
Algorithm Correctness, ADT & OOP, and STL 1 Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers

Module 11: Algorithm Correctness, ADT & OOP, and STL

Lecture 1: Types of software defects, formal verification, testing strategies,
verification and validation strategies

(OOA, OOD, OOP, OOT, standard template library)

(The material on correctness was adapted from M. Rosso-Llopart’s notes for Computer Science for Practicing Engineers)

Algorithm Correctness, ADT & OOP, and STL 2 Data Structures and Algorithms for Engineers

Types of Software Defects

Specification
– defective requirements

System Design
– defects introduced during design of the system

Detailed Design
– defects introduced during code module design

Syntactic
– using “,” instead of “;” or forgetting to match {}

Semantic
– applying arithmetic operations to non- arithmetic values, order of arithmetic evaluation,... e.g., 5+6 * 2

when you mean (5+6)*2

Logical
– this is when the solution to the algorithmic problem is incorrect, usually for just some of the inputs

Algorithm Correctness, ADT & OOP, and STL 3 Data Structures and Algorithms for Engineers

Types of Software Defects

• Syntactic defects are relatively easy to find and fix

• Semantic & logical defects are seen at run time in three general ways:

1. In execution that terminates normally but with incorrect outputs

2. An aborted execution

3. An execution that does not terminate

• Quality attribute failure (security, performance, availability, maintainability, etc.) – often the most
difficult to repair

Algorithm Correctness, ADT & OOP, and STL 4 Data Structures and Algorithms for Engineers

Semantic Software Defects

• Sometimes inertial navigation systems fail . . . June 4, 1996.

1. Nominal behaviour of the launcher up to 36 seconds;

2. Failure of both the back-up and the active Inertial Reference Systems
(caused by overflow in conversion from 64-bit float to 16-bit int
see www-users.math.umn.edu/~arnold/disasters/ariane.html)

3. Swivelling of the nozzles, causing the launcher to veer abruptly;

4. Self-destruction of the launcher triggered by rupture of the links.

Algorithm Correctness, ADT & OOP, and STL 5 Data Structures and Algorithms for Engineers

Detecting Defects

• Formal Verification
– Rigorously showing that an algorithm is correct

– Generally referred to as “formal methods” in computer science

• Static Testing
– Reviews, walkthroughs or inspections of code

• Dynamic Testing
– Executing programmed code with a given set of test cases and expected results

Algorithm Correctness, ADT & OOP, and STL 6 Data Structures and Algorithms for Engineers

Static Testing
Reviews, Walkthroughs, Inspections

Structured reviews are a kind of static test that can be used to review designs, code, or algorithms

• algorithm reviews – this is a review where the structure and flow of an algorithm is reviewed by a
group of engineers

• code reviews – this is a review where code is reviewed by a group of engineers for semantic
correctness

Algorithm Correctness, ADT & OOP, and STL 7 Data Structures and Algorithms for Engineers

Static Testing
Reviews, Walkthroughs, Inspections

• Structured reviews or inspections

– are used to check the correctness of algorithmic designs and implementations of a software product

– aim to find software defects early in the development process to reduce the costs of finding and removing
these defects

• The cost of finding and removing defects increases the longer they go undetected

Algorithm Correctness, ADT & OOP, and STL 8 Data Structures and Algorithms for Engineers

Static Testing
Reviews, Walkthroughs, Inspections

• A review team is selected – typically 3 to 5 reviewers (may or may not include the producer)

• The team receives the algorithm or source code and are given time to privately review the artifact

• A review meeting is scheduled and the review team convenes and roles are assigned:

– moderator
– time keeper

– issue recorder (usually the producer)

• The moderator will lead the review of the code or algorithm a bit at a time

• The members of the review team (including the producer) may raise issues during the review

• The recorder documents the issues – they are addressed later by the producer

Algorithm Correctness, ADT & OOP, and STL 9 Data Structures and Algorithms for Engineers

Static Testing
Reviews, Walkthroughs, Inspections

• Algorithms should be in a form such as:

– pseudo-code

– flow charts
– formal mathematics,... or some combination...

