
Algorithmic Strategies 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 8: Algorithmic Strategies

Lecture 1: Brute force, divide and conquer, greedy algorithms, dynamic programming,
combinatorial search, backtracking, pruning, branch and bound

Algorithmic Strategies 2 Data Structures and Algorithms for Engineers

Brute Force

• Brute force is a straightforward approach to solve a problem based on a simple
formulation of problem

• Often without any deep analysis of the problem

• Perhaps the easiest approach to apply and is useful for solving small-size instances
of a problem

• May result in naïve solutions with poor performance

Algorithmic Strategies 3 Data Structures and Algorithms for Engineers

Brute Force

Some examples of brute force algorithms are:

– Computing an (a > 0, n a non-negative integer) by repetitive multiplication: a x a x … x a
• For a more efficient approach, see https://en.wikipedia.org/wiki/Exponentiation_by_squaring

– Computing n! by repetitive multiplication: n x n-1 x n-2, ...
• For more efficient approaches, see http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

– Sequential (linear) search

– Selection sort, Bubble sort

Algorithmic Strategies 4 Data Structures and Algorithms for Engineers

Brute Force

Maximum sub-array problem / Grenander’s Problem

– Given a sequence of integers i1, i2, …, in, find the sub-sequence with the maximum sum

• If all numbers are negative the result is 0

– Examples:

-2, 11, -4, 13, -4, 2 has the solution 20

1, -3, 4, -2, -1, 6 has the solution 7

Algorithmic Strategies 5 Data Structures and Algorithms for Engineers

Brute Force

Maximum sub-array problem: brute force solution O(n3)

int grenanderBF(int a[], int n) {
int maxSum = 0;
for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {
int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
if (thisSum > maxSum) {

maxSum = thisSum;
}

}
}
return maxSum;

}

j

0 n-1

i

i

k

j

Algorithmic Strategies 6 Data Structures and Algorithms for Engineers

Brute Force

Maximum sub-array problem

– Divide and Conquer algorithm O(n log n)

– Kadane’s algorithms O(n) … dynamic programming

Algorithmic Strategies 7 Data Structures and Algorithms for Engineers

Divide and Conquer

Divide-and conquer (D&Q)

– Given an instance of the problem

– Divide this into smaller sub-instances (often two)

– Independently solve each of the sub-instances

– Combine the sub-instance solutions to yield a solution for the original instance

With the D&Q method, the size of the problem instance is reduced by some factor
(e.g., half the input size)

Algorithmic Strategies 8 Data Structures and Algorithms for Engineers

Divide and Conquer

• Often yield a recursive formulation

• Examples of D&Q algorithms

– Quicksort algorithm

– Mergesort algorithm

– Fast Fourier Transform

Algorithmic Strategies 9 Data Structures and Algorithms for Engineers

Divide and Conquer

Mergesort

UNSORTEDSEQUENCE

UNSORTED SEQUENCE

UNSO RTED SEQU ENCE

UN SO RT ED SE QU EN CE

NU OS RT DE ES QU EN CE

NOSU DERT EQSU CEEN

DENORSTU CEEENQSU

CDEEEENNOQRSSTUU

Algorithmic Strategies 10 Data Structures and Algorithms for Engineers

Divide and Conquer

void mergesort(Item a[], int l, int r) {
if (r-l <= 1) {

return;
} else {

int m = (r + l) / 2;
mergesort(a, l, m);
mergesort(a, m+1, r);
merge(a, l, m, r);

}
}

void mergesort(Item a[], int size) {
mergesort(a, 0, size-1);

}

Already
sorted?

