
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 1

Introduction & The Software Development Life Cycle
– Motivation

– Goals of the course

– Syllabus & lecture schedule

– Course operation

– Preview of selected course material

– Software development tools for exercises and assignments

– Exercises

– Levels of abstraction in information processing systems

– The software development life cycle
• Yourdon Structured Analysis

– Software process models
• Waterfall, Evolutionary, Formal Transformation, Re-Use, Hybrid, Spiral

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Motivation

Software is everywhere, not only in IT sectors:

– Robotics & automation

– Automotive

– Aerospace

– Communications

– Medical

– Energy distribution and management

– Environmental control

– …

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Motivation

Most software is in embedded systems

– Highly constrained in terms of
• Memory

• Processing power

• Bandwidth

– Have exacting requirements for reliability, safety, availability

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Motivation

Engineers who develop the software

– Do not always have a strong background in

• Computer science

• Computer engineering

• Algorithms

• Data Structures

– Formal education in other engineering disciplines

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Motivation

This is a problem …

– Suppose you’ve developed a software application

– And it works just fine in the current set of circumstances

– But can you be sure it will scale?

• Larger data sets (input)

• Larger user base

• Tighter time and memory constraints

• Migration to a distributed computing environment

– This is where a solid foundation in data structures & algorithms
comes in

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Motivation

Example 1

– Problem: Your program needs to find whether a list stored in
memory contains a particular data element

– Your solution: Start from the beginning of the list and examine each
element

– How good is this? What does it depend on?

– Can you do better?

– Under what circumstances could you improve this?

– Is the list the optimal data structure for this?

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Motivation

Example 1

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Motivation

Example 1

– Problem: You need to output a sorted list of elements stored in memory

– Your solution: Find and output the largest; find and output the next
largest,

– How good is this?

– Can you do better?

– Under what circumstances?

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Motivation

Example 2

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Motivation

Example 3

– Problem: You are creating a car navigation assistant to devise a
route that will allow the driver to visit a set of cities optimally,
e.g., minimize fuel consumption, distance, or time

– This is the classic Travelling Salesman problem

– Your solution: List out all possible ways of visiting all cities. Select the
one that minimizes the total distance traveled

– How good is this?

– Can you do better?

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Motivation

Example 3

– Your solution:
Assuming 1 microsecond to generate each path:

Cities Computing time

2 Really fast

7 ~1 Second

11 ~1 Hour

12 ~1 Day

14 ~1 Year

17 ~1 Century

– Can you do better? If so, what will it take?

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Motivation

Example 4

– Problem: You have an system with a lot of legacy code in it, much of it
is believed to be obsolete. You want to write a general program to
find the code segments that are never actually executed in a system,
so that you can then remove them

– Your solution: ?????

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Motivation

So What?

• We have seen instances of four kinds of problem complexity
that occur all the time in industry

– Linear

– Polynomial

– Exponential

– Undecidable

• Knowing which category your problem fits into is crucial
– You can use special techniques to improve your solution

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Motivation

So What?

• Competitive advantage is based on the characteristics of
products sold or services provided

– Functionality, timeliness, cost, availability, reliability, interoperability,
flexibility, simplicity of use

• Innovation will be delivered through quality software

– 90% of the innovation in a modern car is software-based

• Software determines the success of products and services

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Goals of the Course

• Provide engineers who don’t have a formal background in
computer science with a solid foundation in the key principles
of data structures and algorithms

• Leverage what software development experience they do
have to make them more effective in developing efficient
software-intensive systems

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Goals of the Course

• Foster algorithmic thinking

• Appreciate the link between
– Computational theory

– Algorithms and Data Structures

– Software implementation

• Impart professional practical skills in software development

• Develop the ability to recognize & analyze critical
computational problems and assess different approaches to
their solution

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Goals of the Course

Key themes

• Principles and practice (analysis and synthesis)

• Practical hands-on learning (lots of examples)

• Detailed implementation, not just pseudo-code

• Broad coverage of the essential tools in algorithms and
data structures

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Syllabus & Lecture Schedule

https://canvas.cmu.edu/courses/3210

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Course Operation

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Course Operation

• Lectures will be posted in advance: read them before coming to
class and read them again after class

• Readings: read them after class

• Assignments & Assessment

– 7 individual programming assignments (10% each; best six)

– Mid-semester examination (10%)

– Final examination (30%)

