Data Structures and Algorithms for Engineers

Module 9: Complex Networks

Lecture 2: Communities (Part 1)

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu www.vernon.eu

Lecture DSA09-02

Complex Networks

- Communities
 - Fundamental Hypothesis & Connectedness and Density Hypothesis
 - Strong and weak communities
 - Graph partitioning & Community detection
 - Hierarchical clustering
 - Girvan-Newman Algorithm
 - Modularity
 - Random Hypothesis
 - Maximum Modularity Hypothesis
 - Greedy algorithm for community detection by maximizing modularity
 - Overlapping communities
 - Clique percolation algorithm and CFinder

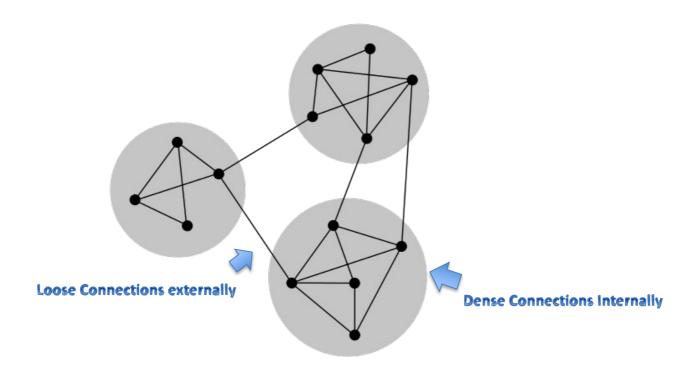
This lecture is based on Chapter 9 of *Network Science* by A.-L. Barabási [see https://networksciencebook.com/]

Communities

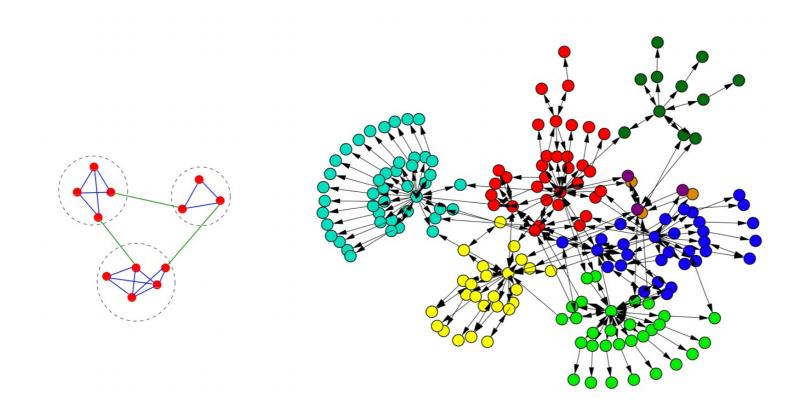
"In network science we call a *community* a group of nodes that have a higher likelihood of connecting to each other than to nodes from other communities."

L.A. Barabási

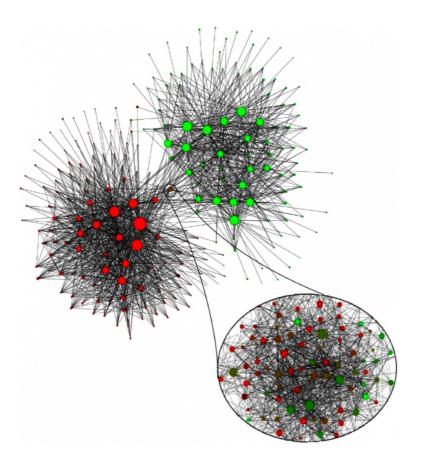
Communities



Communities

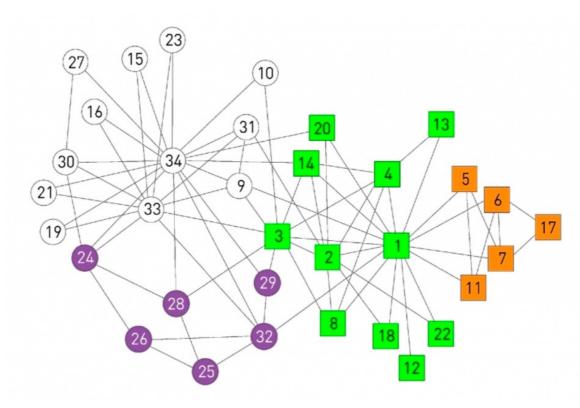


Communities



Communities in Belgium: red, French-speaking; green, Flemish-speaking (node size = community size)

Communities

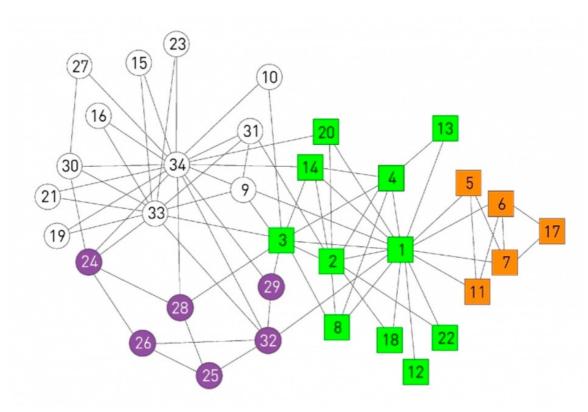


Zachary's Karate Club::

A conflict between the club's president and the instructor split the club into two.

About half of the members followed the instructor and the other half the president,
a breakup that unveiled the ground truth, representing club's underlying community structure

Communities

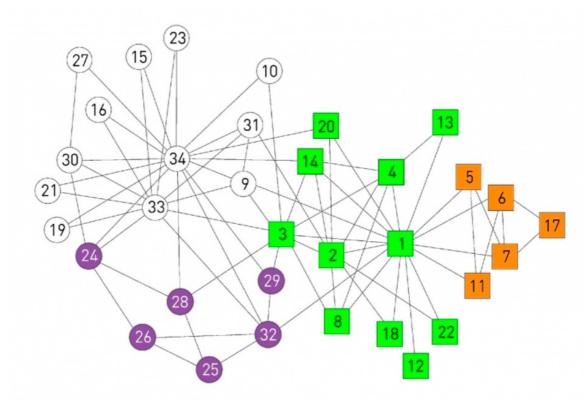


Zachary's Karate Club::

Links capture interactions between the club members *outside the club*.