Divide the list into
two equal parts

Sort the two
halves
recursively

Merge the sorted halves
into a sorted whole

Algorithmic Strategies 11 Data Structures and Algorithms for Engineers

Divide and Conquer

// Generic Divide and Conquer Algorithm

 divideAndConquer(Problem p) {
 if (p is simple or small enough) {
 return simpleAlgorithm(p);
 } else {
 divide p in smaller instances p1, p2, ..., pn
 Solution solutions[n];
 for (int i = 0; i < n; i++) {
 solutions[i] = divideAndConquer(pi);
 }
 return combine(solutions);
 }
 }

Algorithmic Strategies 12 Data Structures and Algorithms for Engineers

Greedy Algorithms

• Try to find solutions to problems step-by-step

– A partial solution is incrementally expanded towards a complete solution

– In each step, there are several ways to expand the partial solution:

– The best alternative for the moment is chosen, the others are discarded

• At each step the choice must be locally optimal – this is the central point of this technique

Algorithmic Strategies 13 Data Structures and Algorithms for Engineers

Greedy Algorithms

Examples of problems that can be solved using a greedy algorithm:

– Finding the minimum spanning tree of a graph (Prim’s algorithm)

– Finding the shortest distance in a graph (Dijkstra’s algorithm)

– Using Huffman trees for optimal encoding of information

– The Knapsack problem

Algorithmic Strategies 14 Data Structures and Algorithms for Engineers

Greedy Algorithms

1l, $1

3l, $30
7l, $60

10l

8, 61

0, 0

7, 60 3, 30 1, 1

10, 90 6, 60

9, 90

10, 91

x3

Algorithmic Strategies 15 Data Structures and Algorithms for Engineers

Dynamic Programming

• Dynamic programming is similar to D&Q

– Divides the original problem into smaller sub-problems

• Sometimes it is hard to know beforehand which sub-problems are needed to be
solved in order to solve the original problem

• Dynamic programming solves a large number of sub-problems

• … and uses some of the sub-solutions to form a solution to the original problem

Algorithmic Strategies 16 Data Structures and Algorithms for Engineers

Dynamic Programming

In an optimal sequence of choices, actions or decisions each sub-sequence must also
be optimal:

– An optimal solution to a problem is a combination of optimal solutions to some of its sub-
problems

– Not all optimization problems adhere to this principle

Algorithmic Strategies 17 Data Structures and Algorithms for Engineers

Dynamic Programming

• One disadvantage of using D&Q is that the process of recursively solving separate
sub-instances can result in the same computations being performed repeatedly

• The idea behind dynamic programming is to avoid calculating the same quantity
twice, usually by maintaining a table of sub-instance results

Algorithmic Strategies 18 Data Structures and Algorithms for Engineers

Dynamic Programming

• The same sub-problems may reappear

• To avoid solving the same sub-problem more than once, sub-results are saved in a
data structure that is updated dynamically

• Sometimes the result structure (or parts of it) may be computed beforehand

Algorithmic Strategies 19 Data Structures and Algorithms for Engineers

Dynamic Programming

/* fibonacci by recursion O(1.618^n) time complexity */

long fib_r(int n) {
 if (n == 0)
 return(0);
 else
 if (n == 1)
 return(1);
 else
 return(fib_r(n-1) + fib_r(n-2));
}

fib_r(4) ® fib(3) + fib(2)
® fib(2) + fib(1) + fib(2)
® fib(1) + fib(0) + fib(1) + fib(2)
® fib(1) + fib(0) + fib(1) + fib(1) + fib(0)

Algorithmic Strategies 20 Data Structures and Algorithms for Engineers

Dynamic Programming

Algorithmic Strategies 21 Data Structures and Algorithms for Engineers

Dynamic Programming

#define MAXN 45 /* largest interesting n */
#define UNKNOWN -1 /* contents denote an empty cell */
long f[MAXN+1]; /* array for caching computed fib values */

/* fibonacci by caching: O(n) storage & O(n) time */

long fib_c(int n) {

 if (f[n] == UNKNOWN)
 f[n] = fib_c(n-1) + fib_c(n-2);
 return(f[n]);
}

long fib_c_driver(int n) {

 int i; /* counter */

 f[0] = 0;
 f[1] = 1;
 for (i=2; i<=n; i++)
 f[i] = UNKNOWN;

 return(fib_c(n));
}

Algorithmic Strategies 22 Data Structures and Algorithms for Engineers

Dynamic Programming

Algorithmic Strategies 23 Data Structures and Algorithms for Engineers

Dynamic Programming

/* fibonacci by dynamic programming: cache & no recursion */

/* NB: need correct order of evaluation in the recurrence relation */

/* O(n) storage & O(n) time */

long fib_dp(int n) {

 int i; /* counter */

 long f[MAXN+1]; /* array to cache computed fib values */

 f[0] = 0;

 f[1] = 1;

 for (i=2; i<=n; i++)

 f[i] = f[i-1]+f[i-2];

 return(f[n]);

