04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vVernon.eu

Lecture 1

Introduction & The Software Development Life Cycle

— Motivation
— Goals of the course
— Syllabus & lecture schedule
— Course operation
— Preview of selected course material
— Software development tools for exercises and assignments
— Exercises
— Levels of abstraction in information processing systems
— The software development life cycle
* Yourdon Structured Analysis

— Software process models
* Waterfall, Evolutionary, Formal Transformation, Re-Use, Hybrid, Spiral

Motivation

Software Is everywhere, not only in IT sectors:

— Robotics & automation

— Automotive

— Aerospace

— Communications

— Medical

— Energy distribution and management

— Environmental control

Motivation

Most software is in embedded systems

— Highly constrained in terms of
* Memory

* Processing power
* Bandwidth

— Have exacting requirements for reliability, safety, availability

Motivation

Engineers who develop the software

— Do not always have a strong background in

Computer science

Computer engineering

Algorithms

Data Structures

— Formal education in other engineering disciplines

Motivation

This is a problem ...

— Suppose you've developed a software application
— And it works just fine in the current set of circumstances
— But can you be sure it will scale?

Larger data sets (input])
* Larger user base

Tighter time and memory constraints

Migration to a distributed computing environment

— This is where a solid foundation in data structures & algorithms
COmes In

Motivation

Example 1

— Problem: Your program needs to find whether a list stored in
memaory contains a particular data element

— Your solution: Start from the beginning of the list and examine each
element

— How good is this? \What does it depend on?
— (Can you do better?
— Under what circumstances could you improve this?

— Is the list the optimal data structure for this?

Motivation

Example 1

Your solution...

Is this a better solution?
time \

size of list

Motivation

Example 1

— Problem: You need to output a sorted list of elements stored in memory

— Your solution: Find and output the largest; find and output the next
largest,

— How good is this?
— (Can you do better?
— Under what circumstances?

Motivation

Example 2

A better solution?

\

Your solution

time \

size of list

Motivation

Example 3

— Problem: You are creating a car navigation assistant to devise a
route that will allow the driver to visit a set of cities optimally,
e.g., minimize fuel consumption, distance, or time

— This is the classic Travelling Salesman problem

— Your solution: List out all possible ways of visiting all cities. Select the
one that minimizes the total distance traveled

— How good is this?
— (Can you do better?

Motivation

Example 3

— Your solution:
Assuming 1 microsecond to generate each path:

Cities Computing time

2 Really fast
7 ~1 Second
11 1 Hour
12 1 Day
14 1 Year
17 ~1 Century

— Can you do better? If so, what will it take?

Motivation

Example 4

— Problem: You have an system with a lot of legacy code in it, much of it
IS believed to be obsolete. You want to write a general program to
find the code segments that are never actually executed in a system,
so that you can then remove them

— Your solution: 2?77?77

Motivation

S0 What?

* \We have seen instances of four kinds of problem complexity
that occur all the time in industry

— Linear
— Polynomial

— Exponential
— Undecidable

* Knowing which category your problem fits into is crucial

— You can use special techniques to improve your solution

Motivation

S0 What?

* Competitive advantage is based on the characteristics of
products sold or services provided

— Functionality, timeliness, cost, availability, reliability, interoperabllity,
flexibility, simplicity of use

* Innovation will be delivered through quality software

— 90% of the innovation in a modern car is software-based

* Software determines the success of products and services

Goals of the Course

* Provide engineers who don't have a formal background in
computer science with a solid foundation in the key principles
of data structures and algorithms

* Leverage what software development experience they do
have to make them more effective in developing efficient
software-intensive systems

(Goals of the Course

Foster algorithmic thinking

Appreciate the link between
— Computational theory
— Algorithms and Data Structures
— Software implementation

Impart professional practical skills in software development

Develop the ability to recognize & analyze critical
computational problems and assess different approaches to
their solution

(Goals of the Course

Key themes

* Principles and practice (analysis and synthesis]

* Practical hands-on learning (lots of examples]

* Detailed implementation, not just pseudo-code

* Broad coverage of the essential tools in algorithms and
data structures

oyllabus & Lecture Schedule

https://canvas.cmu.edu/courses/3210

DATA STRUCTURES

AND ALGORITHMS A lg orithmics

T The Spirit of Computing

THIRD EDITION

<l
R

AA

/

Steven S. Skiena

@ Springer

Course Operation

Course Operation

Lectures will be ﬁosted in advance: read them before coming to
class and read them again after class

Readings: read them after class

Assignments & Assessment

— 7 individual programming assignments (10% each; best six]
— Mid-semester examination (10%)]
— Final examination [30%)]

— Marking schemes will be distributed in due course
* Functionality (based on testing using an unseen data set)
* Documentation: internal and external
* Tests and testing strategy

— Strict deadlines: NO EXTENSIONS except on compassionate grounds

Course Operation

We will have a 10 minute quiz every Friday to kick off recitation
* Style will vary:

— Some will be multiple choice (negative marking will apply]