The <u>circles</u> and the <u>squares</u> denote the two factions that emerged after the club split in two.

Communities



Zachary's Karate Club::

The colors capture the best community partition predicted by an algorithm that optimizes the modularity coefficient

Communities

H1: Fundamental Hypothesis

A network's community structure is uniquely encoded in its wiring diagram.

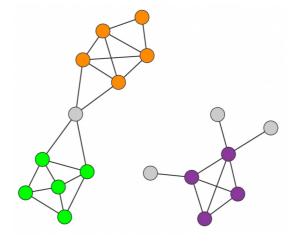
Communities

H2: Connectedness and Density Hypothesis

A community is a locally dense connected subgraph in a network

Connected: all members of a community must be reached through other members of the same community

Dense: nodes that belong to a community have a higher probability to link to the other members of that community than to nodes that do not belong to the same community



Communities

Strong Community

C is a strong community if each node within C has more links within the community than with the rest of the graph

Specifically, a subgraph C forms a strong community if for each node $i \in C$,

$$k_i^{\text{int}}(C) > k_i^{\text{ext}}(C)$$

Communities

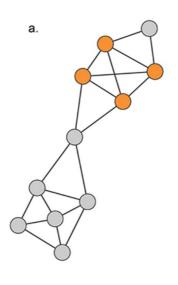
Weak Community

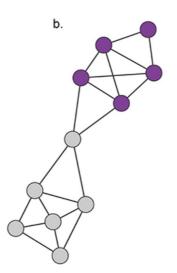
C is a *weak community* if the total internal degree of a subgraph exceeds its total external degree

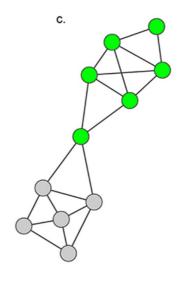
Specifically, a subgraph C forms a weak community if

$$\sum_{i \in C} k_i^{\text{int}}(C) > \sum_{i \in C} k_i^{ext}(C)$$

Communities







a. clique

b. strong community

c. weak community

a *clique*corresponds to a
complete subgraph
(rare)

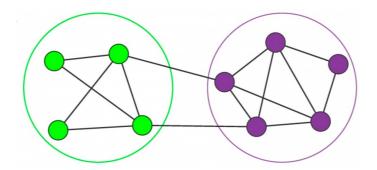
Communities

Numbers of communities

How many ways can we group the nodes of a network into communities?

Graph partitioning, also called *graph bisection*.

We aim to divide a network into two non-overlapping subgraphs, such that the number of links between the nodes in the two groups, called the *cut size*, is minimized



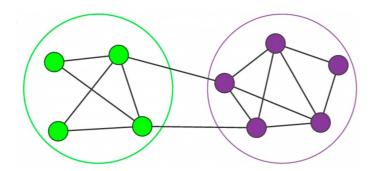
Communities

Numbers of communities

How many ways can we group the nodes of a network into communities?

Graph Bisection

Brute-force solution: inspect all possible divisions into two groups and choosing the one with the smallest cut size (exponential complexity)



Communities

Graph partitioning vs. community detection

- Graph partitioning divides a network into a predefined number of smaller subgraphs
- Community detection aims to uncover the inherent community structure of a network

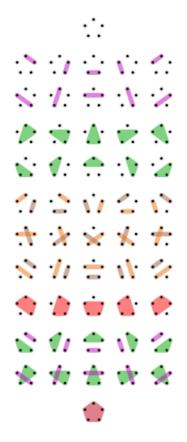
Communities

Community detection

- Graph partitioning:
 the number and the size of communities is predefined
- Community detection:
 both parameters are unknown
- Idea: detect communities by investigating all possible partitions

The number of possible partitions is given by the Bell number $B_N = \frac{1}{e} \sum_{j=0}^{\infty} \frac{j^N}{j!}$

52 Partitions of a set with 5 elements

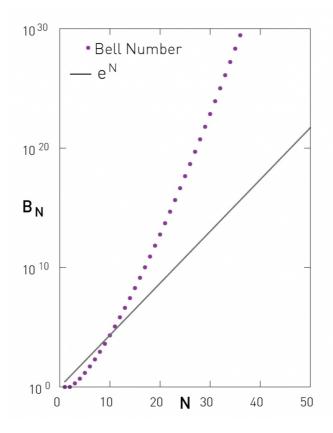


https://en.wikipedia.org/wiki/Bell_number

Communities

Community detection

$$B_N = \frac{1}{e} \sum_{j=0}^{\infty} \frac{j^N}{j!}$$



Brute-force

exponential-complexity algorithms that aim to identify communities by inspecting all possible partitions are computationally infeasible

Communities

Community detection

We need polynomial-time algorithms that can uncover the community structure of large real networks ...

Hierarchical Clustering

Brute-force
exponential-complexity algorithms
that aim to identify communities by
inspecting all possible partitions
are computationally infeasible

Community Detection

Hierarchical Clustering

- Generate a similarity matrix x_{ij} indicating the similarity between vertex/node i and vertex/node j
- Iteratively identify groups of nodes with high similarity
 - Agglomerative algorithms
 merge nodes with high similarity into the same community
 - 2. Divisive algorithms isolate communities by removing low similarity links that tend to connect communities.