}

Algorithmic Strategies 24 Data Structures and Algorithms for Engineers

Dynamic Programming

/* fibonacci by dynamic programming: minimal cache & no recursion */

/* O(1) storage & O(n) time */

long fib_ultimate(int n) {

 int i; /* counter */

 long back2=0, back1=1; /* last two values of f[n] */

 long next; /* placeholder for sum */

 if (n == 0) return (0);

 for (i=2; i<n; i++) {

 next = back1+back2;

 back2 = back1;

 back1 = next;

 }

 return(back1+back2);

}

Algorithmic Strategies 26 Data Structures and Algorithms for Engineers

Dynamic Programming

There are three steps involved in solving a problem by dynamic programming:

1. Formulate the answer as a recurrence relation or recursive algorithm

2. Show that the number of different parameter values taken on by your recurrence is bounded
by a (hopefully small) polynomial

3. Specify an order of evaluation for the recurrence so the partial results you need are always
available when you need them

Algorithmic Strategies 27 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

We can find optimal solutions to many problems using exhaustive search technique

– However, the complexity can be huge so we need to be careful

– If the complexity is O(2n) it will be feasible to consider problems where n < 40

– If the complexity is O(n!) it will be feasible to consider problems where n < 20

Algorithmic Strategies 28 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

• Solving problems through the systematic search for solutions in a (large) state
space

• The general idea is to incrementally extend partial solutions until a complete
solution is obtained

S

G??
??

How do we
represent
locations?

Movement as the
transition from one
location to another

How to handle
alternatives?

How do we
know that we
have arrived?

What guides us in the
direction of our destination?

Algorithmic Strategies 29 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

• Search is the systematic process of

– choosing one of many possible alternatives,

– saving the rest in case the alternative selected first does not lead to the goal

• Search can be viewed as the construction and traversal of search trees

Algorithmic Strategies 30 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

Characterization of the state space

– The initial state (e.g., a location)

– A set of operators which take us from one state to another state (e.g., drive straight, turn left, …)

– A goal-test which decides when the goal is reached (e.g., comparing locations)

• Explicit states (e.g., a specific address)

• Abstractly described states (e.g., any post office)

Algorithmic Strategies 31 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

Characterization of the state space

– A description of a solution (e.g., the address, the path between locations or the moves used)

• The search path (e.g., the shortest path between your home and your office)

• Just the final state (e.g., the post office)

Algorithmic Strategies 32 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

Characterization of the state space

A cost function (e.g., time, money, distance or number of moves):

True cost for going from start to where we are now +
Estimated cost for going from we are now to the nearest goal

Search cost, the cost for concluding that a certain operator should be used
(e.g., the time it takes to ask someone for directions or thinking about a move) +

Path cost, the cost for using an operator (e.g., the energy it takes to walk or time)

Algorithmic Strategies 33 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

Reminder of the potential size of state spaces

Propositional satisfiability problem (SAT):

– Decide if there is an assignment to the variables of a propositional formula that satisfies it:

– 100 variables → 2100 ~ 1030 combinations
1000 evaluations/second →
31,709,791,983,764,586,504 years required to evaluate all combinations

))()()()((3121434342 xxxxxxxxxxf +++++=

Algorithmic Strategies 34 Data Structures and Algorithms for Engineers

Combinatorial Search / State Space Search

Reminder of the potential size of state spaces

Traveling salesman problem (TSP)

– Given a number of cities along with the cost of travel between each pair of them, find the cheapest way of visiting all the
cities exactly once and returning to the starting point

– There are 2 identical tours for each permutation of n cities → the number of tours are n!/(2n) = (n-1)!/2 ...
• divide by n if we don’t care where we start

• divide by 2 if we don’t care which direction we take the tour

– A 50-city TSP therefore has about 3*1062 potential solutions

Algorithmic Strategies 35 Data Structures and Algorithms for Engineers

The journey so far ...

We are here!