• When preparing review handouts, include

– a general description of the algorithm (or algorithms)

– purpose of the algorithm and its role in the system

– preconditions and post conditions

Algorithm Correctness, ADT & OOP, and STL 10 Data Structures and Algorithms for Engineers

Static Testing
Reviews, Walkthroughs, Inspections

• When reviewing the algorithm, each step should be read aloud by the moderator, then:

– the reviewers should be given an opportunity to ask clarifying questions or raise issues

– the producer will answer any questions and record any issues that arise during the review

• The way that the algorithm is traced through by the reviewers depends upon how the algorithm is
documented.

• It is important that issues are captured and NOT SOLVED during the review

Algorithm Correctness, ADT & OOP, and STL 11 Data Structures and Algorithms for Engineers

Dynamic Testing

Software testing is an empirical method for finding defects in software systems

– It is clearly the most widely used technique for detecting defects

– Usually involves running the program on several typical and atypical inputs, called test sets

– Certain kinds of dynamic test, under certain operational conditions can be automated

Algorithm Correctness, ADT & OOP, and STL 12 Data Structures and Algorithms for Engineers

Dynamic Testing

There are many strategies for dynamic software test...

• Black Box testing
treats the software as a "black box" without any knowledge of internal implementation; focus on
specification as test driver

• White Box testing
when the tester has access to the internal data structures and algorithms and focuses on critical
code sections to design tests

• Grey Box testing
testers have some insight into internal data structures and algorithms and may influence the
design of tests

Algorithm Correctness, ADT & OOP, and STL 13 Data Structures and Algorithms for Engineers

Dynamic Testing

Testing occurs at many levels:

• Unit test – this kind of testing involves testing small code modules

• Integration test – this test involves checking interfaces

• System test – this is test of the entire system

• Acceptance testing – customer tests where acceptance of the product is contingent upon
successfully completing agreed to tests

• Regression testing – any type of software testing that seeks to uncover newly introduced defects in
software (usually due to maintenance, upgrades, etc.) that was working properly

Algorithm Correctness, ADT & OOP, and STL 14 Data Structures and Algorithms for Engineers

Unit Test

• In unit testing we isolate the testable software “chunks” of the code, and determine whether it
behaves as expected

• Units are tested separately before integrating them into larger “chunks” and finally into a
complete system

• The most common approach to unit testing requires test harnesses (drivers) and stubs to be
written

Algorithm Correctness, ADT & OOP, and STL 15 Data Structures and Algorithms for Engineers

Test Harness and Stubs

• Test harnesses simulate the calling unit in order to test methods, functions, procedures

• Stubs simulate a called unit by returning dummy and/or “hardwired” data until the real methods,
procedures, functions can be delivered

Algorithm Correctness, ADT & OOP, and STL 16 Data Structures and Algorithms for Engineers

Test Harness and Stubs

• Test harnesses and stubs play a role in product quality

• Test harnesses and stubs may require significant attention and when there are stringent quality
demands:

– May require high level of design attention

– Might need to be reviewed/inspected

– Often require a lot of effort and time to develop

“To achieve the level of quality we need, we write as much test code [harnesses and stubs] as functional,
production code – and we review it [the test code]!”
 Andy Park G3 Technologies

Algorithm Correctness, ADT & OOP, and STL 17 Data Structures and Algorithms for Engineers

Test Harness and Stubs

Advantages

– A large percentage of operational defects can be identified prior to system integration

– Unit tests reduce difficulties of discovering errors contained in larger, more complex chunks of the system
or application

Algorithm Correctness, ADT & OOP, and STL 18 Data Structures and Algorithms for Engineers

Test Harness and Stubs

Disadvantages

– The development of test harnesses and stubs can represent a significant investment