Both procedures generate a hierarchical tree, called a dendrogram, that predicts the possible community partitions

Communities

Publication	Highlights	Example
Newman and Girvan (2004)	Divisive AlgorithmRemove the edge iteratively from the network	3 2 1 1 1 U2 U3 U4 U5 0
Newman (2004)	Agglomerative AlgorithmModularity: measure quality of communities	3 3 2 1 1 1 U1 U2 U3 U4 U5

Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Step 1: Define Centrality

Step 2: Hierarchical Clustering

Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Step 1: Define Centrality

The similarity matrix x_{ij} is called centrality and selects node pairs that are in different communities

 x_{ij} is high if nodes i and j belong to different communities x_{ij} is low if they are in the same community

Several options to choose from ...

Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

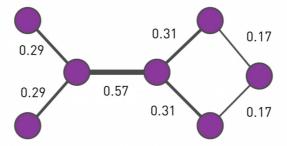
Step 1: Define Centrality

link betweenness

 x_{ij} is defined as the number of shortest paths that go through the link (i,j)

Links connecting different communities are expected to have large x_{ij} while links within a community

have small x_{ij}



NB: these link betweenness values are based on a single shortest path between two nodes

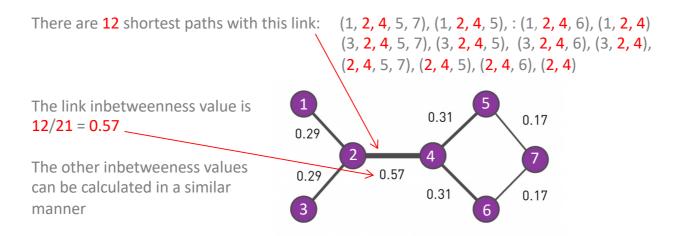
(which is not what the Girvan-Newman algorithm stipulates)

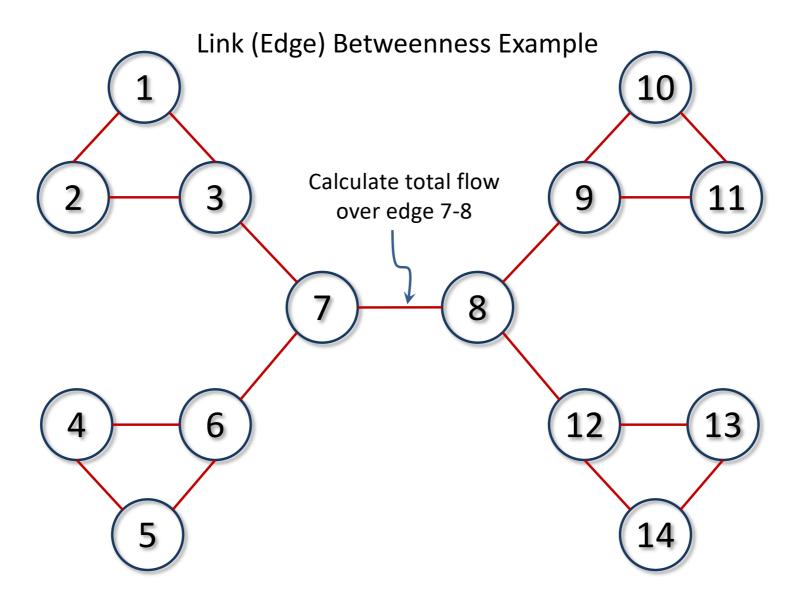
Community Detection

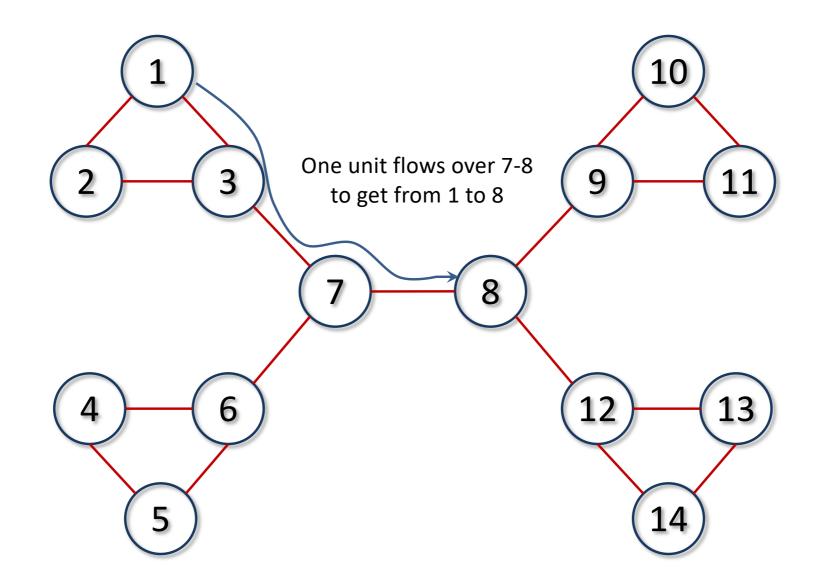
Divisive Procedures: the Girvan-Newman Algorithm

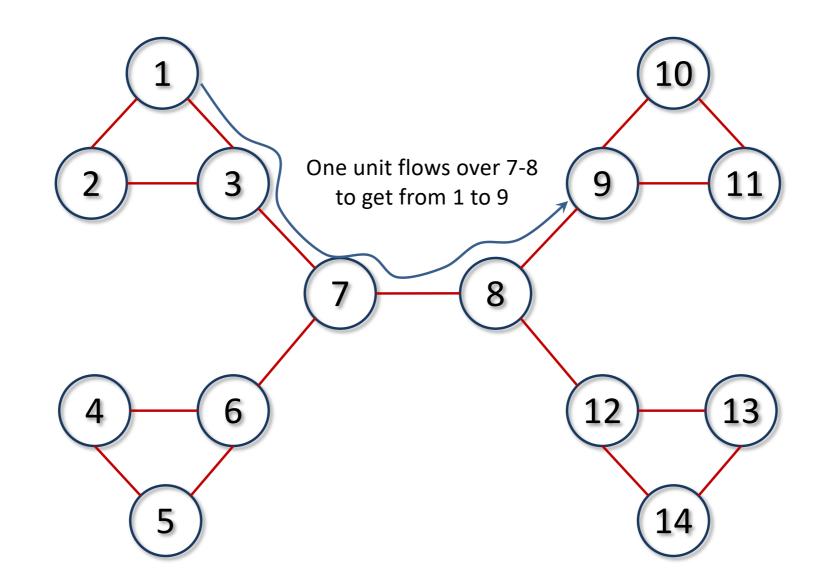
The similarity matrix for a network with n nodes has n^2 entries However, n of these don't count (these are the diagonal elements, i.e., the similarity of a node with itself) so, there are (n (n-1)) relevant entries and, therefore, (n (n-1))/2 shortest paths; remember that the network is undirected and unweighted and so the shortest path from node i to node j is the same as from node j to node i.