Algorithmic Strategies 36 Data Structures and Algorithms for Engineers

https://www.youtube.com/watch?v=urRVZ4SW7WU

Algorithmic Strategies 37 Data Structures and Algorithms for Engineers

https://www.mensjournal.com/adventure/alex-honnold-on-his-free-solo-ascent-of-yosemites-el-capitan-w486186/

Algorithmic Strategies 38 Data Structures and Algorithms for Engineers

https://theknow.denverpost.com/2018/09/27/alex-honnold-climbing-tips/196513/

Algorithmic Strategies 39 Data Structures and Algorithms for Engineers

https://moviecricket.net/blog/2018/10/18/free-solo

Algorithmic Strategies 40 Data Structures and Algorithms for Engineers

https://www.nationalgeographic.com/adventure/article/most-dangerous-free-solo-climb-yosemite-national-park-el-capitan

Algorithmic Strategies 41 Data Structures and Algorithms for Engineers

Backtracking

• A systematic method to iterate through all the possible configurations of a search space

– All possible arrangements of object: permutations
– All possible ways of building a collection of objects: subsets
– Generation of all possible spanning trees of a graph
– Generation of all possible paths between two vertices
– …

• Exhaustive search … check each solution generated to see if is the required solution
(satisfies some optimality criterion)

• General technique

– Must be customized for each individual application

Algorithmic Strategies 42 Data Structures and Algorithms for Engineers

Backtracking

• Based on the construction of a state space tree

– nodes represent states,

– root represents the initial state

– one or more leaves are goal states

– each edge represents the application of an operator

• The solution is found by expanding the tree until a goal state is found

Algorithmic Strategies 43 Data Structures and Algorithms for Engineers

Backtracking

Examples of problems that can be solved using backtracking:

– Puzzles (e.g., eight queens puzzle, crosswords, Sudoku)

– Combinatorial optimization problems (e.g., parsing and layout problems)

– Logic programming languages such as Icon, Planner and Prolog, which use backtracking
internally to generate answers

Algorithmic Strategies 44 Data Structures and Algorithms for Engineers

Backtracking

• Generate each possible configuration exactly once

• Avoiding repetitions and not missing configurations means we must define a systematic generation
order

• Let the solution be a vector

 a = (a1, a2, … an)

where each element is selected from a finite ordered set Si

– For example, a might represent a permutation and ai might be the ith element of the permutation

– For example, a might be a subset S, and ai would be true if and only if the ith element of the universal set is in S

– For example, a might be a sequence of moves in a game or a path in a graph, where ai contains the ith event in
the sequence

Set of candidates for element ai

Algorithmic Strategies 45 Data Structures and Algorithms for Engineers

Backtracking

– At each step, start from a partial solution

a = (a1, a2, … ai)

– Try to extend it by adding another element at the end

– After extending, test whether what we have so far is a solution

– If it is, use it (e.g., check to see if it’s the best solution so far)

– If it isn’t, check to see whether it can be extended to form a complete solution

– If it can, continue with recursion

– If it can’t, delete the last element from a and try another possibility from that position if it exists

Backtrack

Algorithmic Strategies 46 Data Structures and Algorithms for Engineers

Backtracking

• Backtracking constructs a tree of partial solutions

– Each vertex represents one partial solution

– There is an edge from one node x to node y if node y was created by advancing from x

– Constructing the solutions can be viewed as doing a depth-first traversal of the backtrack tree

• Backtracking ensures correctness by enumerating all possibilities

• Backtracking ensures efficiency by never visiting a state more than once

Algorithmic Strategies 47 Data Structures and Algorithms for Engineers

Backtracking

Backtracking as a depth-first traversal

Set of candidates for element ak

Algorithmic Strategies 48 Data Structures and Algorithms for Engineers

Backtracking
bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input) {

 int c[MAXCANDIDATES]; /* candidates for next position */
 int ncandidates; /* next position candidate count */
 int i; /* counter */

 if (is_a_solution(a,k,input))
 process_solution(a,k,input);
 else {
 k = k+1; // NB: k==1 => we need to choose a1; initially backtrack() is called with k == 0
 construct_candidates(a,k,input,c,&ncandidates);
 for (i=0; i<ncandidates; i++) {
 a[k] = c[i];
 make_move(a,k,input);
 backtrack(a,k,input);
 unmake_move(a,k,input);
 if (finished) return; /* terminate early */
 }
 }
} This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