— Some will match that of one section of a question in the final examination

* Not for credit
e Not an assessment exercise

* Learning exercise

— We will work through the solution together during the recitation hour
and use it to prompt questions

Course Operation

— Participate in class

— Ask questions [you will be doing others a favour)

— Discuss course material, readings, assignments with other students

— Share thoughts but not written material (e.g. code, documentation)]

— (Cite any work you use in assignments

— Be a good teammate: do your fair share of the work equally & cooperate

Don't
— Cheat or plagiarize
* Uncited use of any material from anywhere
e Share / steal any material with/from former or current students

Sanctions for cheating and plagiarism
— Zero marks for first sharing infingement (both parties]
— Fail the course [grade R] for second sharing infringement [both parties]
— Fail the course [grade R] for first stealing infringement

Preview of Selected Course Material

Concept Complexity

Data-Structures and Algorithms for Engineers

Goal:

Sample of the core topics from
undergraduate and graduate
data structures and algorithms
courses

Gradually increase the complexity
of the topics

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Software Design &
Software Development Life Cycle

Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Formalisms for representing

algorithms
| /0, Flow-charts, Pseudo-code, FSM,
UML,

Input |:>E I:> Output

FRONT

BOTH
NEITHER ‘ BOTH
% FRONT @

NEITHER

Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Analysis of Complexity

cg (n)

Big O notation
* Recurrence relationships

* Analysis of complexity

* Iterative and recursive algorithms

Analysis of Complexity
Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Analysis of Complexity

Growth rates

1E+40

1E+30

1E+20

1E+10

I —

512

Tractable, intractable complexity

* Determinism and non-determinism
P, NP, and NP-Complete classes of
algorithm

Analysis of Complexity
Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Analysis of Complexity

f””°,t7'°“/ 10 20 50 100 300
_ 72 1/10,000 1/2,500 1/400 1/100 9/100
E second second second second second
S <
= e 1/10 3.2 5.2 2.8 28.1
a second seconds minutes hours days
— o a 75 digit-
S 2" :(/acl:ggg ;econd 3:;5 gu?:iign number of
<) y centuries
c
o . - -
a . a 70 digit- a 185 digit- | a 728 digit-
5 nn ﬁ.8 3'63321"'0" number of | number of | number of

Cls y centuries centuries centuries

Software Development Life Cycle

Analysis of Complexity

Formalisms representing algorithms

Tractable, intractable complexity

* Determinism and non-determinism
P, NP, and NP-Complete classes of
algorithm

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Analysis of Complexity

SlIoIC|IOIN X < oo |e

Slo|oN % < oo |

SlOIN ¥ < oo |oc|o|o

OIN ¥ < o|lo|lo|oc|o|o

NI M<IocIo|lo|lo|eo|o|o
E o (=0 =N (= (=] (=] [[} [~

(=0 [=0 =0 (= (= [=] =3 [| - b
(=3 I=0 (=0 (=] (=] [=] =3 | BN ECi o
SIS IS IS |S SN ¥ < |©
SloIC|IC|C N | < |o|C

n x n matrix: X

O(n?) space complexity 2X(2+4+4)+ (n2)x(2 + 4 + 4 + 4)
=20+ 14n-28 =14n-8:
O(n) space complexity

Time vs. space complexity

Analysis of Complexity
Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Searching algorithms
* linearsearch O(n)
* binary search (log.n)

Searching
Analysis of Complexity

Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

sorting algorithms:

* Bubblesort (lterative O(r7))

* Selection sort

* Insertion sort

* (Quicksort (Recursive J(nlog-n)]
* Merge sort

Sorting
Searching
Analysis of Complexity
Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Abstract Data Types [ADTs]

* Information hiding
* Encapsulation

* Data-hiding

* Basis for object-orientation

ADTs
Sorting
Searching

Analysis of Complexity
Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Containers, Dictionaries, & Lists

* ADT specification
* Array implementation
* Linked-list implementation

Containers, Dictionaries, Lists

ADTs
Sorting
Searching
Analysis of Complexity
Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Stack and Queues

Pop: S — E :

T :
s 5§

] O

Enqueue:ExQ —Q :

EEEEE B EEsEsE
/ \ / \

Head Tail Head Tail

Stack and Queues
Containers, Dictionaries, Lists
ADTs

Sorting

Searching

Analysis of Complexity

Formalisms representing algorithms

Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Trees

* Binary trees

* Binary search trees

* Tree traversal

* Applications of trees
(e.g. Huffman coding]

* Height-balanced trees
(e.g. AVL Trees, Red-Black Trees

Unbalanced following insertion

Trees

T

Stack and Queues

Containers, Dictionaries, Lists

/ » h+
ADTs 3 A
Sorting
Searching B,
Analysis of Complexity

Formalisms representing algorithms -

. Height of B, inceases to h+1
Software Development Life Cycle

Rebalanced subtree

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Heaps

Priority queues

Binary heaps, min/max-heaps
Heap operations

Heap sort

Heaps
Trees

Stack and Queues

Containers, Dictionaries, Lists GQ :ﬂo_‘__@\o \O
ADTs

Sorting 0 1 2 3 4 5 6
Searching
Analysis of Complexity

Formalisms representing algorithms
Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Graphs
* Types
* Representations

e BFS & DFS Traversals

* Topological sort

* Minimum spanning tree
(e.g. Prim’s and Kruskal's Algs.]