– Marking schemes will be distributed in due course
• Functionality (based on testing using an unseen data set)
• Documentation: internal and external
• Tests and testing strategy

– Strict deadlines: NO EXTENSIONS except on compassionate grounds

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Course Operation

We will have a 10 minute quiz every Friday to kick off recitation

• Style will vary:

– Some will be multiple choice (negative marking will apply)

– Some will match that of one section of a question in the final examination

• Not for credit

• Not an assessment exercise

• Learning exercise

– We will work through the solution together during the recitation hour
and use it to prompt questions

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Course Operation

• Do
– Participate in class
– Ask questions (you will be doing others a favour)
– Discuss course material, readings, assignments with other students
– Share thoughts but not written material (e.g. code, documentation)
– Cite any work you use in assignments
– Be a good teammate: do your fair share of the work equally & cooperate

• Don’t
– Cheat or plagiarize

• Uncited use of any material from anywhere
• Share / steal any material with/from former or current students

• Sanctions for cheating and plagiarism
– Zero marks for first sharing infingement (both parties)
– Fail the course (grade R) for second sharing infringement (both parties)
– Fail the course (grade R) for first stealing infringement

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Preview of Selected Course Material

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Goal:
Sample of the core topics from
undergraduate and graduate
data structures and algorithms
courses

Gradually increase the complexity
of the topics

C
on

ce
pt

 C
om

pl
ex

ity

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty
C

on
ce

pt
 C

om
pl

ex
ity

Software Development Life Cycle

Software Design &
Software Development Life Cycle

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Formalisms for representing
algorithms
I/O, Flow-charts, Pseudo-code, FSM,
UML, ….

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty
C

on
ce

pt
 C

om
pl

ex
ity

Software Development Life Cycle

Formalisms representing algorithms

Input Output

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity

Analysis of Complexity

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

• Big O notation
• Recurrence relationships
• Analysis of complexity
• Iterative and recursive algorithms

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity

Analysis of Complexity

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

• Tractable, intractable complexity
• Determinism and non-determinism
• P, NP, and NP-Complete classes of

algorithm

Growth rates

1

1E+10

1E+20

1E+30

1E+40

2 4 8 16 32 64 128 256 512 1024

5n
n^3
n^5
1.2^n
2^n
n^n

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity

Analysis of Complexity

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

• Tractable, intractable complexity
• Determinism and non-determinism
• P, NP, and NP-Complete classes of

algorithm

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity

Analysis of Complexity

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Time vs. space complexity

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Searching algorithms
• linear search O (n)
• binary search O (log2n)

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting

Sorting algorithms:

• Bubblesort (Iterative O (n2))
• Selection sort
• Insertion sort
• Quicksort (Recursive O (n log2n))
• Merge sort

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Abstract Data Types (ADTs)

• Information hiding
• Encapsulation
• Data-hiding
• Basis for object-orientation

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Containers, Dictionaries, & Lists

• ADT specification
• Array implementation
• Linked-list implementation

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Stack and Queues

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees

Trees

• Binary trees
• Binary search trees
• Tree traversal
• Applications of trees

(e.g. Huffman coding)
• Height-balanced trees

(e.g. AVL Trees, Red-Black Trees

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Heaps

Priority queues
Binary heaps, min/max-heaps
Heap operations
Heap sort

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Graphs

Graphs
• Types
• Representations
• BFS & DFS Traversals
• Topological sort
• Minimum spanning tree

(e.g. Prim’s and Kruskal’s Algs.)
• Shortest-path algorithms

(e.g. Dijkstra’s & Floyd’s Algs.)

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Graphs
Complex Networks

Complex Networks

• Random networks
• Degree distribution
• Clustering
• Small world phenomena
• Scale free networks
• Community detection

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Graphs
Complex Networks

Hashing

Hashing

• Hash functions
• Collisions
• Chaining & Probe policies

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 44 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Graphs
Complex Networks

Algorithmic Strategies

Hashing

Algorithmic Strategies

• Brute-force
• Divide-and-conquer
• Greedy algorithms
• Combinatorial Search
• Backtracking
• Branch-and-bound

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 45 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Graphs
Complex Networks

Algorithmic Strategies

Hashing

Correctness

Analysis of Correctness

• Syntactic, semantic, logical
defects

• (Semi-)formal verification
• Invariant assertion method
• Simple proof strategies
• Static & dynamic testing
• Verification and validation