Algorithmic Strategies 49 Data Structures and Algorithms for Engineers

Backtracking

Note how recursion yields an elegant and easy implementation of the backtracking
algorithm

– The new candidates array c is allocated afresh with each recursive procedure call

– Consequently, the not-yet-considered extension candidates at each call
don’t interfere with each other

Algorithmic Strategies 50 Data Structures and Algorithms for Engineers

Backtracking

The application-specific parts are dealt with in functions

1. is_a_solution(a,k,input)
2. construct_candidates(a,k,input,c,&ncandidates)
3. process_solution(a,k,input)
4. make_move(a,k,input)
5. unmake_move(a,k,input)

Algorithmic Strategies 51 Data Structures and Algorithms for Engineers

Backtracking

is_a_solution(a,k,input)

– Boolean function

– Tests whether the first k elements of vector a form a complete solution for the given problem

– The argument input allows us to pass general information to the routine

– We could use input to specify n, the size of a target solution,
e.g., when constructing permutations or subsets of n elements

Algorithmic Strategies 52 Data Structures and Algorithms for Engineers

Backtracking

construct_candidates(a,k,input,c,&ncandidates)

– Fills an array c with the complete set of possible candidates for the kth position of a,
given the contents of the first k-1 positions

– The number of candidates returned in this array is given by ncandidates

– Again, input may be used to pass auxiliary information

Algorithmic Strategies 53 Data Structures and Algorithms for Engineers

Backtracking

process_solution(a,k,input)

– Prints, counts, or otherwise processes a complete solution once it is constructed

Algorithmic Strategies 54 Data Structures and Algorithms for Engineers

Backtracking

make_move(a,k,input)
unmake_move(a,k,input)

– These functions enable us to modify a data structure in response to the latest move

– or clean up this data structure if we decide to take back the move

– You could build such a data structure from scratch from the solution a if required
but it can be more efficient to do it this way if the changes involved in a move can be easily undone

Algorithmic Strategies 55 Data Structures and Algorithms for Engineers

Backtracking

• Many combinatorial optimization problems require the enumeration of all subsets or permutations
of some set (and testing each enumeration for optimality / success)

• Being able to compute the number of subsets or permutations is far easier than enumerating them

– There are n! permutations of n elements

– There are 2n subsets of n elements

• Recall earlier comments on the exponential size of a state space

Algorithmic Strategies 56 Data Structures and Algorithms for Engineers

Backtracking

Construct all n! permutations (of numbers 1 to n)

– Set up an integer array a of n cells

– The set of candidates for the ith element will be the set of elements that have not appeared in
the (i-1) elements of the partial solution, corresponding to the first elements of the i-1
permutation

– In terms of our general backtrack algorithm

Sk = {1, …, n} - a
a is a solution whenever k = n

This is a set, so this equation is a set difference

Algorithmic Strategies 57 Data Structures and Algorithms for Engineers

Backtracking
/* Construct all permutations */

bool is_a_solution(int a[], int k, int n) {
 return (k == n); // its a solution when k == n
}

void construct_candidates(int a[], int k, int n, int c[], int *ncandidates) {
 int i; /* counter */
 bool in_perm[NMAX]; /* who is in the permutation? */

 for (i=1; i<NMAX; i++) in_perm[i] = FALSE;

 // we are finding candidates for a_k, a_k+1, ... a_n
 // when k == 1, all candidates are valid because we haven't selected any yet
 // when k == 2, all candidates except a_1 are valid
 // when k == n, all candidates except a_1 .. a_n-1 are valid
 for (i=1; i<k; i++) in_perm[a[i]] = TRUE;

 *ncandidates = 0;
 for (i=1; i<=n; i++)
 if (in_perm[i] == FALSE) {
 c[*ncandidates] = i;
 *ncandidates = *ncandidates + 1;
 }
}

NMAX must be the number of elements in the permutation + 1 to
allow for counting from 1, rather than 0