* Shortest-path alg

(e.g. Dijkstra’s & Floyd's Algs.)

ADTs
Sorting
Searching

Analysis of Complexity
Formalisms representing algorithms
Software Development Life Cycle

orithms

Graphs
Heaps
Trees

Stack and Queues

Containers, Dictionaries, Lists

[T S N
- 0 © = ©o

100 1 2) 1 2 E
01 11 \ 2 I+ 0312
1010 (3 3 2 (4
1101 / 5 i mng E2 mana E 1 pumg)
1010 5 {4] s 02}
~— 4 . . oo .
/. ~ / 6_ B /,
4 /' ‘- s
> : b
g] ’ 3 y 3
- / L «
4 7 1 2 N6 5 4
2 Ay e Ae .
G Prim(G,A) Kruskal(G)

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Complex Networks

* Random networks

* Degree distribution

* (Clustering

* Small world phenomena
* Scale free networks

* Community detection

Complex Networks
Graphs
Heaps

Trees

Stack and Queues
Containers, Dictionaries, Lists

ADTs

Sorting

Searching

Analysis of Complexity

Formalisms representing algorithms

Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Hashing

 Hash functions
* (Collisions
* (Chaining & Probe policies

!!\ !\
Eli _
@*m *

Hashing

Complex Networks
Graphs
Heaps

Trees

Stack and Queues
Containers, Dictionaries, Lists

ADTs

Sorting

Searching

Analysis of Complexity

Formalisms representing algorithms

Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Algorithmic Strategies

 Brute-force

* Divide-and-conquer

* (5reedy algorithms
 (Combinatorial Search
* Backtracking

* Branch-and-bound

Algorithmic Strategies
Hashing

Complex Networks
Graphs
Heaps

Trees

Stack and Queues
Containers, Dictionaries, Lists

ADTs

Sorting

Searching

Analysis of Complexity

Formalisms representing algorithms

Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Analysis of Correctness

e Syntactic, semantic, logical
defects

* (Semi-Jformal verification

* Invariant assertion method

* Simple proof strategies

e Static & dynamic testing

 Verification and validation Algorith‘:‘;:";::;‘::;es

Hashing

Complex Networks
Graphs
Heaps

Trees

Stack and Queues
Containers, Dictionaries, Lists

ADTs

Sorting

Searching

Analysis of Complexity

Formalisms representing algorithms

Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Automata Theory

* Finite Automata

* Non-determinism

* Pushdown Automata

* (Corresponding Languages and

G rammars Automata Theory

Correctness
Algorithmic Strategies
Hashing

Complex Networks
Graphs
Heaps

Trees

Stack and Queues

Containers, Dictionaries, Lists
ADTs

Sorting

Searching

Analysis of Complexity

Formalisms representing algorithms

Software Development Life Cycle

Time

Concept Complexity

Data-Structures and Algorithms for Engineers

Computability Theory

* The Church-Turing Thesis
* Turing Machines
* The Definition of Algorithm

* Decidability
° Und80|dab|“ty Computability Theory
* Reducibility

Automata Theory

Correctness
Algorithmic Strategies
Hashing

Complex Networks
Graphs
Heaps

Trees
Stack and Queues

Containers, Dictionaries, Lists
ADTs

Sorting

Searching

Analysis of Complexity

Formalisms representing algorithms

Software Development Life Cycle

Time

Software Development Tools for
Exercises and Assignments

Software Development Tools for
Exercises and Assignments

Installation of software development environment

— Windows 10 0OS

— Miicrosoft Visual C++ Express compiler, version 10.0
(also known as Visual C++ 2010 or MSVC++ 2010]

— Cmake
— DSA Repository

Let’s walk through the process for installing these toaols ...

i v Software

https://canvas.cmu.edu/courses/3210/modules

Software Development Environment

Software
Software Development Environment i . DSAzp

Software Development Tools for
Exercises and Assignments

* Installation of software development environment

— C:\DSA
4 g Local Disk (C)
— Fixed file organization .
4 | assignments
4 | assignmenti
« Let's walk through the process o
. . ' . Ul
to compile and run the program in ' data
4 s SIC
C:\DSA\assignments\assignment0\dvernon R
4 | lectures
. bin

. build
. data

s SrC

Software Development Tools for
Exercises and Assignments

* Preferred practice for software that supports encapsulation and data
hiding (e.g. ADT & 0O classes])

* J3files: Interface, Implementation, and Application Files

— Interface
* between implementation and application
* Header File that declares the class type
* Functions, classes, are declared, not defined [except inline functions]

— Implementation
* #includes the interface file
e contains the function definitions

— Application
e #includes the interface file
* contains other (application] functions, including the main function

Software Development Tools for
Exercises and Assignments

When writing an application, we are ADT /class users

— Should not know about the implementation of the ADT /class

— Thus, the interface must furnish all the necessary information to use
the ADT /class