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 46 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Graphs
Complex Networks

Algorithmic Strategies

Hashing

Correctness

Automata Theory

• Finite Automata
• Non-determinism
• Pushdown Automata
• Corresponding Languages and

Grammars Automata Theory

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Data Structures and Algorithms for Engineers 47 Carnegie Mellon University Africa

Data-Structures and Algorithms for Engineers

Time

D
iff

ic
ul

ty

Analysis of Complexity
Searching

Sorting
ADTs

Containers, Dictionaries, Lists

Stack and Queues

Trees
Heaps

Graphs
Complex Networks

Algorithmic Strategies

Hashing

Correctness

Computability Theory

• The Church-Turing Thesis
• Turing Machines
• The Definition of Algorithm
• Decidability
• Undecidability
• Reducibility

Computability Theory

C
on

ce
pt

 C
om

pl
ex

ity

Software Development Life Cycle

Formalisms representing algorithms

Automata Theory

Data Structures and Algorithms for Engineers 48 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

Data Structures and Algorithms for Engineers 49 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

• Installation of software development environment

– Windows 10 OS

– Microsoft Visual C++ Express compiler, version 10.0
(also known as Visual C++ 2010 or MSVC++ 2010)

– Cmake

– DSA Repository

• Let’s walk through the process for installing these tools …

https://canvas.cmu.edu/courses/3210/modules
Software

Software Development Environment

Data Structures and Algorithms for Engineers 50 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

• Installation of software development environment

– C:\DSA

– Fixed file organization

• Let’s walk through the process
to compile and run the program in

C:\DSA\assignments\assignment0\dvernon

DSA

Data Structures and Algorithms for Engineers 51 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

• Preferred practice for software that supports encapsulation and data
hiding (e.g. ADT & OO classes)

• 3 files: Interface, Implementation, and Application Files
– Interface

• between implementation and application

• Header File that declares the class type

• Functions, classes, are declared, not defined (except inline functions)

– Implementation
• #includes the interface file

• contains the function definitions

– Application
• #includes the interface file

• contains other (application) functions, including the main function

Data Structures and Algorithms for Engineers 52 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

When writing an application, we are ADT/class users

– Should not know about the implementation of the ADT/class

– Thus, the interface must furnish all the necessary information to use
the ADT/class

• It also needs to be very well documented (internally)

– Also, the implementation should be quite general (cf. reusability)

Data Structures and Algorithms for Engineers 53 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

DSA

Data Structures and Algorithms for Engineers 54 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

Exercises

– Install software development tools

– Install DSA repository

– Compile and run the program in

C:\DSA\assignments\assignment0\dvernon

– Create, compile and run a new program in

C:\DSA\assignments\assignment0\myandrewid

Replace with your Andrew Id

Data Structures and Algorithms for Engineers 55 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

• For your first assignment, you will simply copy the assignment0 directory to
assignment1 and follow a similar compilation procedure, writing new assignment-
specific code.

• There is just one thing you need to do: edit the

C:DSA\assignments\assignment1\CMakeLists.txt

and change the project name from assignment0 to assignment1, viz:

##
PROJECT(assignment0)

Becomes

##
PROJECT(assignment1)

Data Structures and Algorithms for Engineers 56 Carnegie Mellon University Africa

Software Development Tools for
Exercises and Assignments

When submitting an assignment, all you have to do is submit
a zip version of your myandrewid directory containing

– Your three source code files

– The CmakeLists.txt file

– The input.txt file (copied from the data directory)

– The output.txt file (copied from the data directory)

Data Structures and Algorithms for Engineers 57 Carnegie Mellon University Africa

Levels of Abstraction
in Information Processing Systems

Data Structures and Algorithms for Engineers 58 Carnegie Mellon University Africa

Muḥammad ibn Mūsā al-Khwārizmī
يمزراوخلاىسومنبدمحم

Born approximately 780, died between 835 and 850
Persian mathematician and astronomer

from the Khorasan province of present-day Uzbekistan

The word algorithm is derived from his name

Data Structures and Algorithms for Engineers 59 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 60 Carnegie Mellon University Africa

https://www.nytimes.com/2018/12/17/science/donald-knuth-computers-algorithms-programming.html

Listed by American Scientist in 2013
as one of the books that shaped the
last century of science

