
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 4

• Analysis of complexity of algorithms

– Time complexity

– Big-O Notation

– Space complexity

• Introduction to complexity theory

– P, NP, and NP-Complete classes of algorithm

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Lecture 4

Analysis of complexity

– Performance of algorithms, time and space tradeoff, worst case and
average case performance

– Big O notation

– Recurrence relationships

– Analysis of complexity of iterative and recursive algorithms

– Recursive vs. iterative algorithms: runtime memory implications

– Complexity theory: tractable vs intractable algorithmic complexity

– Example intractable problems: travelling salesman problem,
Hamiltonian circuit, 3-colour problem, SAT, cliques

– Determinism and non-determinism

– P, NP, and NP-Complete classes of algorithm

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Complexity and Intractability

Tractable and intractable problems

– What is a ”reasonable” running time?

– NP problems, examples

– NP-complete problems and polynomial reducibility

Some elements of the following are adapted from notes by Simonas Šaltenis, Aalborg University

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Goal: transfer all n disks from peg A to peg B

Rules:
– move one disk at a time
– never place larger disk above smaller one

Towers of Hanoi

A B C A B C A B C A B C

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

• Can be very hard to find a direct – brute force – solution to the
problem of size n

• However, there is a very simple and elegant recursive solution:

– Assume that we can solve the problem of size n-1, i.e., we can move n-1
disks from one rod to another using a third rod as auxiliary

– To move n disks from A to B:

• Move the top n-1 disks from A to C using B (we know how to do this)

• Move the remaining disk on A to rod B

• Move the n-1 disks from C to B using A (we know how to do this)

• Total number of moves: T(n) = 2T(n - 1) + 1

Towers of Hanoi

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Towers of Hanoi

• Recurrence relation:

T(n) = 2 T(n - 1) + 1
T(1) = 1

• Solution by unfolding:

T(n) = 2 (2 T(n - 2) + 1) + 1 =
= 4 T(n - 2) + 2 + 1 =
= 4 (2 T(n - 3) + 1) + 2 + 1 =
= 8 T(n - 3) + 4 + 2 + 1 = ...
= 2i T(n - i) + 2i-1 +2i-2 +...+21 +20

• the expansion stops when i = n – 1

T(n) = 2n – 1 + 2n – 2 + 2n – 3 + ... + 21 + 20

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Towers of Hanoi

• This is a geometric sum, so that we have

T(n) = 2n - 1 = O(2n)

• The running time of this algorithm is exponential (kn) rather
than polynomial (nk)

• Good or bad news?

– the Tibetan monks were confronted with a tower of 64 rings...

– assuming one could move 1 million rings per second, it would take
half a million years to complete the process...

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Aside: Recursive Programming

Recursion and Recursive Objects

– Many problems can be elegantly described using recursion

– “Learning to think recursively is learning to look for big things that are
made from smaller things of exactly the same type as the big thing”

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Aside: Recursive Programming

Recursion and Recursive Objects

– The best strategy for developing a recursive algorithm is often to

• assume you have an algorithm that can give the solution for part of the
problem

• figure what additional work must be done to solve the full problem

• combine partial solution and additional processing

• use this new algorithm in place of the assumed algorithm

- In other words, find the recurrence relationship between the full
problem and simper components of the problem

- This is a “divide-and-conquer” strategy

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Aside: Recursive Programming

• Divide

– Break the problem into several problems that are similar to the original
problem but smaller in size

• Conquer

– Solve the sub-problems recursively, or,
– If they are small enough, solve them directly

• Combine the solutions to the sub-problems into a solution of
the original problem

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Aside: Recursive Programming

Factorial
n! = n x (n-1) x (n-2) x … x 1

Also given by the recurrence formula

fn = n x fn-1 n>0
f0 = 1

In other words

n! = n x (n-1)! n>0
0! = 1

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Aside: Recursive Programming

int factorial(int n) { // assume n >= 0
if (n == 0)

return(1);
else

return(n x factorial(n-1));
}

}

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Aside: Recursive Programming

Fibonnaci Sequence

Given by the recurrence formula

f0 = 1
f1 = 1
fn = fn-1 + fn-2 n>= 3

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Aside: Recursive Programming

int fibonnaci_number(int n) { // assume n >= 0
if (n == 0 || n == 1)

return(1);
else

return(fibonnaci_number(n-1) + fibonnaci_number(n-2));
}

}

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Aside: Recursive Programming

Tower of Hanoi

The objective of the puzzle is to move the entire stack to another peg,
obeying the following rules:

• Only one disk may be moved at a time

• Each move consists of taking the upper disk from one of the pegs and
sliding it onto another peg, on top of the other disks that may already be
present on that peg

• No disk may be placed on top of a smaller disk.