* It also needs to be very well documented (internally]

— Also, the implementation should be quite general (cf. reusability]

4 M Computer
4 &, Local Disk (C:)
. DSA

F |

F

F

4

. assignments
. assignment
. bin
. build
. data
4 | src
. dvernon
. lectures
. bin
. build
. data

. SIC

Software Development Tools for
Exercises and Assignments

-~

m

-

Mame

| CMakelLists.txt
h] example.h
¢+ exampleApplication.cpp

¢+ examplelmplementation.cpp

Date moedified

1/11/2017 2:49 PM

1/11/2017 2:49 PM

1/11/2017 2:49 PM
1/11/2017 2:49 PM

Type

Text Document
C/C++ Header
C++ Source

C++ Source

R
JZe

1KB
3 KE
2 KE
2 KB

Software Development Tools for
Exercises and Assignments

Exercises

— Install software development tools
— Install DSA repository

— Compile and run the program in

C:\DSA\assignments\assignment0\dvernon

— Create, compile and run a new program in Replace with your Andrew Id

C:\DSA\assignments\assignment(\myandrewid

Software Development Tools for
Exercises and Assignments

For your first assignment, you will simply copy the assignment0 directory to
assignmentl and follow a similar compilation procedure, writing new assignment-

specific code.

There is just one thing you need to do: edit the

C:DSA\assignments\assignmentl\CMakeLists.txt

and change the project name from assignmentO to assignment, viz:

HHAHHHAHHHHAHHHHHHHHHHHHHH A HAHFAH A AR A
PROJECT (assignment0)
HHAHHHHHHHHHHHHHHHHHHAHHHHHHAHH AR A AR A A

Becomes

HHAHHHHHHHHHHHHHHHHHAHHHHHHAHHAH A AR A A
PROJECT (assignmentl)
HHAHHHHHHHHAHHHHHHHHHAHHHHHHAHH AR A AR A A

Software Development Tools for
Exercises and Assignments

VWhen submitting an assignment, all you have to do is submit
a zip version of your myandrewid directory containing

— Your three source code files

— The CmakelLists.txt file

— The input.txt file (copied from the data directory]
— The output.txt file ([copied from the data directory]

Levels of Abstraction
In Information Processing systems

GIOUTAGD CCCP o

-
.
o Gl

I
A

.
-
A

Sz
A A

L,
'a®

e

A

Muhammad ibn Madsa al-Khwarizmi
S DI\ JPVEPGTIRPES

Born approximately 780, died between 835 and 850
Persian mathematician and astronomer
from the Khorasan province of present-day Uzbekistan

The word algorithm is derived from his name

&he New York Eimes

PROFILES IN SCIENCE

The Yoda of Silicon Valley

Donald Knuth, master of algorithms, reflects on 50 years of his
opus-in-progress, “The Art of Computer Programming.”

Listed by American Scientist in 2013
as one of the books that shaped the
last century of science

Algorithms + Data Structures = Programs

Niklaus Wirth, 1976

Inventor of Pascal and Modula
programming languages
Winner of Turing Award 1984

Information Processing:
Representation & Transformation

Input :;H:; Output

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

Computational
Theory

Goal, logic, strategy, model

i | - Loose coupling

Representation
& Algorithm

|/O representation, transformation algorithm

A

Loose coupling

Hardware/SoftWare Physical realization
Implementation

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

“Trying to understand perception by studying only neurons is like trying to
understand bird flight by studying only feathers: it just cannot be done. In order to
understand bird flight, we have to understand aerodynamics; only then do the
structure of feathers and the different shapes of birds” wings make sense”

Marr, D. Vision, Freeman, 1982.

Lift

Air ====--arTTTE Pr—

s

Sorting a List

Given a sequence of n keys ay, ..., a,

Computational : : .
Theory <:l Find the permutation (reordering)
such that g, < g;
1<ij<n

Representation
& Algorithm

Hardware/Software

Implementation

Computational Sorting a List
Theory
Bubble Sort
: Insertion Sort
Representation
& Algorithm

—

Quick Sort
Merge Sort, ...
Hardware/Software
Implementation Key point: different computational efficiency

Computational
Theory

Representation Sorting a List
& Algorithm
insertion_sort(item s[], int n)
{
ﬁ int i,j; /* counters */
Hardware/Software for (i=1; i<n; i++) {
. j=i;

Implementation while ((j>0) & (s[j] < s[j-11)) {
swap(&s[jl,&s[j-11);
j=31

}

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Sorting a List

NSERTIONSORT
INSERTIONSORT
INSIERTIONSORT
EINSRTIONSORT

Fourier Transform

f(f(’l‘,y)) - Fw.rawy
f— / / f y z(wl‘r*wvy)dwdy

Computational :
Theory

F(f(z,y) = Flwg,wy)
= FlwzAu,,wyAu,)
Representation M—-1N-1

& Algorithm = Y Z f(z,y)e {CF+%)

z=0 y=0

Hardware/Software

Implementation

Computational
Theory

Representation
& Algorithm

Hardware/Software

Implementation

Fourier Transform

DFT: Discrete Fourier Transform
FFT: Fast Fourier Transform

FFTW: Fasted Fourier Transform in the West

Key point: different computational efficiency

Computational
Theory

] Fourier Transform
Representation

& Algorithm e Tateny

float *datal,*data2,*fftl,*fft2;

datal=vector(1,N);

data2=vector(1,N);

fftl=vector(1,N2);

fft2=vector(1,N2);

for (i=1l;i<=N;i++) {
datal[i]=floor(0.54cos(i*2.0*PI/PER));