• Because of this, unit testing is minimized or skipped because of schedule

• Not a good idea

– May lead to code, test, fix cycles rather than thoughtful design and analysis

Algorithm Correctness, ADT & OOP, and STL 19 Data Structures and Algorithms for Engineers

Integration Test

• As we aggregate “units,” we test the behaviour of the sub-system or the entire system

• Integration testing usually begins in a lab setting where we test the system (in whole or in part)
under simulated and ideal conditions

• Integration testing will eventually include a deployment test, testing the system under real
environmental conditions

• Integration testing identifies problems that occur when units are combined

Algorithm Correctness, ADT & OOP, and STL 20 Data Structures and Algorithms for Engineers

Integration Test

• The advantages speak for themselves:

We must show that the system works!

• Poor practices include not ...

– Deliberately planning integration tests

– Testing the system under realistic conditions

– Stress testing the system
– Verifying that the system possesses the required systemic properties

– Budgeting time and schedule for integration tests

Algorithm Correctness, ADT & OOP, and STL 21 Data Structures and Algorithms for Engineers

Regression Test

• Whenever system software is modified, we conduct regression tests to verify we did not introduce
defects

• The goal is to provide “sufficient” coverage without wasting time – the real trick is determining what
is “sufficient”

– Spend as little resources as possible in regression test, without reducing the probability that we will find
defects

• The regression test strategy we use will often be dictated by the quality needs of our project and
product

• Issue is path coverage, how much is reasonable

Algorithm Correctness, ADT & OOP, and STL 22 Data Structures and Algorithms for Engineers

Regression Test

Factors to consider:

• Design separate regression tests for each defect fixed or enhancement to the system

– TDD – Design the test first?

• Watch out for side effects of fixes and enhancements

• If two or more tests are similar, determine which is less effective and get rid of it

Algorithm Correctness, ADT & OOP, and STL 23 Data Structures and Algorithms for Engineers

Regression Test

Factors to consider:

• Develop and maintain tests suites

– Archive and reuse them

• Test critical systemic properties (performance, security, availability, ...)

Algorithm Correctness, ADT & OOP, and STL 24 Data Structures and Algorithms for Engineers

General Issues with Dynamic Testing

• It’s often impossible to test a program on all possible inputs

– the input sets might be very large, or even infinite

• It can be impossible to test a system without placing life, limb, and material at significant risk

– You can only really test the software when you fly it, drive it, ... That is a terrible time to find defects!

• Dynamic testing focuses on testing functionality, not systemic properties such as modifiability,
maintainability, scalability, ...

Algorithm Correctness, ADT & OOP, and STL 25 Data Structures and Algorithms for Engineers

General Issues with Dynamic Testing

• “Testing can only be used to demonstrate the presence of errors in software, not their absence.”
Dijkstra

• Too often testing is conducted in an ad hoc way and is not planned.
It can be difficult to

– determine the level of coverage
– know if the important things have been tested

• Testing ¹ Quality – you can’t “test-in” quality

– testing is not cheap

– testing is the last resort

– achieving quality software requires a quality strategy base on quality goals

Algorithm Correctness, ADT & OOP, and STL 26 Data Structures and Algorithms for Engineers

The Cost of Finding and Fixing Defects

• Data shows that the earlier a defect is found the cheaper it is to fix it

• The following table shows the average cost of fixing defect depending on when it was introduced
and when it was found

• For example, a defect introduced in design, costs on average 25–100 times more to fix it once
deployed

Algorithm Correctness, ADT & OOP, and STL 27 Data Structures and Algorithms for Engineers

The Cost of Finding and Fixing Defects

Validation and verification cuts across the lifecycle ...