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Aside: Recursive Programming

void hanoi(int n, char a, char b, char c) {
if (n > 0) {

hanoi(n-1, a, c, b);
printf("Move disk of diameter %d from %c to %c\n", n, a, b);
hanoi(n-1, c, b, a);

}
}

…

Hanoi(5, ‘A’, ‘B’, ‘C’);

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Monkey Puzzle

• Nine square cards with imprinted
“monkey halfs”

• The goal is to arrange the cards
in 3x3 square with matching
halfs...

Are such long running times linked to the size of the solution of an algorithm?

No. To show that, we in the following consider only TRUE/FALSE or yes/no
problems – decision problems

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Monkey Puzzle

• Assumption: orientation is fixed

• Does any MxM arrangement exist that
fulfills the matching criterion?

• Brute-force algorithm would take n! times
to verify whether a solution exists (why?)

– assuming n = 25, it would take 490 billion
years on a one-million-per- second
arrangements computer to verify whether a
solution exists

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Monkey Puzzle

• Assume n, the number of cards, is 25

• The size of the final square is 5x5

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Monkey Puzzle

Brute force solution:

– Go through all possible arrangements of the cards

– pick a card and place it - there are 25 possibilities for the first
placement

– pick the next card and place it - there are 24 possibilities

– Pick the next card, there are 23 possibilities ...

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Monkey Puzzle

• There are 25x24x23x22x......x2x1 possible arrangements

• That is, there are factorial 25 possible arrangements (25!)

• 25! contains 26 digits

• If we make 1000000 arrangements per second, the algorithm
will take 490 000 000 000 years to complete

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Monkey Puzzle

• Improving the algorithm

– discarding partial arrangements (backtracking & pruning)

– etc.

• A smart algorithm would still take a couple of thousand years
in the worst case

• Is there an easier way to find solutions?
Perhaps, but nobody has found them, yet …

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Complexity and Intractability

• We classify functions as ‘good’ and ‘bad’

• Polynomial functions are good

• Super-polynomial (or exponential) functions are bad

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Complexity and Intractability

• The order of complexity of this algorithm is O(n!)

• n! grows at a rate which is orders of magnitude larger than
the growth rate of the other functions we mentioned before

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Complexity and Intractability

• Other functions exist that grow even faster,
e.g. nn (super-exponential)

• Even functions like 2n exhibit unacceptable sizes even for
modest values of n

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Reasonable vs. Unreasonable

Growth rates

1

1E+10

1E+20

1E+30

1E+40

2 4 8 16 32 64 128 256 512 1024

5n
n^3
n^5
1.2^n
2^n
n^n Number of

microseconds
since “Big-Bang”

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Reasonable vs. Unreasonable

function/
n 10 20 50 100 300

n2 1/10,000
second

1/2,500
second

1/400
second

1/100
second

9/100
second

n5 1/10
second

3.2
seconds

5.2
minutes

2.8
hours

28.1
days

2n 1/1000
second

1
second

35.7
years

400 trillion
centuries

a 75 digit-
number of
centuries

nn 2.8
hours

3.3 trillion
years

a 70 digit-
number of
centuries

a 185 digit-
number of
centuries

a 728 digit-
number of
centuries

Ex
po
ne
nt
ia
l

Po
ly
no
m
ia
l

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Reasonable vs. Unreasonable

• ”Good”, reasonable algorithms
– Algorithms bound by a polynomial function nk

– Tractable problems

• ”Bad”, unreasonable algorithms
– Algorithms whose running time is above nk

– Intractable problems

intractable
problems

tractable
problems

problems not admitting
reasonable algorithms

Problems admitting reasonable
(polynomial-time) algorithms

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Just Get a Faster Computer

• Computers become faster every day

– Doesn’t matter: insignificant (a constant) compared to exp. running
time

• Maybe the Monkey puzzle is just one specific one we could
simply ignore

– the monkey puzzle falls into a category of problems called
NPC (NP complete) problems (~1000 problems)

– all admit unreasonable solutions

– not known to admit reasonable ones…

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Travelling Salesman Problem (TSP)

TSP is the problem of a salesman who wants to find, starting
from his home town, a shortest possible trip through a given set
of customer cities and to return to its home town; visiting exactly
once each city

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Travelling Salesman Problem (TSP)

• Naive solutions take n! time in worst-case, where n is the
number of edges of the graph

• No polynomial-time algorithms are known

– TSP is an NP-complete problem

• Longest Path problem between A and B in a weighted graph
is also NP-complete

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Typical Input for HCP Hamiltonian cycle for the graph Another Hamiltonian cycle for the
same graph in