Hardwa re/Softwa r‘e , data2[i)=floor(0.5+sin(i*2.0*PI/PER));

twofft(datal,data2,fftl,fft2,N);

I m p | e m e ntatio n 5:::;{&?:\;1’7;?7 transform of first function:\n");

printf("Fourier transform of second function:\n");
prntft(££ft2,N);

/* Invert transform */

isign = -1;

fourl(fftl,N,isign);

printf("inverted transform = first function:\n");
prntft(££ft1,N);

fourl(fft2,N,isign);

printf("inverted transform = second function:\n");
prntft (££ft2,N);

free_vector(££t2,1,N2);

free_vector(£f£ft1l,1,N2);

free_vector(data2,1,N);

free_vector(datal,l,N);

return 0;

Computational

Theory

Fourier Transform

Representation
& Algorithm

Hardware/Software 42

Implementation

Marr’s Levels of Understanding Framework updated 2012 by T. Poggio

Learning &

Development Calibrating & improving the model

Computational
Theory

Representation

& Algorithm

Hardware/Software
Implementation

Marr’s Levels of Understanding Framework updated 2012 by T. Poggio

Generating new models

17

Learning &
Development

Calibrating & improving the model

Computational
Theory

Representation

& Algorithm

Hardware/Software
Implementation

The Software Development Life Cycle

The Software Development Life Cycle

Problem Modelling System Software
System Analysis & Specification Specification Design

Validation

Problem Algorithms &

Data Structures

g Requirements

Identification

Requirements
Elicitation

Testing:
Validation,
Verification, &
Evaluation

Software

The Software Development Life Cycle

Computational
Theory

Software
Design

Problem Modelling
System Analysis & Specification

Validati i
alidation Representatlon

& Algorithm

Problem Algorithms &

Data Structures

o
»

Identification

Requirements
Elicitation

Testing:

Validation,

Verification, &
Evaluation

Hardware/Software
Implementation

Software

The Software Development Life Cycle

Problem Modelling System Software
System Analysis & Specification Specification Design

Validation

Problem

Algorithms &
Data Structures

Requirements

v

Identification

Requirements
Elicitation

Testing:
Validation,
Verification, &
Evaluation

Software

—

Requirements

)
Analysis

Testing

Waterfall Model
Software development Life Cycle Acceptance

The Software Development Life Cycle

Problem Modelling System

Software
System Analysis & Specification Specification

Design

Validation .
4 Requirements DTS
g "cd Data Structures

Problem

Identification

Requirements
Elicitation

Testing:
Validation,

Verification, &
Evaluation

Software

Life Cycle Models (Software Process Models):

Waterfall (& variants, e.g. V)
Evolutionary

Re-use

Hybrid

Spiral

The Software Development Life Cycle

Problem Modelling System Software
System Analysis & Specification Specification Design

Validation

Problem

Algorithms &
Data Structures

Identification g Requirements

Requirements
Elicitation

Testing:
Validation,

Verification, &
Evaluation

Software

Software Development Methodologies:

Top-down

Structured
Yourdon Structured Analysis (YSA)
Jackson Structured Analysis (JSA)
Structured Analysis and Design Technique

(SADT)

Object-oriented analysis, design, programming
Component-based software engineering (CBSE)

NGO ok L=

ooftware Development Life Cycle

Problem identification

Requirements elicitation

Problem modelling
System analysis & specification Theory

. Representation
System design «— & Algorithm

Hardware/Software

Module implementation and system integration < |

System test and evaluation

Documentation

ooftware Development Life Cycle

1. Problem identification

— Normally requires experience
— Theoretical issues: appropriate models (problem domain)]
— Technical issues: tools, OS, AP, libraries [solution domain)

ooftware Development Life Cycle

2. Requirements elicitation

— Talk to the client [by talk, | mean counsel and coach]
— Document agreed requirements

What it does, what it doesn’t do, how the user is to use it or how it

communicates with the user, what messages it displays, how it behaves
when the user asks it to do something it expects, and especially how it
behaves when the user asks it to do something it doesn’t expect

— Validate requirements with client

— Repeat until mutual understanding converges
— But beware ...

ooftware Development Life Cycle

2. Requirements elicitation
Customer to a software engineer:

“| know you believe you understood
what you think | said,

but | am not sure you realize
that what you heard is not what | meant”

R. Pressman

ooftware Development Life Cycle

3. Problem modelling

— |dentify theory needed to model and solve the problem

. Ideally, identify several, compare them, and choose the best [i.e most
appropriate])
. Use criteria derived from your functional and non-functional requirements

— Create a rigorous - ideally mathematical - description
Graph theory, Fourier theory, linear system theory, information theory, ...