Algorithm Correctness, ADT & OOP, and STL 28 Data Structures and Algorithms for Engineers

Verification Considerations

Explore the input domain

• Inputs that force all the errors

• Input messages

• Inputs that force default values

• Explore allowable inputs

• Overflow input buffers

• Test inputs that may interact, and test combinations of their values

• Repeat the same input numerous times

Algorithm Correctness, ADT & OOP, and STL 29 Data Structures and Algorithms for Engineers

Verification Considerations

Explore the outputs

• Try to force different outputs to be generated for each input

• Try to force invalid outputs to be generated

• Force properties of an output to change

• Force the screen to refresh

Algorithm Correctness, ADT & OOP, and STL 30 Data Structures and Algorithms for Engineers

Verification Considerations

Explore data constraints

• Force a data structure to store too many or too few values

• Find ways to violate internal data constraints

Algorithm Correctness, ADT & OOP, and STL 31 Data Structures and Algorithms for Engineers

Verification Considerations

Explore feature interactions

• Force invalid operator/operand combinations

• Make a function call itself recursively

• Force computation results to be too big or too small

• Test features that share data

Algorithm Correctness, ADT & OOP, and STL 32 Data Structures and Algorithms for Engineers

Verification Considerations

Explore the file system conditions

• File system full to capacity

• Disk is busy or unavailable

• Invalid file name

• iInvalid disk

• Vary file permissions

• Vary or corrupt file context

Algorithm Correctness, ADT & OOP, and STL 33 Data Structures and Algorithms for Engineers

Conclusion

Simple Formal Verification Techniques

Dynamic Testing Techniques

Static Testing Techniques

These methods must be coupled with
disciplined software practices and

a broader verification and validation strategy
to provide practical, cost effective, benefit

“you can’t test quality into software”

Algorithm Correctness, ADT & OOP, and STL 34 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

• OOA: Object-oriented Analysis (Booch method; Coad and Yourdon method)

• OOD: Object-oriented Design

• OOP: Object-oriented Programming

• OOT: Object-oriented Testing

• What is an object-oriented approach?

One definition:

It is the exploitation of class objects, with private data members and associated access functions

Algorithm Correctness, ADT & OOP, and STL 35 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

• Class

– A class is a ‘template’ for the specification of a particular collection of entities (e.g. a widget in a Graphic User Interface)

– More formally, ‘a class is an OO concept that encapsulates the data and procedural abstractions that are required to
describe the content and behaviour of some real-world entity’

• Attributes

– Each class will have specific attributes associated with it (e.g. the position and size of the widget)

– These attributes are queried using associated access functions (e.g., set_position)

Algorithm Correctness, ADT & OOP, and STL 36 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

• Object

– An object is a specific instance (or instantiation) of a class (e.g. a button or an input dialogue box)

• Data Members

– The object will have data members representing the class attributes (e.g., int x, y;)

Algorithm Correctness, ADT & OOP, and STL 37 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

• Access functions

– The values of these data members are accessed using the access functions (e.g. set_position(x, y);)

– These access functions are called methods (or services)

– Since the methods tend to manipulate a limited number of attributes (i.e. data members) a given class tends to be
cohesive.

– Since communication occurs only through methods, a given class tends to be decoupled from other objects.

Algorithm Correctness, ADT & OOP, and STL 38 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

• Encapsulation

– The object (and class) encapsulates the data members (attributes), methods (access functions) in one logical entity

• Data Hiding

– It allows the implementation of the data members to be hidden

– Why? Because the only way of getting access to them – of seeing them – is through the methods

– This is called data hiding

Algorithm Correctness, ADT & OOP, and STL 39 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

• Abstraction

– This separation, though data hiding, of physical implementation from logical access is called abstraction

• Messages

– Objects communicate with each other by sending messages

– This just means that a method from one class calls a method from another method and information is passed as
arguments

Algorithm Correctness, ADT & OOP, and STL 40 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

Aside: an Alternative definition of object-orientation (Ellis and Stroustrup)

‘The use of derived classes and virtual functions is often called object-oriented programming’

Algorithm Correctness, ADT & OOP, and STL 41 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

Two views of a class:

Algorithm Correctness, ADT & OOP, and STL 42 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