An Hamiltonian circuit for a given graph G=(V, E) consists on
finding an ordering of the vertices of the graph G such that
each vertex is visited exactly once

TSP & Hamiltonian

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

Coloring Problem

• 3-colour
– given a planar map, can it be colored using 3 colors so that no

adjacent regions have the same color

YES instance

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Coloring Problem

NO instance
Impossible to 3-color Nevada
and bordering states

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

Coloring Problem

• Any map can be 4-colored

• Maps that contain no points that are the junctions of an odd
number of states can be 2-colored

• No polynomial algorithms are known to determine whether a
map can be 3-colored – it’s an NP-complete problem

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Satisifiability (SAT)

• Determine the truth or falsity of formulae in Boolean algebra
(or, equivalently, in propositional calculus)

• Using Boolean variables and operators

∧ (and)
∨ (or)
~ (not)

we compose formula such as the following

ϕ = (~x ∧ y) ∨ (x ∧ ~z)

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Satisifiability (SAT)

u The algorithmic problem calls for determining the
satisfiability of such formulae

Is there some assignment of value to x, y, and z for which ϕ evaluates to 1
(TRUE)

x = 0, y = 1, z = 0 makes ϕ = (~x ∧ y) ∨ (x ∧ ~z) evaluate to 1

u Exponential time algorithm on n = the number of distinct
elementary assertions (O(2n))

u Best known solution, problem is in NP-complete class

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

CLIQUE

• Given n people and their pairwise relationships, is there a
group of s people such that every pair in the group knows
each other

– people: a, b, c, …, k

– friendships: (a,e), (a,f),…

– clique size: s = 4?

– YES, {b, d, i, h} is a
certificate

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

P

Definition of P

– The set of all decision problems solvable in polynomial time on a
deterministic Turing machine

Examples

– MULTIPLE: Is the integer y a multiple of x?
• YES: (x, y) = (17, 51)

– RELPRIME: Are the integers x and y relatively prime?
• YES: (x, y) = (34, 39)

– MEDIAN: Given integers x1 , …, xn , is the median value < M?
• YES: (M, x1 , x2 , x3 , x4 , x5) = (17, 2, 5, 17, 22, 104)

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

P

P is the set of all decision problems solvable in polynomial time
on REAL computers

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

NP

Definition of NP

– The set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine

– Important definition because it links many fundamental problems

– There are no known polynomial time solutions to NP problems

Data Structures and Algorithms for Engineers 67 Carnegie Mellon University Africa

NP-Completeness

• NP-hard:

– A problem that is at least as hard as any problem in NP

– That is, any problem in NP can be reduced to an NP-hard problem in
polynomial time

• NP-complete problems are NP problems that are
NP-hard

– “Hardest computational problems” in NP

Data Structures and Algorithms for Engineers 68 Carnegie Mellon University Africa

NP-Completeness

A problem B is NP-complete if it satisfies two conditions

– B is in NP

– Every problem A in NP is polynomial time reducible to B

Data Structures and Algorithms for Engineers 69 Carnegie Mellon University Africa

NP-Completeness

• Each NPC problem’s fate is tightly coupled to all the others
(complete set of problems)

• Finding a polynomial time algorithm for one NPC problem
would automatically yield an a polynomial time algorithm for
all NP problems

• Proving that one NP-complete problem has an exponential
lower bound would automatically prove that all other NP-
complete problems have exponential lower bounds

Data Structures and Algorithms for Engineers 70 Carnegie Mellon University Africa

CLIQUE is NP-complete

• CLIQUE is NP-complete

– CLIQUE is in NP

– SAT is in NP-complete

– SAT reduces to CLIQUE

– CLIQUE is NP-complete

• Hundreds of problems can be shown to be NP-complete that
way…

Data Structures and Algorithms for Engineers 71 Carnegie Mellon University Africa

The Big Question

• Does P = NP?

Is the original DECISION problem as easy as VERIFICATION?

• Most important open problem in theoretical computer
science. Clay Institute of Mathematics offers $1m prize

Data Structures and Algorithms for Engineers 72 Carnegie Mellon University Africa

The Big Question

https://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg

Data Structures and Algorithms for Engineers 73 Carnegie Mellon University Africa

The Big Question

• If P=NP, then

– There are efficient algorithms for TSP and factoring
– Cryptography is impossible on conventional machines
– Modern banking system will collapse

• If not, then

– Can’t hope to write efficient algorithm for TSP

– But maybe efficient algorithm still exists for testing the primality of a
number – i.e., there are some problems that are NP, but not NP-
complete

Data Structures and Algorithms for Engineers 74 Carnegie Mellon University Africa

The Answer?

