
Data Structures and Algorithms for Engineers 1. Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2. Carnegie Mellon University Africa

Lecture 2

Formalisms for representing algorithms

– Definition of an algorithm

– Modelling software

– Relational modelling

– State modelling

– Practical Representations
• Pseudo code

• Flow charts

• Finite state machines

• UML

• Predicate logic

(This lecture is adapted from 17-630 Computer Science for Practicing Engineers)

Data Structures and Algorithms for Engineers 3. Carnegie Mellon University Africa

Definition of an Algorithm

Informal definition

An algorithm is a systematic procedure for transforming information
from one (input) state to another (output) state

We will present a formal definition in the section on computability theory

Information Processing:
Representation & Transformation

Input Output

Data Structures and Algorithms for Engineers 4. Carnegie Mellon University Africa

Definition of an Algorithm

Information much be represented in some way

Typically there is a strong link between an algorithm and the information
representation, i.e. the data structure

Data Structures and Algorithms for Engineers 5. Carnegie Mellon University Africa

Modelling Software

Goal: introduce basis ways to represent algorithms to support
practical analysis

– Complexity

– Correctness

Data Structures and Algorithms for Engineers 6. Carnegie Mellon University Africa

Modelling Software

Practical analysis techniques

– Formal rigorous analysis can involve complex mathematics:
• quickly reaches a point of diminishing returns

• difficult to communicate

• takes too long and costs too much to be of practical value

– It is often more useful and practical to
• Use simplified mathematics to analyze trends, characteristics, and

general properties

• focus on the essence of the algorithm (memory/execution)

Data Structures and Algorithms for Engineers 7. Carnegie Mellon University Africa

Modelling Software

• Software is an intangible product
– We can’t see, touch, smell, or otherwise directly measure software

– We can only conceptualize its structure and only see evidence of its
execution

• We create models that facilitate both communication and
analysis. These models can be:
– Graphical

– Textual

– Execution (prototype/experiments)

– Mathematical

– Combinations of these

Data Structures and Algorithms for Engineers 8. Carnegie Mellon University Africa

Modelling Software

• To support analysis, we need ways to abstract and represent
algorithms

• There are two extremes
1. Formal mathematics

Often too abstract and too removed from implementations and applications

2. Computer language
Often too many unnecessary details that complicate analysis

• Our initial task: how can we effectively represent,
communicate, and analyze algorithms?

Data Structures and Algorithms for Engineers 9. Carnegie Mellon University Africa

Relational Modelling

• Assume we have a requirement

“We need to be able to take text files, search for certain phrases that
may or may not be present, and produce a formatted document with the
phrases removed and placed in another file in a specified format for
printing and/or further analysis.”

• Such requirements can be thought of in terms of a relational
model

Relational models describe a requirement in terms of preconditions,
rules, and post conditions

Data Structures and Algorithms for Engineers 10. Carnegie Mellon University Africa

Relational Modelling

Relational Models are typically functional

– Rigorously specify

• Input (domain)

• Processing rules

• Output (range)

– Processing rules are algorithms

– State is not retained in relational models

Processing
RulesInput Output

Data Structures and Algorithms for Engineers 11. Carnegie Mellon University Africa

State Modelling

• In most systems, state is retained and transformed
throughout execution

• In these cases simple functional models are inadequate to
model the system

Processing
RulesInput Output

State

Data Structures and Algorithms for Engineers 12. Carnegie Mellon University Africa

State Modelling

• In state models, we often need to model precisely

– Preconditions (inputs)

– Post conditions (outputs)

– Processing rules (algorithms)

– States

– State transitions

Data Structures and Algorithms for Engineers 13. Carnegie Mellon University Africa

Practical Representations

Required characteristics

– Simple, clear, and intuitive (as far as possible)

– As rigorous as practical – but keeping the math as simple as
possible

– Language neutral

– Factor out the hardware and operating systems

– Focus on algorithmic essence

– Properly scoped (not too big, not too trivial or obvious)

Data Structures and Algorithms for Engineers 14. Carnegie Mellon University Africa

Practical Representations

• Some candidate representations
– Pseudo Code

– Flow Charts

– State Diagrams

– Formalisms

– Modeling Methodologies (e.g. UML)

• Many engineers use these, but some use them
– At the wrong time

– To model the wrong kinds of things (poor scoping)