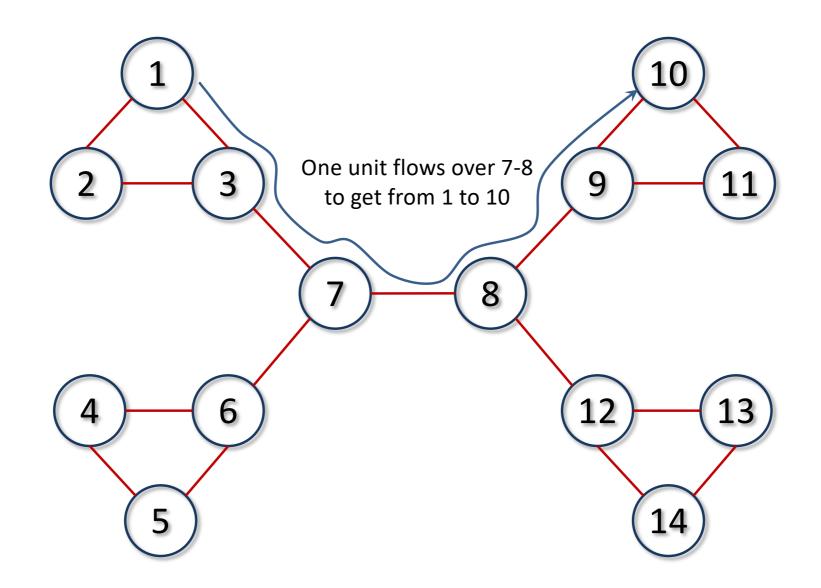
For the network below, there 7 nodes and 21 shortest paths.