Data Structures and Algorithms for Engineers 61 Carnegie Mellon University Africa

Algorithms + Data Structures = Programs

Inventor of Pascal and Modula

Niklaus Wirth, 1976

Inventor of Pascal and Modula
programming languages
Winner of Turing Award 1984

1969

Data Structures and Algorithms for Engineers 62 Carnegie Mellon University Africa

Algorithms + Data Structures = Programs

Information Processing:
Representation & Transformation

Input Output

Data Structures and Algorithms for Engineers 63 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Goal, logic, strategy, model

I/O representation, transformation algorithm

Physical realization

Loose coupling

Loose coupling

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

Data Structures and Algorithms for Engineers 64 Carnegie Mellon University Africa

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

“Trying to understand perception by studying only neurons is like trying to
understand bird flight by studying only feathers: it just cannot be done. In order to
understand bird flight, we have to understand aerodynamics; only then do the
structure of feathers and the different shapes of birds’ wings make sense”

Marr, D. Vision, Freeman, 1982.

Data Structures and Algorithms for Engineers 65 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Sorting a List

Given a sequence of n keys a1, … , an

Find the permutation (reordering)
such that ai £ aj
1 £ i, j £ n

Data Structures and Algorithms for Engineers 66 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Bubble Sort

Insertion Sort

Quick Sort

Merge Sort, …

Key point: different computational efficiency

Sorting a List

Data Structures and Algorithms for Engineers 67 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Sorting a List

Data Structures and Algorithms for Engineers 68 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Sorting a List

Data Structures and Algorithms for Engineers 69 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

Data Structures and Algorithms for Engineers 70 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

DFT: Discrete Fourier Transform

FFT: Fast Fourier Transform

FFTW: Fasted Fourier Transform in the West

Key point: different computational efficiency

Data Structures and Algorithms for Engineers 71 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

Data Structures and Algorithms for Engineers 72 Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Fourier Transform

Data Structures and Algorithms for Engineers 73 Carnegie Mellon University Africa

Computational

Theory

Representation

& Algorithm

Hardware/Software

Implementation

Marr’s Levels of Understanding Framework updated 2012 by T. Poggio

Learning &

Development
Calibrating & improving the model

Data Structures and Algorithms for Engineers 74 Carnegie Mellon University Africa

Computational

Theory

Representation

& Algorithm

Hardware/Software

Implementation

Marr’s Levels of Understanding Framework updated 2012 by T. Poggio

Evolution

Learning &

Development
Calibrating & improving the model

Generating new models

Data Structures and Algorithms for Engineers 75 Carnegie Mellon University Africa

The Software Development Life Cycle

Data Structures and Algorithms for Engineers 76 Carnegie Mellon University Africa

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Data Structures and Algorithms for Engineers 77 Carnegie Mellon University Africa

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Data Structures and Algorithms for Engineers 78 Carnegie Mellon University Africa

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Waterfall Model
Software development Life Cycle

Data Structures and Algorithms for Engineers 79 Carnegie Mellon University Africa

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Life Cycle Models (Software Process Models):

Waterfall (& variants, e.g. V)
Evolutionary
Re-use
Hybrid
Spiral
…

Data Structures and Algorithms for Engineers 80 Carnegie Mellon University Africa

The Software Development Life Cycle

System
Specification

Algorithms &
Data StructuresRequirements

Software

Problem
Identification

Problem Modelling
System Analysis & Specification

Requirements
Elicitation

Validation

Software
Design

CodingTesting:
Validation,

Verification, &
Evaluation

Software Development Methodologies:

Top-down
Structured

Yourdon Structured Analysis (YSA)
Jackson Structured Analysis (JSA)
Structured Analysis and Design Technique

(SADT)

Object-oriented analysis, design, programming
Component-based software engineering (CBSE)

Data Structures and Algorithms for Engineers 81 Carnegie Mellon University Africa

Software Development Life Cycle

1. Problem identification

2. Requirements elicitation

3. Problem modelling

4. System analysis & specification

5. System design

6. Module implementation and system integration

7. System test and evaluation

8. Documentation

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Data Structures and Algorithms for Engineers 82 Carnegie Mellon University Africa

Software Development Life Cycle

1. Problem identification

– Normally requires experience

– Theoretical issues: appropriate models (problem domain)

– Technical issues: tools, OS, API, libraries (solution domain)