– Incorrectly

– Mix “what is needed” with “how we will build it”

Data Structures and Algorithms for Engineers 15. Carnegie Mellon University Africa

Pseudo Code

• Pseudo code is an informal abstraction of an algorithm that:

– uses the structural conventions of a programming language

– is simplified for human reading rather than machine compilation

– omits details that are not essential for algorithmic analysis

– shows the temporal relation of instruction execution (sequencing)

• Despite many attempts, no standard for pseudo code syntax
currently exists

Data Structures and Algorithms for Engineers 16. Carnegie Mellon University Africa

Pseudo Code

• Declaration
type variable;
integer A; string name;

• Assignment
variable = value;
a = 45; x = y

• Basic mathematical operators
result = variable_value operator variable_value
y = a+b; z = 5.0/e; j = k*l; r = 2*(22/7)*(r^2)

• Basic functions and subroutines
read(), write(), print(),…
Assumed functions should be clearly defined prior to use

More on functions and subroutines later

Data Structures and Algorithms for Engineers 17. Carnegie Mellon University Africa

Pseudo Code

Control Structures

– Direct sequence
do X, then do Y

– Conditional branching
if Q then do X, else do Y

– Bounded iteration
do Z exactly X times

– Conditional or unbounded iteration
do Z until Q becomes true

while Q is true do Z

Data Structures and Algorithms for Engineers 18. Carnegie Mellon University Africa

Pseudo Code

Example: Algorithm to find the
greatest common denominator (GCD)

• How the read()function work is not
important for our analysis

• We focus on the essence of the algorithm,
not on checking input, formatting output,
error handling, and so forth

• Now that the algorithm has been distilled
to its essence we can analyze: how do we
know we solved the problem? how quickly
does it compute the answer?

a = read()
b = read()
if a = 0

return b
while b ≠ 0

if a > b
a := a − b

else
b := b − a

return a

Data Structures and Algorithms for Engineers 19. Carnegie Mellon University Africa

Pseudo Code

• Pseudo code is attractive because

– It looks like the computer-interpretable code

– It is complete in terms of describing computer algorithms

• In practice, pseudo code is sometimes extended and violates
notions of minimalism

– Pseudo code should only support what is necessary to describe the
algorithm – and no more!

– Sometimes, pseudo code is used to describe entire applications, and
becomes too cumbersome to support analysis of algorithms

Data Structures and Algorithms for Engineers 20. Carnegie Mellon University Africa

Flowcharts

• Graphical representation of the behavior of an algorithm
– Represents the steps of an algorithm by geometric shapes

– Temporal relationships are shown by connections

• Developed in the early 20th century for use in industrial
engineering
– Used in many domains for the last 100 years

– John von Neumann developed the flow chart while working at IBM as
a means to describe how programs operated

– Flowcharts are still used to describe computer algorithms- UML
activity diagrams are an extension of the flowchart

• There are many flowchart notation standards

Data Structures and Algorithms for Engineers 21. Carnegie Mellon University Africa

Flowcharts

Data Structures and Algorithms for Engineers 22. Carnegie Mellon University Africa

Flowcharts

Strengths and weaknesses

– The set of defined constructs is both minimal and complete

– The resulting algorithms can be hard to understand and analyze

– Graphical methods do not scale well – very difficult to represent large
and/or complex algorithms

– Hard to distribute, share, and reuse

Data Structures and Algorithms for Engineers 23. Carnegie Mellon University Africa

Finite State Machines (FSM)

• Behavioral models composed of a finite number of states,
transitions between those states, and actions

• FSMs are represented by state diagrams

• State diagrams have been used for 50+ years in software,
hardware, and system design and there are a variety of
notations and approaches

– Traditional Mealy-Moore state machines

– Harel state machines

– UML state machines

Data Structures and Algorithms for Engineers 24. Carnegie Mellon University Africa

Finite State Machines (FSM)

A traditional (e g. Mealy-Moore) type of FSM is a quintuple
(Σ, S, s0, δ, F)

Σ is the input alphabet where Σ is finite ∧ Σ ≠ ∅
S is a set of states where S is finite ∧ S ≠ ∅
s0 is an initial state where, s0 ∈ S
δ(q, x) is the state transition function where q ∈ S ∧ x ∈ Σ

(If the FSM is nondeterministic, then δ could be a set of states)