— If you don’t have a model, you aren’t doing engineering
. Connecting components (or lines of code) together is not engineering
. Without a model, you can’t analyze the system and make firm statement
about
— Robustness
— Operating parameters
— Limitations

ooftware Development Life Cycle

4. System analysis & specification

— ldentify
* The system functionality

* The operational parameters (conditions under which your system will
operate, including required software and hardware systems)

* Limitations & restrictions
* User interface or system interface

— Including
* Functional model
e Data model
* Process-flow model
* Behavioural model

ooftware Development Life Cycle

System analysis & specification

Functional model

— Hierarchical functional decomposition tree
— Modular decomposition [typically]
— Each leaf node in the tree:
* Short description of functionality, i.e. the input/output transformation
* Information (data) input
* Information (data) output
— System architecture diagram
* Network of components at first or second level of decomposition

- v

GUI Tracking

Capture and
Tracking loop

Draw debug views [«

Set rate
Get user input <
from GUI » Init Servos
Draw GUI n £ » Check servos
Init Cameras| (Grab images

Draw images |«

> Write to servo

Draw Log window re———
.| Compute motor
Skl P Detection and command
position Blobs analysis e
Draw about < h 4 » Reset
dialog Image
Draw evaluation ! ; L
widow__|* L.ﬁurau *
Colour pixel l l
RGH o HS! Iabelli?'lq RGE to GS | |Greyscale pixel
labelling l
A 4
Calculate statistics
l Evaluation

Save
statistics

Landmark
a d a Episodic Next Landmark)
Navigation Memory \ J
System
/ Current \ Store/Recall Control
Target ~ ~
Action | N Target Recall |Action Landmark Recall ~,| Action
Selectionf—y| Memory Success Selection!:> Memory Success Selection
Store/Regall Store/Recall S P
Learning & S \Q
Recognition Select ™\ Motion
K J Sele Loco- trOI
T Y| motion [~
. J
Landmark & Se::ive /
Action |:> " Gaze
Target_ Selection: | Attention head & camera position
Detection YO A
|/
Gaze
Visual Control
Salience
Target & |:> Bottom-up Top-down |
Landmark Salience salience
Feature Values
Colour
Filter

o

TRobot Sensoy

Robot
Motors

Software Development Life Cycle

4. System analysis & specification

Modular decomposition ... Dave Parnas

“In this context "module" is considered to be a responsibility assignment

rather than a subprogram. The modularizations include the design
decisions which must be made before the work on independent modules

can begin.”

D.L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules,
Communications of the ACM, Vol. 15, No. 12, Dec 1972

Also responsible for the concepts of data hiding and encapsulation, cf. ADT in Lecture 5

ooftware Development Life Cycle

4. System analysis & specification
Data model

— Data entities [not data structures) to represent
* Input, temporary, output data

— Data dictionary
* \What the data entities mean
* How they are composed
* How they are structured
* Valid value ranges
* Dimensions (e.g. velocity m/'s]
* Relationships between data entites

— Entity-relationship model

depositor

customer account

ooftware Development Life Cycle

4. System analysis & specification

Process-flow model

— What data flows into and out of each functional block
(into and out of the leaf nodes in the functional decomposition tree])

— Data-flow diagrams
* Organized in several levels: DFD level O, DFD level 1, ...
* Level O DFD: system architecture diagram

ooftware Development Life Cycle

System analysis & specification

Process-flow model
— DFDs model the transformation of inputs into outputs

— Processes/Functions represent individual functions that the system
carries out and transform inputs to outputs

— Flows represent connections between processes and the flow of
information and data between processes

— Data Stores show collections or aggregations of data

— |/0 Entities show external entities with which the system communicates
* They are the sources and consumers of data
* They can be users, groups, organizations, systems,...

Video

Speed calculation

Direction calculation

Frame
Video Source
Frame
e R
Video
analyzet
A v
Background
Background o Background
Extraction Subtraction
Background Foreground
A v
ROI
Zebra crossing N)) P
detection Object Location
Object
Locations
Object Classification
Classified
objects
v Tracking
objects
Object Tracking
Tracking _
objects Tracking
objects
Tracking
objects

Objects Objects
speed |\ _[(direction
Y
_
Violations
Violations information
detection