Data Structures and Algorithms for Engineers 83 Carnegie Mellon University Africa

Software Development Life Cycle

2. Requirements elicitation

– Talk to the client (by talk, I mean counsel and coach)
– Document agreed requirements

What it does, what it doesn’t do, how the user is to use it or how it
communicates with the user, what messages it displays, how it behaves
when the user asks it to do something it expects, and especially how it
behaves when the user asks it to do something it doesn’t expect

– Validate requirements with client
– Repeat until mutual understanding converges
– But beware …

Data Structures and Algorithms for Engineers 84 Carnegie Mellon University Africa

Software Development Life Cycle

2. Requirements elicitation

Customer to a software engineer:

“I know you believe you understood
what you think I said,
but I am not sure you realize
that what you heard is not what I meant”

R. Pressman

Data Structures and Algorithms for Engineers 85 Carnegie Mellon University Africa

Software Development Life Cycle

3. Problem modelling

– Identify theory needed to model and solve the problem

• Ideally, identify several, compare them, and choose the best (i.e most
appropriate)

• Use criteria derived from your functional and non-functional requirements

– Create a rigorous – ideally mathematical – description
Graph theory, Fourier theory, linear system theory, information theory, …

– If you don’t have a model, you aren’t doing engineering
• Connecting components (or lines of code) together is not engineering
• Without a model, you can’t analyze the system and make firm statement

about
– Robustness
– Operating parameters
– Limitations

Data Structures and Algorithms for Engineers 86 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

– Identify
• The system functionality
• The operational parameters (conditions under which your system will

operate, including required software and hardware systems)
• Limitations & restrictions
• User interface or system interface

– Including
• Functional model
• Data model
• Process-flow model
• Behavioural model

Data Structures and Algorithms for Engineers 87 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Functional model

– Hierarchical functional decomposition tree

– Modular decomposition (typically)

– Each leaf node in the tree:
• Short description of functionality, i.e. the input/output transformation

• Information (data) input

• Information (data) output

– System architecture diagram
• Network of components at first or second level of decomposition

Data Structures and Algorithms for Engineers 88 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 89 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 90 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Modular decomposition … Dave Parnas

“In this context "module" is considered to be a responsibility assignment
rather than a subprogram. The modularizations include the design
decisions which must be made before the work on independent modules
can begin.”

D.L. Parnas, On the Criteria To Be Used in Decomposing Systems into Modules,
Communications of the ACM, Vol. 15, No. 12, Dec 1972

Also responsible for the concepts of data hiding and encapsulation, cf. ADT in Lecture 5

Data Structures and Algorithms for Engineers 91 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Data model

– Data entities (not data structures) to represent
• Input, temporary, output data

– Data dictionary
• What the data entities mean
• How they are composed
• How they are structured
• Valid value ranges
• Dimensions (e.g. velocity m/s)
• Relationships between data entites

– Entity-relationship model

Data Structures and Algorithms for Engineers 92 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Process-flow model

– What data flows into and out of each functional block
(into and out of the leaf nodes in the functional decomposition tree)

– Data-flow diagrams
• Organized in several levels: DFD level 0, DFD level 1, …

• Level 0 DFD: system architecture diagram

Data Structures and Algorithms for Engineers 93 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Process-flow model

– DFDs model the transformation of inputs into outputs

– Processes/Functions represent individual functions that the system
carries out and transform inputs to outputs

– Flows represent connections between processes and the flow of
information and data between processes

– Data Stores show collections or aggregations of data

– I/O Entities show external entities with which the system communicates
• They are the sources and consumers of data
• They can be users, groups, organizations, systems,...

Data Structures and Algorithms for Engineers 94 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 95 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 96 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Behavioural model

– Behaviour over time
– System states
– Triggers that cause transition

(from state to state)
– Functional block associated with each state
– State transition diagram

• Finite state machine
• Finite automaton

– Control-flow diagram
(version of DFD with events and triggers on each process)

Data Structures and Algorithms for Engineers 97 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 98 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 99 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Definition of all the user and system interfaces

– User manual

– User interface storyboard

Data Structures and Algorithms for Engineers 100 Carnegie Mellon University Africa

Software Development Life Cycle

4. System analysis & specification

Specification of non-functional characteristics

– Dependability

– Security

– Composability

– Portability

– Reusability

– Interoperability

Often reflect the quality of the system

Data Structures and Algorithms for Engineers 101 Carnegie Mellon University Africa