F is the set of final states where F ⊆ of S ∪ {∅}

Data Structures and Algorithms for Engineers 25. Carnegie Mellon University Africa

Finite State Machines (FSM)

δ(q, x) may be a partial function:

δ(q, x) does not have to be defined for every combination of q and x

If it is not defined then the FSM can enter an error state or reject the
input

Data Structures and Algorithms for Engineers 26. Carnegie Mellon University Africa

Finite State Machines (FSM)

The following (limiting) assumptions are made regarding
traditional (deterministic) Mealy-Moore FSAs

– an FSA can only be in one state at a time and must be in exactly one
state at all times

– States of one FSA are independent from the states of all other FSAs

– Transitions between states are not interruptible

– Actions are atomic and run to completion

– Actions may be executed on entry into a state, on exit from a state,
or during the transition from one state to another

Data Structures and Algorithms for Engineers 27. Carnegie Mellon University Africa

Finite State Machines (FSM)

Data Structures and Algorithms for Engineers 28. Carnegie Mellon University Africa

Finite State Machines (FSM)

FSM For ATM Machine

FSM For ATM Machine

Data Structures and Algorithms for Engineers 29. Carnegie Mellon University Africa

Finite State Machines (FSM)

Transitions indicate state change from one state to another
state that are described by

– a condition that needs to be fulfilled to enable a transition

– an action which is an activity that is to be performed at some point in
the transition

• Entry action: which is performed when entering the state

• Exit action: which is performed when exiting the state

• Input action: which is performed depending on present state and input
conditions

• Transition action: which is performed when performing a certain
transition

Data Structures and Algorithms for Engineers 30. Carnegie Mellon University Africa

Finite State Machines (FSM)

• Popular form of FSM are the Harel State Diagrams

• A variant which was adopted for
Unified Modeling Language (UML) State Machines

• There are two types of UML State Machines
– Behavioral State Machines (BSM)

Model the behaviour of objects

– Protocol State Machines (PSM)
Model protocols of interfaces and ports

• Most use users of UML don’t differentiate

Data Structures and Algorithms for Engineers 31. Carnegie Mellon University Africa

Finite State Machines (FSM)

FSAs are limited and its difficult to model concurrency, complex
object states, threads, multi-tasking

UML state machines extend the traditional automata theory in
several ways that include

– nested state

– guards

– actions

– activities

– orthogonal components

– concurrent state models

Data Structures and Algorithms for Engineers 32. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML State Machines – Nested States

Outer state is call the superstate

Inner states are called substates

Data Structures and Algorithms for Engineers 33. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML State Machines – Actions

You can specify state entry and exit actions

Data Structures and Algorithms for Engineers 34. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML State Machines – Actions

You can nest entry and exit actions

Data Structures and Algorithms for Engineers 35. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML State Machines – Activities

• Like actions except they are performed as long as the state
is active

• Activities are indicated with a do: statement

Data Structures and Algorithms for Engineers 36. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML State Machines – Orthogonal Components

Data Structures and Algorithms for Engineers 37. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML State Machines – Concurrent State Models

Concurrent threading can be modelled

Data Structures and Algorithms for Engineers 38. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML State Machines – Concurrent State Models

Forking / Joining can be modelled

Data Structures and Algorithms for Engineers 39. Carnegie Mellon University Africa

Finite State Machines (FSM)

• In traditional FSA, transitions carry little or no information

• UML state machine transitions carry a lot of information:

– Event Name - Name of triggering event

– Parameters - data passed with event

– Guard - condition that must be true for the transition to occur

– Action List - list of actions executed

– Event List - list of events executed

Data Structures and Algorithms for Engineers 40. Carnegie Mellon University Africa

Finite State Machines (FSM)

• The key problem with FSM technologies is that they simply
do not scale up well
– state explosion is a common problem

– care must be taken to restrict the scope of what is being modeled

• FSMs often abstract away the very algorithms we want to
model
– Care must be taken to maintain a proper and consistent level of

abstraction

– Can violate notions of completeness

Data Structures and Algorithms for Engineers 41. Carnegie Mellon University Africa

Finite State Machines (FSM)

UML state machines are really more like a notation than
traditional FSMs

– Violates minimalism

– Any benefit gain in applying mathematical rigor may be lost