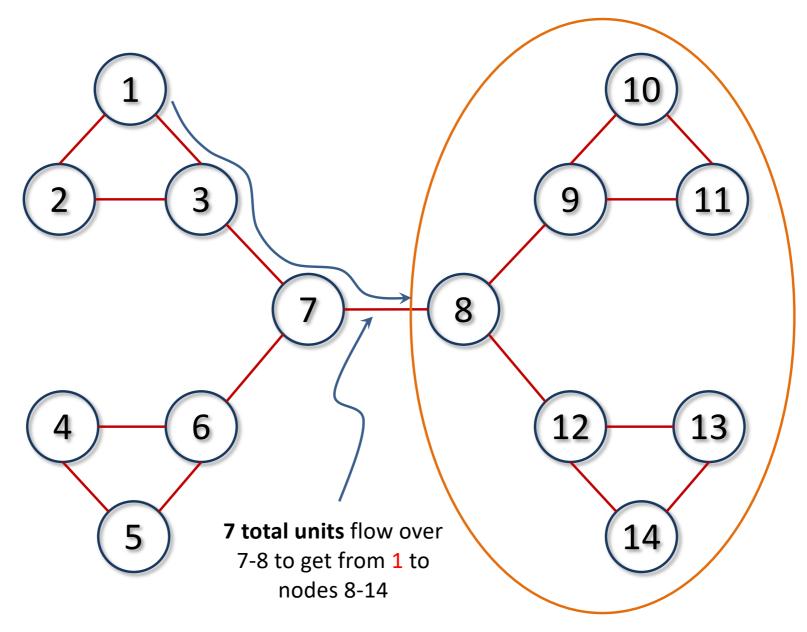


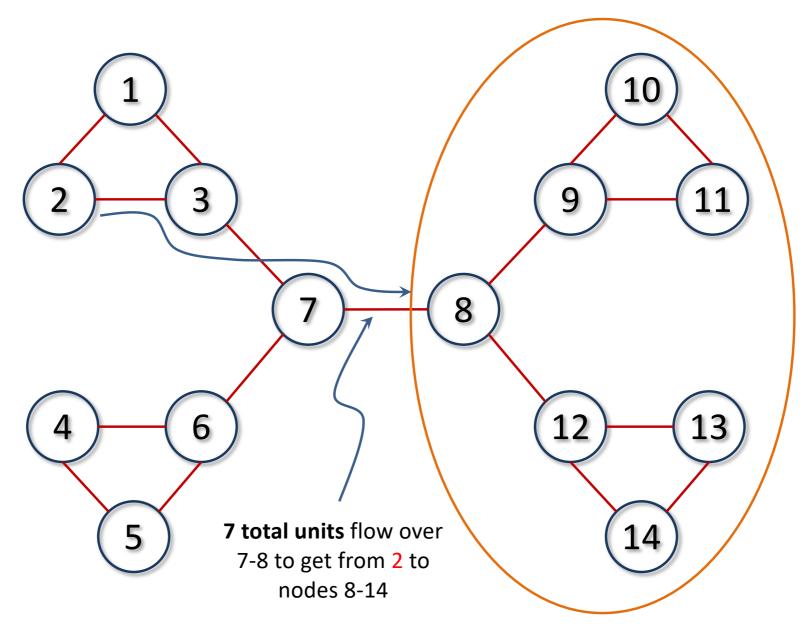


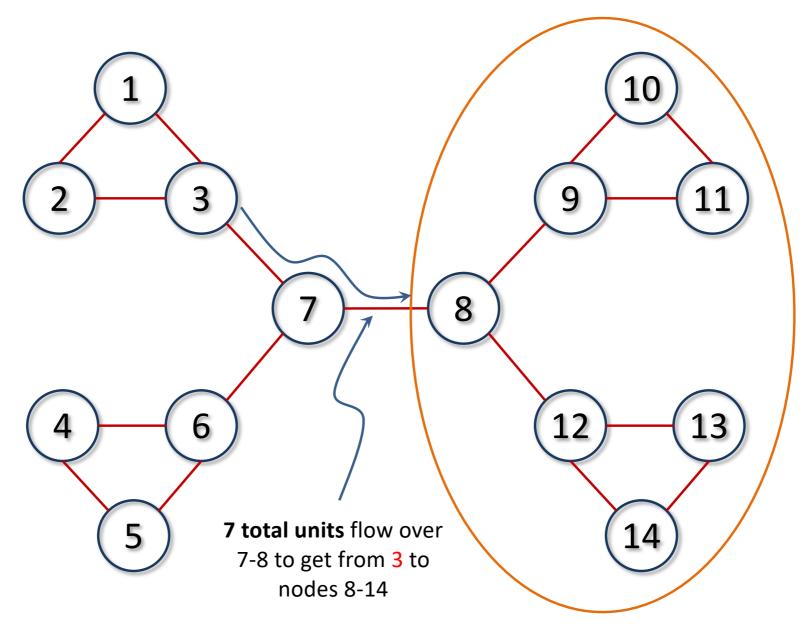


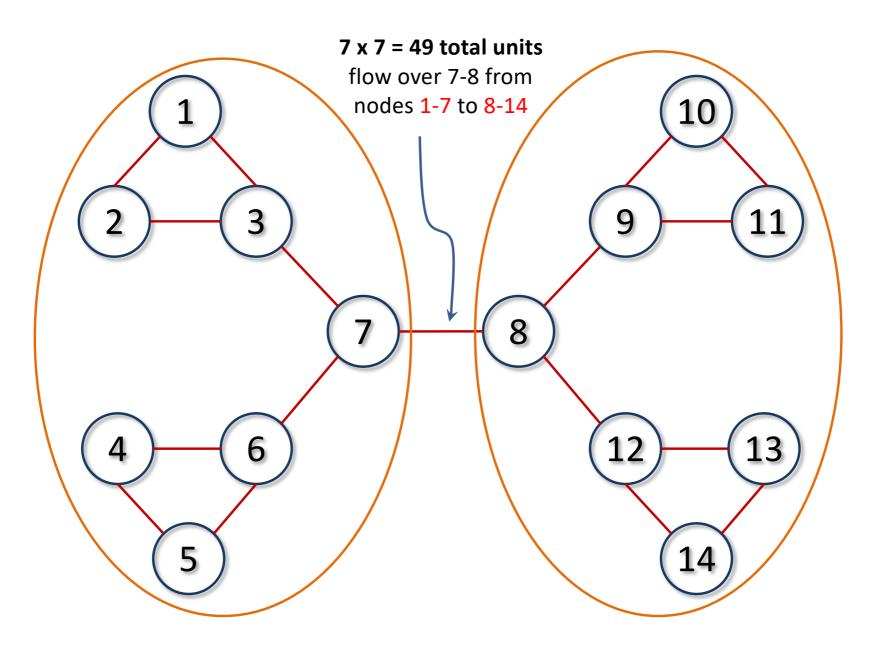


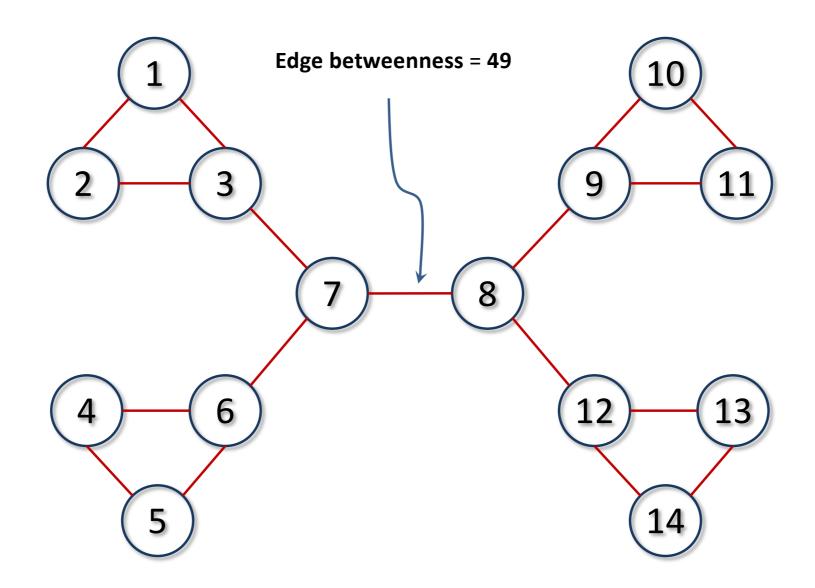


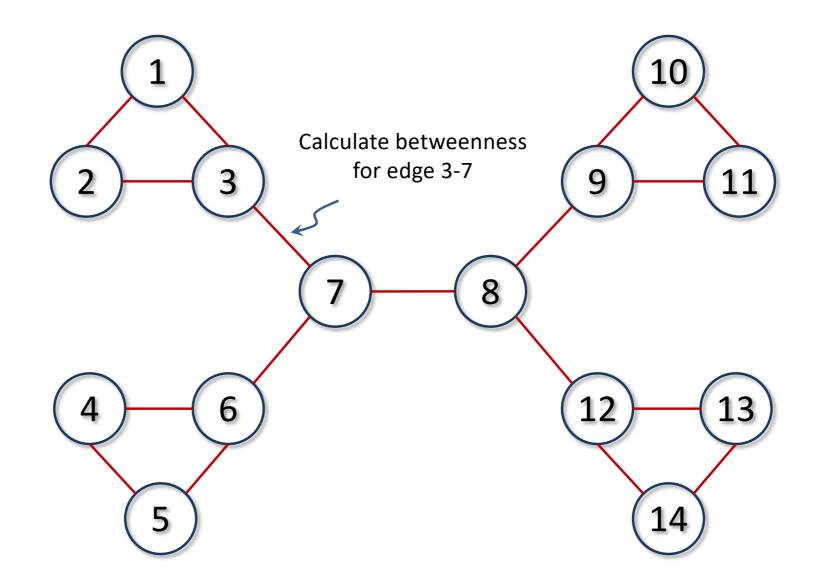


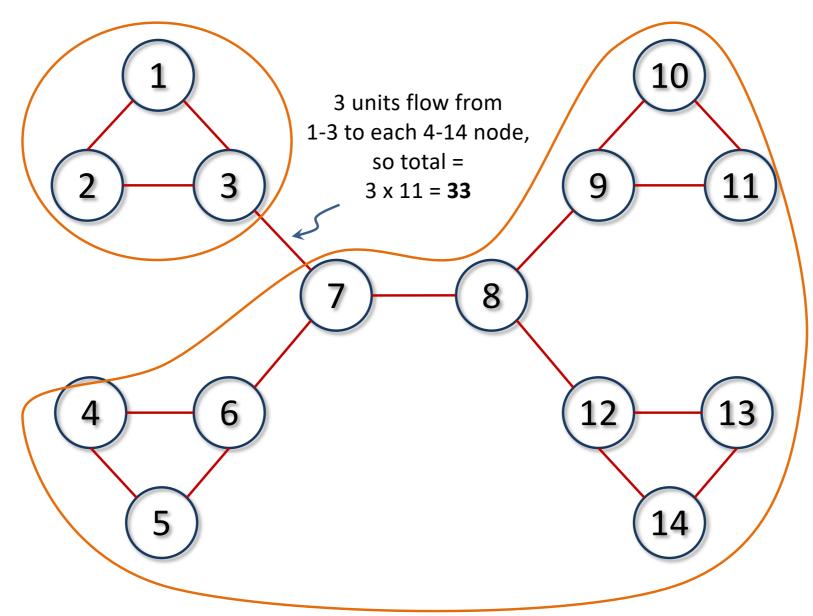


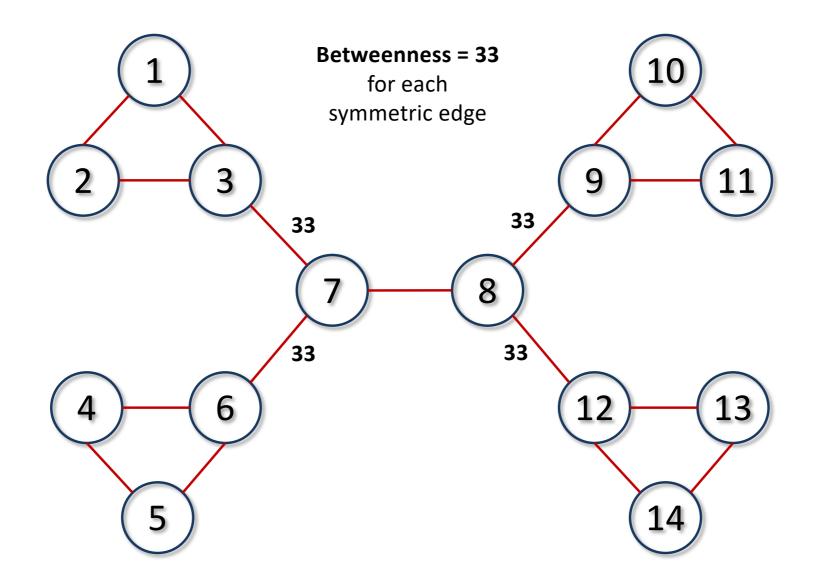


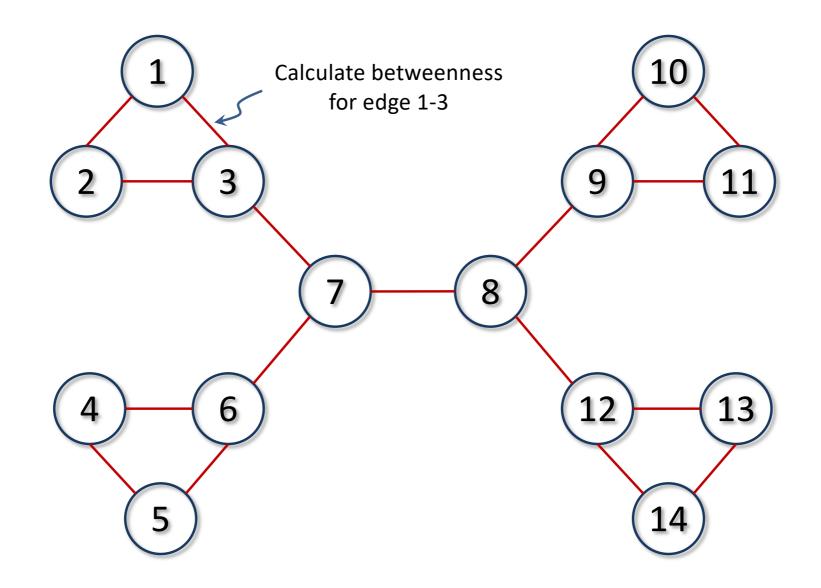


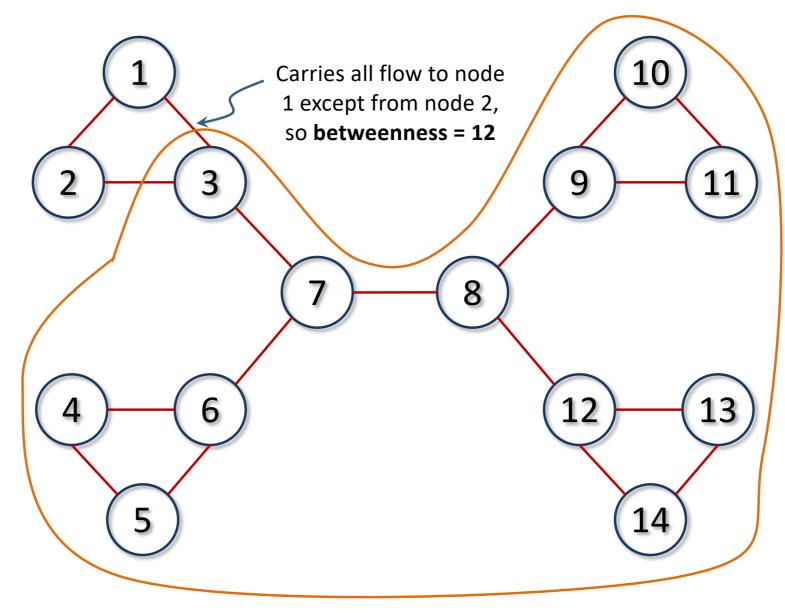


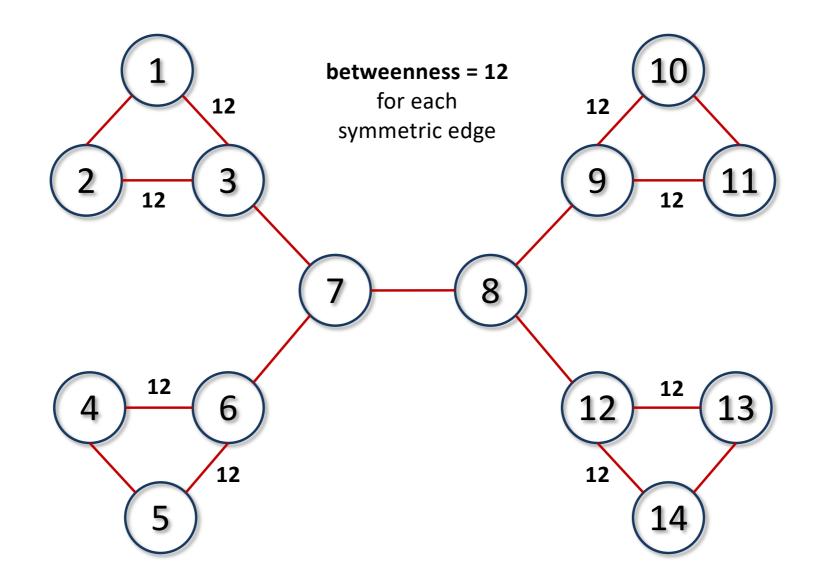


