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Lecture 4

• Analysis of complexity of algorithms

– Time complexity

– Big-O Notation

– Space complexity

• Introduction to complexity theory

– P, NP, and NP-Complete classes of algorithm
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Lecture 4

Analysis of complexity

– Performance of algorithms, time and space tradeoff, worst case and 
average case performance

– Big O notation

– Recurrence relationships

– Analysis of complexity of iterative and recursive algorithms

– Recursive vs. iterative algorithms: runtime memory implications

– Complexity theory: tractable vs intractable algorithmic complexity

– Example intractable problems: travelling salesman problem, 
Hamiltonian circuit, 3-colour problem, SAT, cliques

– Determinism and non-determinism

– P, NP, and NP-Complete classes of algorithm
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Complexity and Intractability

Tractable and intractable problems

– What is a ”reasonable” running time?

– NP problems, examples

– NP-complete problems and polynomial reducibility

Some elements of the following are adapted from notes by Simonas Šaltenis, Aalborg University
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Goal: transfer all n disks from peg A to peg B

Rules:
– move one disk at a time
– never place larger disk above smaller one

Towers of Hanoi

A B C A B C A B C A B C
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• Can be very hard to find a direct – brute force – solution to the 
problem of size n

• However, there is a very simple and elegant recursive solution:

– Assume that we can solve the problem of size n-1, i.e., we can move n-1
disks from one rod to another using a third rod as auxiliary 

– To move n disks from A to B:

• Move the top n-1 disks from A to C using B (we know how to do this) 

• Move the remaining disk on A to rod B

• Move the n-1 disks from C to B using A (we know how to do this)

• Total number of moves:  T(n) = 2T(n - 1) + 1

Towers of Hanoi
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Towers of Hanoi

• Recurrence relation:

T(n) = 2 T(n - 1) + 1
T(1) = 1

• Solution by unfolding:

T(n) = 2 (2 T(n - 2) + 1) + 1 =
= 4 T(n - 2) + 2 + 1 =
= 4 (2 T(n - 3) + 1) + 2 + 1 =
= 8 T(n - 3) + 4 + 2 + 1 = ...
= 2i T(n - i) + 2i-1 +2i-2 +...+21 +20

• the expansion stops when i = n – 1

T(n) = 2n – 1 + 2n – 2 + 2n – 3 + ... + 21 + 20



Data Structures and  Algorithms for Engineers 8 Carnegie Mellon University Africa

Towers of Hanoi

• This is a geometric sum, so that we have

T(n) = 2n - 1 = O(2n)

• The running time of this algorithm is exponential (kn) rather 
than polynomial (nk)

• Good or bad news?

– the Tibetan monks were confronted with a tower of 64 rings...

– assuming one could move 1 million rings per second, it would take 
half a million years to complete the process...
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Aside: Recursive Programming

Recursion and Recursive Objects

– Many problems can be elegantly described using recursion

– “Learning to think recursively is learning to look for big things that are 
made from smaller things of exactly the same type as the big thing”
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Aside: Recursive Programming

Recursion and Recursive Objects

– The best strategy for developing a recursive algorithm is often to

• assume you have an algorithm that can give the  solution for part of the 
problem 

• figure what additional work must be done to solve the full problem

• combine partial solution and additional processing

• use this new algorithm in place of the assumed algorithm

- In other words, find the recurrence relationship  between the full 
problem and simper components of the problem

- This is a “divide-and-conquer” strategy
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Aside: Recursive Programming

• Divide

– Break the problem into several problems that are similar to the original 
problem but smaller in size

• Conquer

– Solve the sub-problems recursively, or,
– If they are small enough, solve them directly

• Combine the solutions to the sub-problems into a solution of 
the original problem



Data Structures and  Algorithms for Engineers 12 Carnegie Mellon University Africa

Aside: Recursive Programming

Factorial
n! = n x (n-1) x (n-2) x … x 1

Also given by the recurrence formula

fn = n x fn-1           n>0
f0 = 1

In other words

n! = n x (n-1)!   n>0
0! = 1
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Aside: Recursive Programming

int factorial(int n) { // assume n >= 0
if (n == 0) 

return(1);
else

return(n x factorial(n-1));
}

}
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Aside: Recursive Programming