This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

The value of the ith element of the permutation being constructed
is used as the index of the Boolean array that identifies which values
are already in the permutation

If the number i is not already being used in the permutation,
it becomes a candidate to be used

We don't know which values are being used in the permutation yet

NB: c[] is indexed from 0

Algorithmic Strategies 58 Data Structures and Algorithms for Engineers

Backtracking

void process_solution(int a[], int k, data input) {

 int i; /* counter */

 for (i=1; i<=k; i++) printf(" %d",a[i]);

 printf("\n");
}

void generate_permutations(int n){
 int a[NMAX];

 backtrack(a,0,n);
}

This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

Data Structures and Algorithms for Engineers 60 Carnegie Mellon University Africa

Backtracking

void process_solution(int a[], int k, data input) {

int i; /* counter */

for (i=1; i<=k; i++) printf(" %d",a[i]);

printf("\n");
}

void generate_permutations(int n){
int a[NMAX];

backtrack(a,0,n);
}

This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

Algorithmic Strategies 59 Data Structures and Algorithms for Engineers

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
 k: 1
 i: 0

 backtrack(a,1,3)
 k: 2
 i: 0

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3)
 -> process_solution(a,3,3): 1 2 3

 k: 2
 i: 1

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3)
 -> process_solution(a,3,3): 1 3 2

1a

1 2a

1 2 3a

Backtracking

1 2 3c

F F F F F F Fin_perm

2 3c

T F F F F F Fin_perm

3c

T T F F F F Fin_perm

2 3c

T F F F F F Fin_perm 1 3a

2c

T F T F F F Fin_perm 1 3 2a

When studying this walkthrough, remember that the variable i iterates through all the candidate digits (at each level of recursion)
and the variable k identifies the position in the permutation that is currently being filled.

Algorithmic Strategies 60 Data Structures and Algorithms for Engineers

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
 k: 1
 i: 1

 backtrack(a,1,3)
 k: 2
 i: 0

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3)
 -> process_solution(a,3,3): 2 1 3

 k: 2
 i: 1

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3)
 -> process_solution(a,3,3): 2 3 1

2a

2 1a

2 1 3a

Backtracking

1 2 3c

F F F F F F Fin_perm

1 3c

F T F F F F Fin_perm

3c

T T F F F F Fin_perm

1 3c

T F F F F F Fin_perm 2 3a

1c

F T T F F F Fin_perm 2 3 1a

When studying this walkthrough, remember that the variable i iterates through all the candidate digits (at each level of recursion)
and the variable k identifies the position in the permutation that is currently being filled.

Algorithmic Strategies 61 Data Structures and Algorithms for Engineers

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
 k: 1
 i: 2

 backtrack(a,1,3)
 k: 2
 i: 0

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3)
 -> process_solution(a,3,3): 3 1 2

 k: 2
 i: 1

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3)
 -> process_solution(a,3,3): 3 2 1

3a

3 1a

3 1 2a

Backtracking

1 2 3c

F F F F F F Fin_perm

1 2c

F F T F F F Fin_perm

2c

T F T F F F Fin_perm

1 2c

F F T F F F Fin_perm 3 2a

1c

F T T F F F Fin_perm 3 2 1a

When studying this walkthrough, remember that the variable i iterates through all the candidate digits (at each level of recursion)
and the variable k identifies the position in the permutation that is currently being filled.

Algorithmic Strategies 62 Data Structures and Algorithms for Engineers

Backtracking

Construct all 2n subsets

– Set up a Boolean array a of n cells

– Element ai signifies whether the ith element of the set is in the subset

– In terms of our general backtrack algorithm

Sk = (true, false)
a is a solution whenever k = n

Algorithmic Strategies 63 Data Structures and Algorithms for Engineers

Backtracking
bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input) {

 int c[MAXCANDIDATES]; /* candidates for next position */
 int ncandidates; /* next position candidate count */
 int i; /* counter */

 if (is_a_solution(a,k,input))
 process_solution(a,k,input);
 else {
 k = k+1; // NB: k==1 => we need to choose a1; initially backtrack() is called with k == 0
 construct_candidates(a,k,input,c,&ncandidates);
 for (i=0; i<ncandidates; i++) {
 a[k] = c[i];
 make_move(a,k,input);
 backtrack(a,k,input);
 unmake_move(a,k,input);
 if (finished) return; /* terminate early */
 }
 }
} This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