• Probably no, since

– Thousands of researchers have spent four decades in search of
polynomial algorithms for many fundamental NP-complete problems
without success

– Consensus opinion: P ¹ NP

• But maybe yes, since

– No success in proving P ¹ NP either

Data Structures and Algorithms for Engineers 75 Carnegie Mellon University Africa

Dealing with NP-Completeness

• Hope that a worst case doesn’t occur

– Complexity theory deals with worst case behavior. The instance(s)
you want to solve may be "easy"
• TSP where all points are on a line or circle
• 13,509 US city TSP problem solved (Cook et. al., 1998)

• Change the problem

– Develop a heuristic, and hope it produces a good solution.
– Design an approximation algorithm: algorithm that is guaranteed to

find a high- quality solution in polynomial time
• active area of research, but not always possible

• Keep trying to prove P = NP

Data Structures and Algorithms for Engineers 76 Carnegie Mellon University Africa

Conclusion

• It is not known whether NP problems are tractable or
intractable

• But, there exist provably intractable problems

– Even worse – there exist problems with running times unimaginably
worse than exponential

• More bad news: there are provably noncomputable
(undecidable) problems

– There are no (and there will never be) algorithms to solve these
problems

Data Structures and Algorithms for Engineers 77 Carnegie Mellon University Africa

Summary

• NP - class of problems which admit non-deterministic
polynomial-time algorithms

• P - class of problems which admit (deterministic) polynomial-
time algorithms

• NP-Complete - the hardest of the NP problems (every NP
problem can be transformed to an NP-Complete problem in
polynomial time)

• So, is NP = P or not?

Data Structures and Algorithms for Engineers 78 Carnegie Mellon University Africa

Summary

• We don’t know!

• The NP=P? problem has been open since it was posed in
1971 and is one of the most difficult unresolved problems in
computer science

Data Structures and Algorithms for Engineers 79 Carnegie Mellon University Africa

Summary

• A polynomial function is one that is bounded from above by
some function nk for some fixed value of k
(i.e. k ¹ f(n))

• An exponential function is one that is bounded from above by
some function kn for some fixed value of k
(i.e. k ¹ f(n))

• Strictly speaking, nn is not exponential but super-exponential

Data Structures and Algorithms for Engineers 80 Carnegie Mellon University Africa

Summary

• Polynomial-time algorithm

– Order-of-magnitude time performance bounded from above by a
polynomial function of n

– Reasonable algorithm

• Super-polynomial / exponential and super-exponential time
algorithms

– Order-of-magnitude time performance bounded from above by a
super-polynomial, exponential, or super-exponential function of n

– Unreasonable algorithm

Data Structures and Algorithms for Engineers 81 Carnegie Mellon University Africa

Summary

• There are many (approx. 1000) important and diverse
problems which exhibit the same properties as the monkey
puzzle problem (e.g. TSP)

• All admit unreasonable, exponential-time, solutions

• None are known to admit reasonable ones

Data Structures and Algorithms for Engineers 82 Carnegie Mellon University Africa

Summary

• But no-one has been able to prove that any of them REQUIRE
super-polynomial time

• Best known lower-bounds are O(n)

Data Structures and Algorithms for Engineers 83 Carnegie Mellon University Africa

Summary

• Examples of NP-Complete Problems

– 2-D arrangments (cf. pattern matching / recognition)

– Path-finding (e.g. travelling salesman TSP; Hamiltonian)

– Scheduling and matching (e.g. time-tabling)

– Determining logical truth in the propositional calculus

– Colouring maps and graphs

Data Structures and Algorithms for Engineers 84 Carnegie Mellon University Africa

Summary

• All NP-Complete problems seem to require

– construction of partial solutions
– and then backtracking when we find they are wrong

in the development of the final solution

• However

– if we could ‘guess’ at each point in the construction which partial
solutions were to lead to the ‘right’ answer

– then we could avoid the construction of these partial solutions and
construct only the correct solution

Data Structures and Algorithms for Engineers 85 Carnegie Mellon University Africa

Summary

• Important property of NP-Compete problems

– Either all NP-Complete problems are tractable
or none of them are

– If there exists a polynomial-time algorithm for any single
NP-Complete problem, then there would be necessarily a polynomial-time
algorithm for all NP-Complete problems

– If there is an exponential lower bound for any NP-Complete problem,
they all are intractable

Data Structures and Algorithms for Engineers 86 Carnegie Mellon University Africa

Summary