Fibonnaci Sequence

Given by the recurrence formula

f0 = 1
f1 = 1
fn = fn-1 + fn-2       n>= 3
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Aside: Recursive Programming

int fibonnaci_number(int n) { // assume n >= 0
if (n == 0 || n == 1) 

return(1);
else

return(fibonnaci_number(n-1) + fibonnaci_number(n-2));
}

}
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Aside: Recursive Programming

Tower of Hanoi

The objective of the puzzle is to move the entire stack to another peg, 
obeying the following rules:

• Only one disk may be moved at a time

• Each move consists of taking the upper disk from one of the pegs and 
sliding it onto another peg, on top of the other disks that may already be 
present on that peg

• No disk may be placed on top of a smaller disk. 
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Aside: Recursive Programming

void hanoi(int n, char a, char b, char c) {
if (n > 0) {

hanoi(n-1, a, c, b);
printf("Move disk of diameter %d from %c to %c\n", n, a, b);
hanoi(n-1, c, b, a);

}
}

…

Hanoi(5, ‘A’, ‘B’, ‘C’);
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Monkey Puzzle

• Nine square cards with imprinted 
“monkey halfs”

• The goal is to arrange the cards 
in 3x3 square with matching 
halfs...

Are such long running times linked to the size of the solution of an algorithm?

No. To show that, we in the following consider only TRUE/FALSE or yes/no 
problems – decision  problems
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Monkey Puzzle

• Assumption: orientation is fixed

• Does any MxM arrangement exist that 
fulfills the matching criterion?

• Brute-force algorithm would take n! times 
to verify whether a solution exists (why?) 

– assuming n = 25, it would take 490 billion 
years on a one-million-per- second 
arrangements computer to verify whether a 
solution exists
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Monkey Puzzle

• Assume n, the number of cards, is 25

• The size of the final square is 5x5
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Monkey Puzzle

Brute force solution:

– Go through all possible arrangements of the cards

– pick a card and place it - there are 25 possibilities for the first 
placement

– pick the next card and place it - there are 24 possibilities

– Pick the next card, there are 23 possibilities ...
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Monkey Puzzle

• There are 25x24x23x22x......x2x1 possible arrangements

• That is, there are factorial 25 possible arrangements (25!)

• 25! contains 26 digits

• If we make 1000000 arrangements per second, the algorithm 
will take 490 000 000 000 years to complete
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Monkey Puzzle

• Improving the algorithm

– discarding partial arrangements (backtracking & pruning)

– etc.

• A smart algorithm would still take a couple of thousand years 
in the worst case

• Is there an easier way to find solutions?
Perhaps, but nobody has found them, yet … 
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Complexity and Intractability

• We classify functions as ‘good’ and ‘bad’

• Polynomial functions are good

• Super-polynomial (or exponential) functions are bad
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Complexity and Intractability

• The order of complexity of this algorithm is O(n!)

• n! grows at a rate which is orders of magnitude larger than 
the growth rate of the other functions we mentioned before
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Complexity and Intractability

• Other functions exist that grow even faster,
e.g. nn (super-exponential)

• Even functions like 2n exhibit unacceptable sizes even for 
modest values of n
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Reasonable vs. Unreasonable 

Growth rates
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Reasonable vs. Unreasonable

function/
n 10 20 50 100 300

n2 1/10,000
second

1/2,500
second

1/400
second

1/100
second

9/100
second

n5 1/10
second

3.2
seconds

5.2
minutes

2.8
hours

28.1 
days

2n 1/1000
second

1
second

35.7
years

400 trillion
centuries

a 75 digit-
number of 
centuries

nn 2.8 
hours

3.3 trillion
years

a 70 digit-
number of 
centuries

a 185 digit-
number of 
centuries

a 728 digit-
number of 
centuries
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l
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Reasonable vs. Unreasonable

• ”Good”, reasonable algorithms
– Algorithms bound by a polynomial function nk

– Tractable problems

• ”Bad”, unreasonable algorithms
– Algorithms whose running time is above nk

– Intractable problems

intractable
problems

tractable
problems

problems not admitting
reasonable algorithms

Problems admitting reasonable
(polynomial-time) algorithms
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Just Get a Faster Computer

• Computers become faster every day

– Doesn’t matter: insignificant (a constant) compared to exp. running 
time

• Maybe the Monkey puzzle is just one specific one we could 
simply ignore

– the monkey puzzle falls into a category of problems called 
NPC (NP complete) problems (~1000 problems)

