff there are no back edges

• Labelling the vertices in the reverse order in which they are processed (completed)
finds the topological sort of a DAG

Graphs 3 18 Data Structures and Algorithms for Engineers

Topological Sorting

Why? Consider what happens to each directed edge (x, y) as we encounter it
exploring vertex x

– If y is currently undiscovered, then we start a DFS of y before we can continue with x. Thus y is
marked processed/completed before x is, and x appears before y in the topological order

– If y is discovered but not processed/completed, then (x, y) is a back edge, which is forbidden in
a DAG

– If y is processed/completed, then it will have been so labeled before x. Therefore, x appears
before y in the topological order

Graphs 3 19 Data Structures and Algorithms for Engineers

Topological Sorting

process_vertex_late(int v){
 push(&sorted,v); // explicit stack for the sorted vertices
}

process_edge(int x, int y){

 int class; /* edge class */

 class = edge_classification(x,y);

 if (class == BACK)
 printf("Warning: directed cycle found, not a DAG\n");
}

Graphs 3 20 Data Structures and Algorithms for Engineers

Topological Sorting

/* Perform topological sort by doing a DFS on the graph, */
/* pushing each vertex on a stack as soon as we have evaluated */
/* all outgoing edges. */
/* The top vertex on the stack always has no incoming edges from any */
/* vertex on the stack. */
/* After the DFS, repeatedly popping the vertices from the stack */
/* yields a topological ordering */

topsort(graph *g) {

 int i;

 init_stack(&sorted);

 for (i=1; i<=g->nvertices; i++)
 if (discovered[i] == FALSE)
 dfs(g,i); // push(&sorted,i) when processed

 print_stack(&sorted); /* report topological order */
}

Graphs 3 21 Data Structures and Algorithms for Engineers

Topological Sorting

DFS(g,A)-> DFS(g,B) -> DFS(g,C) -> DFS(g,E) -> DFS(g,D) -> Push(D)
 Push(E)
 -> DFS(g,F) Push(F)
 Push(C)
 Push(B)
 Push(A)
DFS(g,G)-> Push(G)

Order of discovery: A, B, C, E, D, F, G
Order of processing: D, E, F, C, B, A, G
Stack: G

A
 B

 C
 F
 E

 D
Topological Sort: G, A, B, C, F, E, D