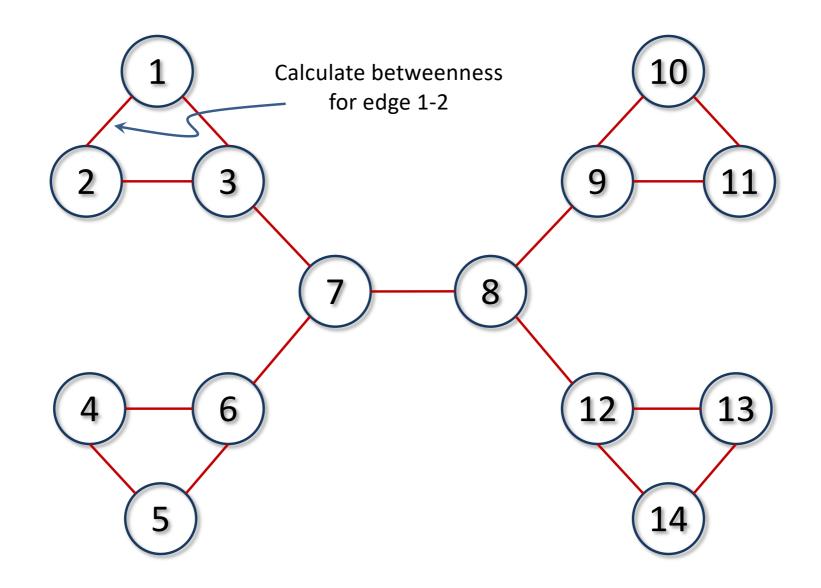


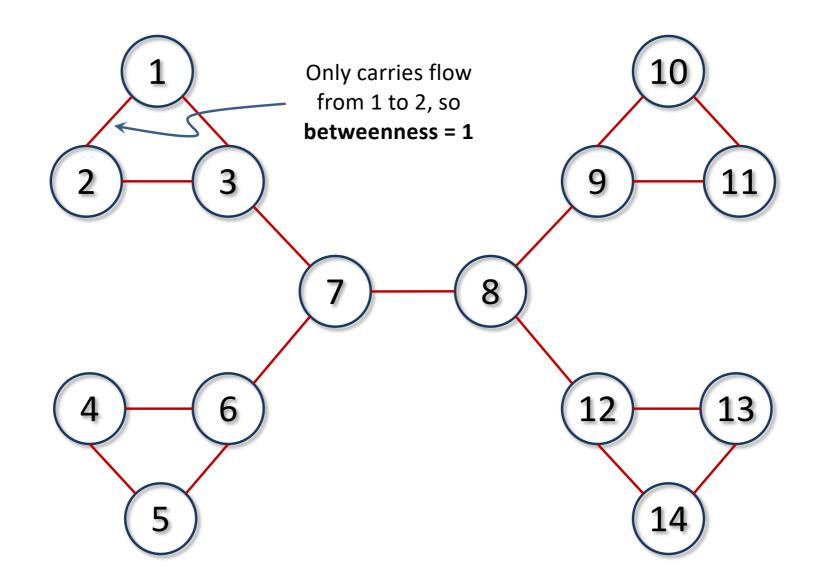


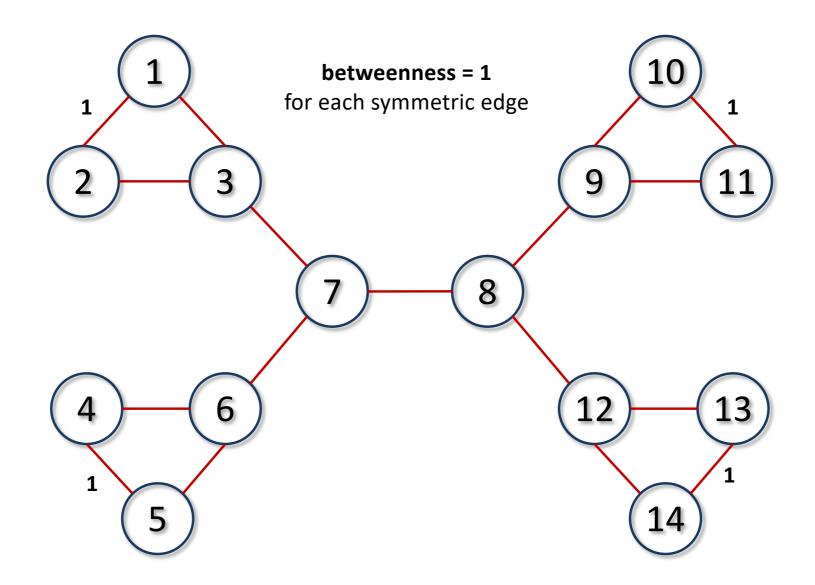


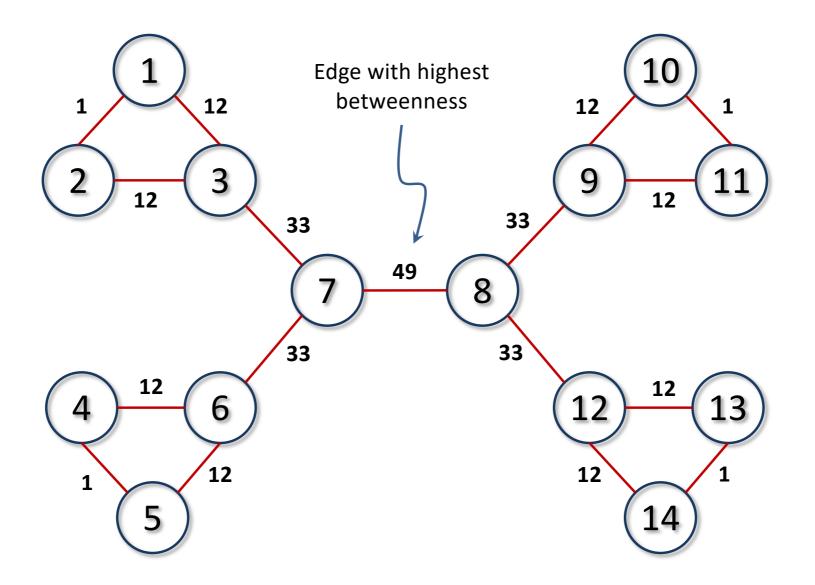












Community Detection

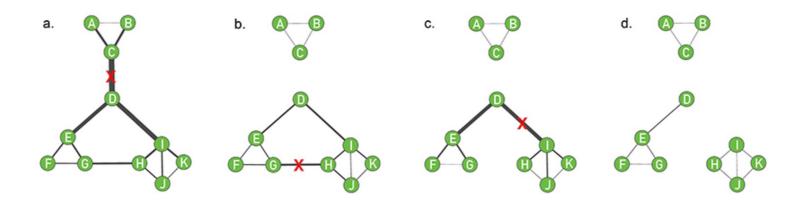
Divisive Procedures: the Girvan-Newman Algorithm

Step 2: Hierarchical Clustering

- 1. Compute the centrality x_{ij} of each link
- 2. Remove the link with the largest centrality. In case of a tie, choose one link randomly