Algorithmic Strategies 64 Data Structures and Algorithms for Engineers

Backtracking

/* Construct all subsets */

bool is_a_solution(int a[], int k, int n) {
 return (k == n); /* is k == n? */
}

void construct_candidates(int a[], int k, int n, int c[], int *ncandidates) {
 c[0] = TRUE;
 c[1] = FALSE;
 *ncandidates = 2;
}

This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

Two candidates: TRUE and FALSE (the element is either in the subset or it isn't)

(this differs from the permutation candidates which were all the elements that hadn't
yet appeared in the construction of the permutation so far)

Algorithmic Strategies 65 Data Structures and Algorithms for Engineers

Backtracking

/* Construct all subsets */

void process_solution(int a[], int k) {
 int i; /* counter */

 printf("{");
 for (i=1; i<=k; i++)
 if (a[i] == TRUE) printf(" %d",i);

 printf(" }\n”);
}

void generate_subsets(int n) {
 int a[NMAX];
 backtrack(a,0,n); /* solution vector */
}

This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

If the element is in the subset, print the element number

Algorithmic Strategies 66 Data Structures and Algorithms for Engineers

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
 k: 1
 i: 0

 backtrack(a,1,3)
 k: 2
 i: 0

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3) -> process_solution(a,3,3): {1 2 3}

 k: 3
 i: 1
 backtrack(a,3,3) -> process_solution(a,3,3): {1 2}

 k: 2
 i: 1

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3) -> process_solution(a,3,3): {1 3}

 k: 3
 i: 1
 backtrack(a,3,3) -> process_solution(a,3,3): {1}

1

1 0

a

c

1 0c

1 1a

1 0c

1 1 1a

1 0c

1 1 0a

1 0c

1 0a

Backtracking

1 0c

1 0 1a

1 0c

1 0 0a

Algorithmic Strategies 67 Data Structures and Algorithms for Engineers

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
 k: 1
 i: 1

 backtrack(a,1,3)
 k: 2
 i: 0

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3) -> process_solution(a,3,3): {2 3}

 k: 3
 i: 1
 backtrack(a,3,3) -> process_solution(a,3,3): {2}

 k: 2
 i: 1

 backtrack(a,2,3)
 k: 3
 i: 0
 backtrack(a,3,3) -> process_solution(a,3,3): {3}

 k: 3
 i: 1
 backtrack(a,3,3) -> process_solution(a,3,3): {}

0

1 0

a

c

1 0c

0 1a

1 0c

0 1 1a

1 0c

0 1 0a

1 0c

0 0a

Backtracking

1 0c

0 0 1a

1 0c

0 0 0a

Algorithmic Strategies 68 Data Structures and Algorithms for Engineers

Backtracking

Enumerate all the simple s to t paths through a given graph

– More complicated than listing permutations or subsets

– No explicit formula that counts the number of solutions
as a function of the number of edges or vertices (it depends on the structure of the graph)

Algorithmic Strategies 69 Data Structures and Algorithms for Engineers

Backtracking

Enumerate all the simple s to t paths through a given graph

– The starting point of any path from s to t is always s

– s is the only candidate for the first position and S1 = {s}

– The possible candidates for the second position are the vertices v such that (s,v) is an edge of
the graph

– Sk+1 consists of the set of vertices adjacent to ak that have not been used elsewhere in the
partial solution A

– We report a successful path whenever ak = t

Algorithmic Strategies 70 Data Structures and Algorithms for Engineers

Backtracking

/* Construct all paths in a graph */

void construct_candidates(int a[], int k, int n, int c[], int *ncandidates) {
 int i; /* counters */
 bool in_sol[NMAX]; /* what’s already in the solution? */
 edgenode *p; /* temporary pointer */
 int last; /* last vertex on current path */

 for (i=1; i<NMAX; i++) in_sol[i] = false;
 for (i=1; i<k; i++) in_sol[a[i]] = true;

 if (k==1) { /* always start from vertex 1 */
 c[0] = 1;
 *ncandidates = 1;
 }

This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

The value of the ith element of the solution being constructed is
used as the index of the Boolean array that identifies which values
are already in the solution