Touchpad and

keyboard Microphone Camera
Monitor data of
user haptic input
-~ "Oser | T~ T"T=—-=== ——————————— - = - —ﬂgn:;o-r—d;:a --_-“--\\ Monitor data of user’s
! commands User voice of user’s voice ~ eye movements, facial
[and data input and & ambient noise N expressions etc.
" /I.A comnands \‘
1 / Config [| \ \
Il) requests] \ J ‘|
' Process input Configure : User tracker)
Config data
: system :
| 1
| Supervisor U.ser and
: password & Processed Config Config env:.ror'unental l’
| commands user input requests data actions |
| Behavioral & |
: situational :
| data \
| D | System status database . \
| Control superv. User behavior \
| learning mode analysis AN _————
! Processed Sm———— ~a
! Processed AN
1 sensor progress User commands, \\
| data data, status inputs, config data, D | Content database \
\ reports etc. progress data, \
|
\ —_———
Sem———— N / | N\ /l N\ Content data 1
\ retrieval and :
\
. storage requests
! Sensor monitor Progress Language ge requ !
\ monitor learning engine !
l' Aggregated Network communication :
requests, messages to
| user progress |
\ szs_o: -dit_a_ _____ _———— data Aggregated other users, back-end |
S e=="T “ output data servers etc. |l
\
| f ﬁ \
1 1
H 1
Device | \
sensors ! User output Network comms |
! |
h processor processor N
| |
\\ Raw output Network "
S~ data e ———a messages /
~Semmm e ————— ‘-.,__-_-_,’
Monitor
’ Network
speakers, .
- interface
vibrator etc.

ooftware Development Life Cycle

System analysis & specification
Behavioural model

— Behaviour over time
— System states

— Triggers that cause transition
[from state to state])

— Functional block associated with each state
— State transition diagram

* Finite state machine
* Finite automaton

— Controlflow diagram
(version of DFD with events and triggers on each process]

|gnose
wviode

Initialize
done

Start
Tracking

Localization

Tracking and

11K

Behaviour
Model

Data Structures and Algorithms for Engineers 97 Carnegie Mellon University Africa

[Irﬁﬁahzaﬁon] [terminate]

initialized

returned

Target
reached

Reached
start

Sequence
is ready

Look for
next LM

Generate LMs
sequence

reached found

LM: Landmark

ooftware Development Life Cycle

4. System analysis & specification
Definition of all the user and system interfaces

— User manual
— User interface storyboard

ooftware Development Life Cycle

System analysis & specification
Specification of non-functional characteristics

— Dependability

— Security

— Composability

— Portability

— Reusability

— Interoperability

Often reflect the quality of the system

ooftware Development Life Cycle

D. Software design

— For each module [i.e. leaf node in the hierarchical decomposition tree
/ system architecture diagram / lowest level DFD)
— ldentify several design options & compare them

: Effect the functional | /O transformation,
* Algorithms = _ i cational th
..e. realize computational theor
* Data-structures P y

+ Files \
Representation of the input, temporary, and output data

* Interface protocols

— Choose the best design

* Youhave to define what ‘best’ means for your particular project

* Use criteria derived from the functional and non-functional requirements

ooftware Development Life Cycle

6. Module implementation and system integration

— Use a modular construction approach
— Don’t attempt the so-called Big Bang approach

— Build (and test) each component or modular sub-system individually

* Driver ([dummy calling routine] ... test harness

e Stub ([dummy called routine)

— Link or connect them together, one component at a time.

ooftware Development Life Cycle

6. Module implementation and system integration

You Must Validate Data

— Validate input
— Validate parameters

— ‘Constraints on data and computation usually take the form of wrappers -
access routines [or methods] that prevent bad data from being stored or used
and ensure that all programs maodify data through a single, common interface’

J. A. Whittaker and S. Atkin, “Software Engineering Is Not Enough”, IEEE Software, July/August 2002, pp.
108-115.

ooftware Development Life Cycle

/. Unit, integration, & acceptance test and evaluation

— NQOT showing the system works
— Showing it meets specifications
— Showing it meets requirements
— Showing the system doesn't fall (stress testing]

— Three goals of testing

1. Verification
2. Validation
3. Evaluation

ooftware Development Life Cycle

/. System test and evaluation

1. Verification

* Has the system been built correctly?

* Isit computing the right answer (producing correct data)?
* Extensive test data sets

Exercise each module or computation

— Independently
— As a whole system

 Live data (not just data in test files]

ooftware Development Life Cycle

/. System test and evaluation

2. Validation

* Does it meet the client’'s requirements?

* (Canthe user adjust all the main parameters on which operation
depends? [List them!]

ooftware Development Life Cycle

/. System test and evaluation

3. FEvaluation

* How good is the system?

. Hallmark of good engineering: assess performance and benchmark
against other systems

* |dentify quantitative metrics
* |dentify qualitative metrics
 Vary parameters and collect statistics

* Evaluate against ground-truth data (data for which you know the correct
result)

* Evaluate against other systems (benchmarking]

ooftware Development Life Cycle

/. System test and evaluation

— Tests need to be automated (run several times as the system is
tuned]

— Regression testing

— Types of test
. Unit Tests ... individual modules / components
* Integration Tests ... sub-systems and system
* Acceptance Tests ... system

ooftware Development Life Cycle

8. Documentation

— Internal documentation

. Documentation comments
— Intended to be extracted automatically by, e.g., Doxygen tool
— Describe the functionality from an implementation-free perspective

— Purpose is to explain how to use the component through its application
programming interface (API), rather than understand its implementation

. Implementation comments

— Overviews of code
— Provide additional information that is not readily available in the code itself

— Comments should contain only information that is relevant to reading and
understanding the program

. Use standards

ooftware Development Life Cycle

8. Documentation

“There is rarely such a thing as too much documentation ...