- 3. Recalculate the centrality of each link for the altered network
- 4. Repeat steps 2 and 3 until all links are removed

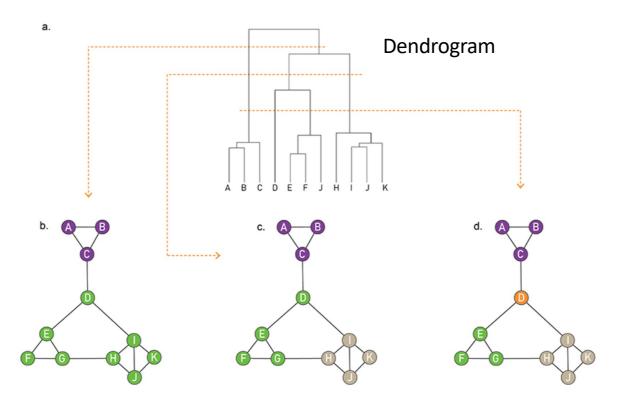
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm



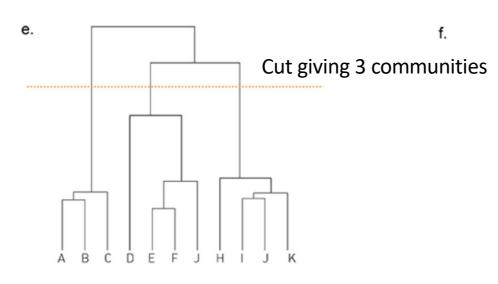
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

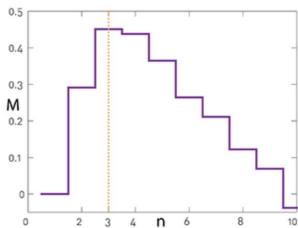


Community Detection

Divisive Procedures: the Girvan-Newman Algorithm



Dendrogram



Cut is determined using a Modularity measure M

Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Computational complexity depends on the centrality metric

For link betweenness: O(LN)

Including Modularity: $O(L^2N)$

 $O(N^3)$ for sparse graph

Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

The Girvan-Newman algorithm predicted communities in Zachary's Karate Club that the matched almost perfectly two groups after the break-up.

