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Lecture 2

Formalisms for representing algorithms

– Definition of an algorithm

– Modelling software

– Relational modelling

– State modelling

– Practical Representations
• Pseudo code

• Flow charts

• Finite state machines

• UML

• Predicate logic

(This lecture is adapted from 17-630 Computer Science for Practicing Engineers)
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Definition of an Algorithm

Informal definition

An algorithm is a systematic procedure for transforming information 
from one (input) state to another (output) state

We will present a formal definition in the section on computability theory

Information Processing:
Representation & Transformation

Input Output
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Definition of an Algorithm

Information much be represented in some way

Typically there is a strong link between an algorithm and the information 
representation, i.e. the data structure



Data Structures and  Algorithms for Engineers 5.   Carnegie Mellon University Africa

Modelling Software

Goal: introduce basis ways to represent algorithms to support 
practical analysis

– Complexity

– Correctness
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Modelling Software

Practical analysis techniques

– Formal rigorous analysis can involve complex mathematics:
• quickly reaches a point of diminishing returns

• difficult to communicate

• takes too long and costs too much to be of practical value

– It is often more useful and practical to
• Use simplified mathematics to analyze trends, characteristics, and 

general properties

• focus on the essence of the algorithm (memory/execution)
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Modelling Software

• Software is an intangible product
– We can’t see, touch, smell, or otherwise directly measure software

– We can only conceptualize its structure and only see evidence of its 
execution

• We create models that facilitate both communication and 
analysis. These models can be:
– Graphical

– Textual

– Execution (prototype/experiments)

– Mathematical

– Combinations of these
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Modelling Software

• To support analysis, we need ways to abstract and represent 
algorithms

• There are two extremes
1. Formal mathematics

Often too abstract and too removed from implementations and applications

2. Computer language
Often too many unnecessary details that complicate analysis

• Our initial task: how can we effectively represent, 
communicate, and analyze algorithms?
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Relational Modelling

• Assume we have a requirement

“We need to be able to take text files, search for certain phrases that 
may or may not be present, and produce a formatted document with the 
phrases removed and placed in another file in a specified format for 
printing and/or further analysis.”

• Such requirements can be thought of in terms of a relational 
model

Relational models describe a requirement in terms of preconditions, 
rules, and post conditions
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Relational Modelling

Relational Models are typically functional

– Rigorously specify 

• Input (domain)

• Processing rules

• Output (range)

– Processing rules are algorithms

– State is not retained in relational models

Processing 
RulesInput Output
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State Modelling

• In most systems, state is retained and transformed 
throughout execution

• In these cases simple functional models are inadequate to 
model the system

Processing 
RulesInput Output

State
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State Modelling

• In state models, we often need to model precisely

– Preconditions (inputs)

– Post conditions (outputs)

– Processing rules (algorithms)

– States

– State transitions
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Practical Representations

Required characteristics

– Simple, clear, and intuitive (as far as possible)

– As rigorous as practical – but keeping the math as simple as 
possible

– Language neutral

– Factor out the hardware and operating systems

– Focus on algorithmic essence

– Properly scoped (not too big, not too trivial or obvious)
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Practical Representations

• Some candidate representations
– Pseudo Code

– Flow Charts

– State Diagrams

– Formalisms

– Modeling Methodologies (e.g. UML)

• Many engineers use these, but some use them
– At the wrong time

– To model the wrong kinds of things (poor scoping)

– Incorrectly

– Mix “what is needed” with “how we will build it”
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Pseudo Code

• Pseudo code is an informal abstraction of an algorithm that:

– uses the structural conventions of a programming language

– is simplified for human reading rather than machine compilation

– omits details that are not essential for algorithmic analysis

– shows the temporal relation of instruction execution (sequencing)

• Despite many attempts, no standard for pseudo code syntax 
currently exists
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Pseudo Code

• Declaration
type variable;
integer A; string name;

• Assignment
variable = value;
a = 45; x = y

• Basic mathematical operators
result = variable_value operator variable_value
y = a+b; z = 5.0/e; j = k*l; r = 2*(22/7)*(r^2)

• Basic functions and subroutines
read(), write(), print(),…
Assumed functions should be clearly defined prior to use

More on functions and subroutines later
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Pseudo Code

Control Structures

– Direct sequence
do X, then do Y

– Conditional branching
if Q then do X, else do Y

– Bounded iteration
do Z exactly X times

– Conditional or unbounded iteration
do Z until Q becomes true

while Q is true do Z
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Pseudo Code

Example: Algorithm to find the 
greatest common denominator (GCD)

• How the read()function work is not 
important for our analysis

• We focus on the essence of the algorithm, 
not on checking input, formatting output, 
error handling, and so forth

• Now that the algorithm has been distilled 
to its essence we can analyze: how do we 
know we solved the problem? how quickly 
does it compute the answer?

a = read() 
b = read() 
if a = 0 

return b 
while b ≠ 0 

if a > b 
a := a − b 

else 
b := b − a 

return a
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Pseudo Code

• Pseudo code is attractive because 

– It looks like the computer-interpretable code

– It is complete in terms of describing computer algorithms

• In practice, pseudo code is sometimes extended and violates 
notions of minimalism

– Pseudo code should only support what is necessary to describe the 
algorithm – and no more!