Algorithmic Strategies 71 Data Structures and Algorithms for Engineers

Backtracking
else {

 *ncandidates = 0;
 last = a[k-1]; // last vertex included in solution
 p = g.edges[last];
 while (p != NULL) { // for each edge, the connected vertex is a candidate
 if (!in_sol[p->y]) {
 c[*ncandidates] = p->y;
 *ncandidates = *ncandidates + 1;
 }
 p = p->next;
 }
 }
}

bool is_a_solution(int a[], int k, int t){

 /* We report a successful path whenever a[k] = t */

 return (a[k] == t);
}

void process_solution(int a[], int k) {
 solution_count ++; /* count all s to t paths */
}

This backtracking code is based on the examples in S. Skiena, The Algorithm Design Manual, 2008.

Algorithmic Strategies 72 Data Structures and Algorithms for Engineers

Backtracking

Pruning

– Backtracking ensures correctness by enumerating all possibilities

– Enumerating all n! permutations of n vertices of a graph and selecting the best one
certainly yields the correct algorithm to find the optimal travelling salesman tour

• For each permutation, check to see if the tour exists in the graph (do the edges exist?)

• If so, add all the weights and see if it is the best solution

Algorithmic Strategies 73 Data Structures and Algorithms for Engineers

Backtracking

Pruning

– But it is very wasteful to construct all the permutations first and then analyze them later

• For example, if the search starts at vertex v1 and if (v1, v2) is not in the graph

• The next (n-2)! permutations enumerated starting with would be a complete waste of effort

• Much better to prune the search after (v1, v2) and continue next with (v1, v3)

• By restricting the set of next elements to reflect only moves that are legal / valid from the current
partial configuration, we significantly reduce the search complexity

Algorithmic Strategies 74 Data Structures and Algorithms for Engineers

Backtracking

Pruning

– Is the technique of cutting off the search the instant we have established that a partial solution

• Cannot be extended into a full solution (e.g., edges corresponding to the permutation don't exist)

• Should not be extended into a full solution (e.g., cost of partial solution > cost of best solution so far)

– Combinatorial searches, when augmented with tree pruning techniques, can be used to find the
optimal solution of small optimization problems

• The actual size depends on the problem

• Typical size limit are somewhere from 15 to 50 items

Algorithmic Strategies 75 Data Structures and Algorithms for Engineers

Branch-and-Bound

• In backtracking, we used depth-first search with pruning to traverse the state space

• We can achieve better performance for many problems using breadth-first search
with pruning

• This approach is known as branch-and-bound

– The implicit stack in depth first search is replaced by an explicit queue in breadth first search

– If we use a priority queue, we have a best-first traversal of the state space

Algorithmic Strategies 76 Data Structures and Algorithms for Engineers

Branch-and-Bound

• Systematic enumeration of candidate solutions by means of state space search

• The set of candidate solutions is thought of as forming a rooted tree with the full set
at the root

• A branch-and-bound algorithm explores branches of this tree, which represent
subsets of the solution set

• Before enumerating the candidate solutions of a branch

– The branch is checked against upper and lower estimated bounds on the optimal solution

– The branch is discarded if it cannot produce a better solution than the best one found so far by
the algorithm

Algorithmic Strategies 77 Data Structures and Algorithms for Engineers

Branch-and-Bound

Use bounds for the function to be optimized & the value of the current best solution to
limit the search space

Algorithmic Strategies 78 Data Structures and Algorithms for Engineers

Branch-and-Bound

• Advantage of using breadth-first (or best-first) search:

– When a node (i.e., a partial solution) that is judged to be promising (i.e., a possible candidate for
a full solution) when it is first encountered and placed in the queue,
it may no longer be promising when it is removed

– If it is no longer promising, it is discarded and the evaluation and testing of its children
(i.e., remainder of the solution) is avoided

• Branch-and-bound is by far the most widely used tool for solving large scale
NP-hard combinatorial optimization problems

• However, it is an algorithm paradigm that has be be customized for each specific
problem type