Software Development Life Cycle

5. Software design

– For each module (i.e. leaf node in the hierarchical decomposition tree
/ system architecture diagram / lowest level DFD)

– Identify several design options & compare them

• Algorithms
• Data-structures
• Files
• Interface protocols

– Choose the best design

• You have to define what ‘best’ means for your particular project

• Use criteria derived from the functional and non-functional requirements

Effect the functional I/O transformation,
i.e. realize computational theory

Representation of the input, temporary, and output data

Data Structures and Algorithms for Engineers 102 Carnegie Mellon University Africa

Software Development Life Cycle

6. Module implementation and system integration

– Use a modular construction approach

– Don’t attempt the so-called Big Bang approach

– Build (and test) each component or modular sub-system individually

• Driver (dummy calling routine) … test harness

• Stub (dummy called routine)

– Link or connect them together, one component at a time.

Data Structures and Algorithms for Engineers 103 Carnegie Mellon University Africa

Software Development Life Cycle

6. Module implementation and system integration

You Must Validate Data

– Validate input

– Validate parameters

– ‘Constraints on data and computation usually take the form of wrappers –
access routines (or methods) that prevent bad data from being stored or used
and ensure that all programs modify data through a single, common interface’

J. A. Whittaker and S. Atkin, “Software Engineering Is Not Enough”, IEEE Software, July/August 2002, pp.
108-115.

Data Structures and Algorithms for Engineers 104 Carnegie Mellon University Africa

Software Development Life Cycle

7. Unit, integration, & acceptance test and evaluation

– NOT showing the system works

– Showing it meets specifications

– Showing it meets requirements

– Showing the system doesn’t fail (stress testing)

– Three goals of testing

1. Verification

2. Validation

3. Evaluation

Data Structures and Algorithms for Engineers 105 Carnegie Mellon University Africa

Software Development Life Cycle

7. System test and evaluation

1. Verification

• Has the system been built correctly?

• Is it computing the right answer (producing correct data)?

• Extensive test data sets

• Exercise each module or computation
– Independently

– As a whole system

• Live data (not just data in test files)

Data Structures and Algorithms for Engineers 106 Carnegie Mellon University Africa

Software Development Life Cycle

7. System test and evaluation

2. Validation

• Does it meet the client’s requirements?

• Can the user adjust all the main parameters on which operation
depends? (List them!)

Data Structures and Algorithms for Engineers 107 Carnegie Mellon University Africa

Software Development Life Cycle

7. System test and evaluation

3. Evaluation

• How good is the system?

• Hallmark of good engineering: assess performance and benchmark
against other systems

• Identify quantitative metrics

• Identify qualitative metrics

• Vary parameters and collect statistics

• Evaluate against ground-truth data (data for which you know the correct
result)

• Evaluate against other systems (benchmarking)

Data Structures and Algorithms for Engineers 108 Carnegie Mellon University Africa

Software Development Life Cycle

7. System test and evaluation

– Tests need to be automated (run several times as the system is
tuned)

– Regression testing

– Types of test
• Unit Tests … individual modules / components

• Integration Tests … sub-systems and system

• Acceptance Tests … system

Data Structures and Algorithms for Engineers 109 Carnegie Mellon University Africa

Software Development Life Cycle

8. Documentation

– Internal documentation
• Documentation comments

– Intended to be extracted automatically by, e.g., Doxygen tool

– Describe the functionality from an implementation-free perspective

– Purpose is to explain how to use the component through its application
programming interface (API), rather than understand its implementation

• Implementation comments
– Overviews of code

– Provide additional information that is not readily available in the code itself

– Comments should contain only information that is relevant to reading and
understanding the program

• Use standards

Data Structures and Algorithms for Engineers 110 Carnegie Mellon University Africa

Software Development Life Cycle

8. Documentation

“There is rarely such a thing as too much documentation …

Documentation – often exceeding the source code in size – is a
requirement, not an option.”