– Sometimes, pseudo code is used to describe entire applications, and 
becomes too cumbersome to support analysis of algorithms
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Flowcharts

• Graphical representation of the behavior of an algorithm
– Represents the steps of an algorithm by geometric shapes

– Temporal relationships are shown by connections 

• Developed in the early 20th century for use in industrial 
engineering
– Used in many domains for the last 100 years

– John von Neumann developed the flow chart while working at IBM as 
a means to describe how programs operated

– Flowcharts are still used to describe computer algorithms- UML 
activity diagrams are an extension of the flowchart

• There are many flowchart notation standards
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Flowcharts
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Flowcharts

Strengths and weaknesses

– The set of defined constructs is both minimal and complete

– The resulting algorithms can be hard to understand and analyze

– Graphical methods do not scale well – very difficult to represent large 
and/or complex algorithms

– Hard to distribute, share, and reuse
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Finite State Machines (FSM)

• Behavioral models composed of a finite number of states, 
transitions between those states, and actions

• FSMs are represented by state diagrams 

• State diagrams have been used for 50+ years in software, 
hardware, and system design and there are a variety of 
notations and approaches

– Traditional Mealy-Moore state machines

– Harel state machines

– UML state machines
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Finite State Machines (FSM)

A traditional (e g. Mealy-Moore) type of FSM is a quintuple 
(Σ, S, s0, δ, F)

Σ is the input alphabet where Σ is finite ∧ Σ ≠ ∅
S is a set of states where S is finite ∧ S ≠ ∅
s0 is an initial state where, s0 ∈ S
δ(q, x) is the state transition function where q ∈ S ∧ x ∈ Σ

(If the FSM is nondeterministic, then δ could be a set of states)

F is the set of final states where F ⊆ of S ∪ {∅}
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Finite State Machines (FSM)

δ(q, x) may be a partial function:

δ(q, x) does not have to be defined for every combination of q and x

If it is not defined then the FSM can enter an error state or reject the 
input
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Finite State Machines (FSM)

The following (limiting) assumptions are made regarding 
traditional (deterministic) Mealy-Moore FSAs

– an FSA can only be in one state at a time and must be in exactly one 
state at all times

– States of one FSA are independent from the states of all other FSAs

– Transitions between states are not interruptible

– Actions are atomic and run to completion

– Actions may be executed on entry into a state, on exit from a state, 
or during the transition from one state to another
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Finite State Machines (FSM)
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Finite State Machines (FSM)

FSM For ATM Machine

FSM For ATM Machine
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Finite State Machines (FSM)

Transitions indicate state change from one state to another 
state that are described by

– a condition that needs to be fulfilled to enable a transition

– an action which is an activity that is to be performed at some point in 
the transition

• Entry action: which is performed when entering the state

• Exit action: which is performed when exiting the state

• Input action: which is performed depending on present state and input 
conditions

• Transition action: which is performed when performing a certain 
transition
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Finite State Machines (FSM)

• Popular form of FSM are the Harel State Diagrams

• A variant which was adopted for
Unified Modeling Language (UML) State Machines

• There are two types of UML State Machines
– Behavioral State Machines (BSM) 

Model the behaviour of objects

– Protocol State Machines (PSM)
Model protocols of interfaces and ports

• Most use users of UML don’t differentiate
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Finite State Machines (FSM)

FSAs are limited and its difficult to model concurrency, complex 
object states, threads, multi-tasking

UML state machines extend the traditional automata theory in 
several ways that include

– nested state

– guards

– actions

– activities

– orthogonal components

– concurrent state models
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Finite State Machines (FSM)

UML State Machines – Nested States

Outer state is call the superstate

Inner states are called substates
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Finite State Machines (FSM)

UML State Machines – Actions

You can specify state entry and exit actions
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Finite State Machines (FSM)

UML State Machines – Actions

You can nest entry and exit actions
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Finite State Machines (FSM)

UML State Machines – Activities

• Like actions except they are performed as long as the state 
is active

• Activities are indicated with a do: statement
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Finite State Machines (FSM)

UML State Machines – Orthogonal Components
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Finite State Machines (FSM)

UML State Machines – Concurrent State Models

Concurrent threading can be modelled
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Finite State Machines (FSM)

UML State Machines – Concurrent State Models

Forking / Joining can be modelled
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Finite State Machines (FSM)

• In traditional FSA, transitions carry little or no information

• UML state machine transitions carry a lot of information:

– Event Name - Name of triggering event

– Parameters - data passed with event

– Guard - condition that must be true for the transition to occur

– Action List - list of actions executed

– Event List - list of events executed
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Finite State Machines (FSM)

• The key problem with FSM technologies is that they simply 
do not scale up well
– state explosion is a common problem

– care must be taken to restrict the scope of what is being modeled

• FSMs often abstract away the very algorithms we want to 
model
– Care must be taken to maintain a proper and consistent level of 

abstraction

– Can violate notions of completeness
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Finite State Machines (FSM)

UML state machines are really more like a notation than 
traditional FSMs

– Violates minimalism

– Any benefit gain in applying mathematical rigor may be lost