Documentation - often exceeding the source code in size - is a
requirement, not an option.”

J. A. Whittaker and S. Atkin, “Software Engineering Is Not Enough”, IEEE Software,
July/August 2002, pp. 108-115.

ooftware Development Life Cycle

8. Documentation

— External documentation
User manual
Reference manual
Design documents

o ———
#
————
o — e
_l
———————
e

How the customer explained it

How the Project Leader
understood it

How the Programmer wrote it

How the Business Consultant
descnbed it

Data Structures and Algorithms for Engineer Carnegie Mellon University Africa

What operations installed

Data Structures and Algorithms for Engineer Carnegie Mellon University Africa

How it was supported

Data Structures and Algorithms for Engineer Carnegie Mellon University Africa

What the customer really
needed

How the customer explained it

How the Project Leader
understood it

How the Analyst designed it

How the Programmer wrote it

How the Business Consultant
described it

How the project was
documented

What operations installed

How the customer was billed

How it was supported

What the customer really
needed

Software Process Models

The \Waterfall model

— Separate and distinct phases of specification and development

Evolutionary development
— Specification and development are interleaved

Formal transformation

— A mathematical system model is formally transformed to an
Implementation

Reuse-based development
— The system is assembled from existing components

Generic Software Process Models

Requirements

Testing

0
)

Acceptance

Waterfall Model

Software Process Models

\Waterfall Model Phases
— Requirements analysis and definition
— System and software design
— Implementation and unit testing
— Integration and system testing
— Operation and maintenance

— The drawback of the waterfall model is the difficulty of accommmodating
change after the process is underway

Software Process Models

Concurrent
activities

CSp ecificatiorD

\‘E—) @evelopmenD
description

C Validation)

Initial
version

Intermediate
versions
Final
version

L

Evolutionary Development

Software Process Models

* Exploratory prototyping

— Objective is to work with customers and to evolve a final system from
an initial outline specification. Should start with well-understood
requirements

* Throw-away prototyping

— Objective is to understand the system requirements. Should start
with poorly understood requirements

Software Process Models

* Problems
— Lack of process visibility
— Systems are often poorly structured
— Special skills [e.g. in languages for rapid prototyping) may be required

* Applicability
— For small or medium-size interactive systems
— For parts of large systems (e.g. the user interface])
— For short-lifetime systems

Software Process Models

Risk Management

— Perhaps the principal task of a engineering manager is to minimise
risk

— The 'risk’ inherent in an activity is a measure of the uncertainty of the
outcome of that activity

— High-risk activities cause schedule and cost overruns

— Risk is related to the amount and quality of available information.
The less information, the higher the risk

Software Process Models

Process Model Risk Problems

— Waterfall

* High risk for new systems because of specification and design problems
* Low risk for well-understood developments using familiar technology

— Prototyping (Evolutionary]
* Low risk for new applications because specification and program stay in step
* High risk because of lack of process visibility

— Transformational
* High risk because of need for advanced technology and staff skills

Software Process Models

Hybrid Process Models

— Large systems are usually made up of several sub-systems
— The same process model need not be used for all subsystems
— Prototyping for high-risk specifications

— Waterfall model for well-understood developments

Software Process Models
A

Determine objectives
alternatives and
constraints

Evaluate altematives
identify, resol ve risks

Risk
analysis

Risk
analysis

Risk
analysis

REVIEW

Requirements plan Simul ations, models, benchmarks
Life-cycle plan Concept of
Operation S/W

i t Product
requirements dosign Detailed

Development Requirement design
plan validation Code
i Unit test
Integration Design .
Pl h and test plan V&V Integr ation
an next phase Acceptance test
Service test Develop, verify

next-level product

Spiral model of the software process

Software Process Models

A

Determine objectives

alternatives and
constraints

on Ph@

Evaluate altematives
identify, resol ve risk s

Se

Risk

analysis

Risk
analysis

REVIEW

Risk
analysis

Risk
amlsis

Requirements plan
Life-cycle plan

Development
plan

Simulations, models, benchmarks

Integration
and test plan

Plan next phase

Condept of
Operati SIW
i t Product
uirements dosign Detailed
Requirement design
validation Code
Design Unit test
V&V Integr ati 4
/;
Acceptance test %

Service test Develop, ves

next-level p

Yy
%o
t %s
Se

Software Process Models

Phases of the spiral model

— Objective setting
» Specific objectives for the project phase are identified

— Risk assessment and reduction

* Key risks are identified, analysed and information is sought to reduce
these risks

— Development and validation
* An appropriate model is chosen for the next phase of development

— Planning

* The project is reviewed and plans drawn up for the next round of the
spiral

Data Structures and Algorithms
The foundation of all solutions to computational information processing problems
Often unseen, but always there

http://www.wired.com/wiredscience/2011/08/iceberg-towing-drinking-water/