J. A. Whittaker and S. Atkin, “Software Engineering Is Not Enough”, IEEE Software,
July/August 2002, pp. 108-115.

Data Structures and Algorithms for Engineers 111 Carnegie Mellon University Africa

Software Development Life Cycle

8. Documentation

– External documentation
• User manual

• Reference manual

• Design documents

Data Structures and Algorithms for Engineers 112 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 113 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 114 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 115 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 116 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 117 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 118 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 119 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 120 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 121 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 122 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 123 Carnegie Mellon University Africa

Software Process Models

• The Waterfall model
– Separate and distinct phases of specification and development

• Evolutionary development
– Specification and development are interleaved

• Formal transformation
– A mathematical system model is formally transformed to an

implementation

• Reuse-based development
– The system is assembled from existing components

Data Structures and Algorithms for Engineers 124 Carnegie Mellon University Africa

Generic Software Process Models

Waterfall Model

Data Structures and Algorithms for Engineers 125 Carnegie Mellon University Africa

Software Process Models

Waterfall Model Phases

– Requirements analysis and definition

– System and software design

– Implementation and unit testing

– Integration and system testing

– Operation and maintenance

– The drawback of the waterfall model is the difficulty of accommodating
change after the process is underway

Data Structures and Algorithms for Engineers 126 Carnegie Mellon University Africa

Software Process Models

Validation Final
version

Development Intermediate
versions

Specification Initial
version

Outline
description

Concurrent
activities

Evolutionary Development

Data Structures and Algorithms for Engineers 127 Carnegie Mellon University Africa

Software Process Models

• Exploratory prototyping
– Objective is to work with customers and to evolve a final system from

an initial outline specification. Should start with well-understood
requirements

• Throw-away prototyping
– Objective is to understand the system requirements. Should start

with poorly understood requirements

Data Structures and Algorithms for Engineers 128 Carnegie Mellon University Africa

• Problems
– Lack of process visibility

– Systems are often poorly structured

– Special skills (e.g. in languages for rapid prototyping) may be required

• Applicability
– For small or medium-size interactive systems

– For parts of large systems (e.g. the user interface)

– For short-lifetime systems

Software Process Models

Data Structures and Algorithms for Engineers 129 Carnegie Mellon University Africa

Software Process Models

Risk Management

– Perhaps the principal task of a engineering manager is to minimise
risk

– The 'risk' inherent in an activity is a measure of the uncertainty of the
outcome of that activity

– High-risk activities cause schedule and cost overruns

– Risk is related to the amount and quality of available information.
The less information, the higher the risk

Data Structures and Algorithms for Engineers 130 Carnegie Mellon University Africa

Software Process Models

Process Model Risk Problems

– Waterfall
• High risk for new systems because of specification and design problems

• Low risk for well-understood developments using familiar technology

– Prototyping (Evolutionary)
• Low risk for new applications because specification and program stay in step

• High risk because of lack of process visibility

– Transformational
• High risk because of need for advanced technology and staff skills

Data Structures and Algorithms for Engineers 131 Carnegie Mellon University Africa

Software Process Models

Hybrid Process Models

– Large systems are usually made up of several sub-systems

– The same process model need not be used for all subsystems

– Prototyping for high-risk specifications

– Waterfall model for well-understood developments

Data Structures and Algorithms for Engineers 132 Carnegie Mellon University Africa

Software Process Models

Risk
analysis

Risk
analysis

Risk
analysis

Ris k
analysis Proto-

type 1

Prototype 2
Prototype 3

Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design
Code

Unit test
Integration

testAcceptance
testService Develop, verify

next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase
Integration

and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

Spiral model of the software process

Data Structures and Algorithms for Engineers 133 Carnegie Mellon University Africa

Software Process Models

Risk
analysis

Risk
analysis

Risk
analysis

Ris k
analysis Proto-

type 1

Prototype 2
Prototype 3

Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design
Code

Unit test
Integration

testAcceptance
testService Develop, verify

next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase
Integration

and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

Life Cycle Phase

Risk Reduction Phase

Data Structures and Algorithms for Engineers 134 Carnegie Mellon University Africa

Software Process Models

Phases of the spiral model

– Objective setting
• Specific objectives for the project phase are identified

– Risk assessment and reduction
• Key risks are identified, analysed and information is sought to reduce

these risks

– Development and validation
• An appropriate model is chosen for the next phase of development

– Planning
• The project is reviewed and plans drawn up for the next round of the

spiral

Data Structures and Algorithms for Engineers 135 Carnegie Mellon University Africa

• `

Data Structures and Algorithms
The foundation of all solutions to computational information processing problems

Often unseen, but always there
http://www.wired.com/wiredscience/2011/08/iceberg-towing-drinking-water/