Class hierarchy:

chairtable desk "chable"

instances of chair

furniture (superclass)

subclasses of the
furniture superclass

Algorithm Correctness, ADT & OOP, and STL 43 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

Message passing between objects

Algorithm Correctness, ADT & OOP, and STL 44 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOA: Object-Oriented Analysis

– Booch method

– Coad and Yourdon method

– Jacobson method

– Rambaugh method

Algorithm Correctness, ADT & OOP, and STL 45 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in OOA:

1. Obtain customer requirements

• identify scenarios or use cases
• build a requirements model

2. Select classes and objects using basic requirements

3. Identify attributes and operations for each object:

• Class-Responsibility-Collaborator (CRC) Modelling

Algorithm Correctness, ADT & OOP, and STL 46 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in OOA:

4. Define structures and hierarchies that organize classes

• Generalization-Specialization (Gen-Spec) structure (“is a”)

• Composite-Aggregate (Whole-Part) structure (“has a”)

Algorithm Correctness, ADT & OOP, and STL 47 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in OOA:

5. Build an object-relationship model

6. Build an object-behaviour model

State transition diagram

Event trace diagram

7. Review the OO analysis model against use cases / scenarios

Algorithm Correctness, ADT & OOP, and STL 48 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOD: Object-Oriented Design

– ‘Designing object-oriented software is hard, and designing reusable object-oriented software is even
harder … a reusable and flexible design is difficult if not impossible to get “right” the first time’

– OOD is a part of an iterative cycle of analysis and design

– Several iterations of which may be required before one proceeds to the OOP stage

Algorithm Correctness, ADT & OOP, and STL 49 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOD: Object-Oriented Design

– ‘Designing object-oriented software is hard, and designing reusable object-oriented software is even harder …
a reusable and flexible design is difficult if not impossible to get “right” the first time’

– OOD is a part of an iterative cycle of analysis and design

– Several iterations of which may be required before one proceeds to the OOP stage

Algorithm Correctness, ADT & OOP, and STL 50 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Algorithm Correctness, ADT & OOP, and STL 51 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Algorithm Correctness, ADT & OOP, and STL 52 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Algorithm Correctness, ADT & OOP, and STL 53 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Algorithm Correctness, ADT & OOP, and STL 54 Data Structures and Algorithms for Engineers

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Algorithm Correctness, ADT & OOP, and STL 55 Data Structures and Algorithms for Engineers

Standard Template Library
STL

Algorithm Correctness, ADT & OOP, and STL 56 Data Structures and Algorithms for Engineers

Algorithm Correctness, ADT & OOP, and STL 57 Data Structures and Algorithms for Engineers

Algorithm Correctness, ADT & OOP, and STL 58 Data Structures and Algorithms for Engineers

Algorithm Correctness, ADT & OOP, and STL 59 Data Structures and Algorithms for Engineers

Standard Template Library
STL

Adapted from https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

Algorithm Correctness, ADT & OOP, and STL 60 Data Structures and Algorithms for Engineers

Standard Template Library
STL

Adapted from https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

Algorithm Correctness, ADT & OOP, and STL 61 Data Structures and Algorithms for Engineers

Standard Template Library
STL

Algorithm Correctness, ADT & OOP, and STL 62 Data Structures and Algorithms for Engineers

Standard Template Library
STL

Algorithm Correctness, ADT & OOP, and STL 63 Data Structures and Algorithms for Engineers

Standard Template Library
STL

https://www.studytonight.com/cpp/stl/

Algorithm Correctness, ADT & OOP, and STL 64 Data Structures and Algorithms for Engineers

Algorithm Correctness, ADT & OOP, and STL 65 Data Structures and Algorithms for Engineers

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Goal, logic, strategy, model

I/O representation, transformation algorithm

Physical realization

Loose coupling

Loose coupling

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

Algorithm Correctness, ADT & OOP, and STL 66 Data Structures and Algorithms for Engineers

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Algorithm Correctness, ADT & OOP, and STL 67 Data Structures and Algorithms for Engineers