– all admit unreasonable solutions 

– not known to admit reasonable ones…
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Travelling Salesman Problem (TSP)

TSP is the problem of a salesman who wants to find, starting 
from his home town, a shortest possible trip through a given set 
of customer cities and to return to its home town; visiting exactly 
once each city



Data Structures and  Algorithms for Engineers 32 Carnegie Mellon University Africa

Travelling Salesman Problem (TSP)

• Naive solutions take n! time in worst-case, where n is the 
number of edges of the graph

• No polynomial-time algorithms are known

– TSP is an NP-complete problem

• Longest Path problem between A and B in a weighted graph 
is also NP-complete 
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Typical Input for HCP Hamiltonian cycle for the graph Another Hamiltonian cycle for the 
same graph in

An Hamiltonian circuit for a given graph G=(V, E) consists on 
finding an ordering of the vertices of the graph G such that 
each vertex is visited exactly once

TSP & Hamiltonian
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Coloring Problem

• 3-colour
– given a planar map, can it be colored using 3 colors so that no

adjacent regions have the same color

YES instance
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Coloring Problem

NO instance
Impossible to 3-color Nevada 
and bordering states
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Coloring Problem

• Any map can be 4-colored

• Maps that contain no points that are the junctions of an odd 
number of states can be 2-colored

• No polynomial algorithms are known to determine whether a 
map can be 3-colored – it’s an NP-complete problem
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Satisifiability (SAT) 

• Determine the truth or falsity of formulae in Boolean algebra 
(or, equivalently, in propositional calculus)

• Using Boolean variables and operators

∧ (and)
∨ (or) 
~    (not)

we compose formula such as the following

ϕ = (~x ∧ y) ∨ (x ∧ ~z) 
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Satisifiability (SAT) 

u The algorithmic problem calls for determining the 
satisfiability of such formulae

Is there some assignment of value to x, y, and z for which ϕ evaluates to 1 
(TRUE)

x = 0, y = 1, z = 0 makes ϕ = (~x ∧ y) ∨ (x ∧ ~z)  evaluate to 1

u Exponential time algorithm on n = the number of distinct
elementary assertions (O(2n))

u Best known solution, problem is in NP-complete class
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CLIQUE

• Given n people and their pairwise relationships, is there a 
group of s people such that every pair in the group knows 
each other

– people: a, b, c, …, k

– friendships: (a,e), (a,f),…

– clique size: s = 4?

– YES, {b, d, i, h} is a 
certificate
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P

Definition of P

– The set of all decision problems solvable in polynomial time on a 
deterministic Turing machine

Examples

– MULTIPLE: Is the integer y a multiple of x?
• YES: (x, y) = (17, 51)

– RELPRIME: Are the integers x and y relatively prime?
• YES: (x, y) = (34, 39)

– MEDIAN: Given integers x1 , …, xn , is the median value < M?
• YES: (M, x1 , x2 , x3 , x4 , x5 ) = (17, 2, 5, 17, 22, 104)
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P

P is the set of all decision problems solvable in polynomial time 
on REAL computers
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NP

Definition of NP

– The set of all decision problems solvable in polynomial time on a 
nondeterministic Turing machine 

– Important definition because it links many fundamental problems

– There are no known polynomial time solutions to NP problems
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NP-Completeness 

• NP-hard:

– A problem that is at least as hard as any problem in NP

– That is, any problem in NP can be reduced to an NP-hard problem in 
polynomial time  

• NP-complete problems are NP problems that are 
NP-hard

– “Hardest computational problems” in NP
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NP-Completeness 

A problem B is NP-complete if it satisfies two conditions

– B is in NP

– Every problem A in NP is polynomial time reducible to B
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NP-Completeness

• Each NPC problem’s fate is tightly coupled to all the others 
(complete set of problems)

• Finding a polynomial time algorithm for one NPC problem
would automatically yield an a polynomial time algorithm for 
all NP problems

• Proving that one NP-complete problem has an exponential 
lower bound would automatically prove that all other NP-
complete problems have exponential lower bounds
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CLIQUE is NP-complete

• CLIQUE is NP-complete

– CLIQUE is in NP

– SAT is in NP-complete

– SAT reduces to CLIQUE

– CLIQUE is NP-complete

• Hundreds of problems can be shown to be NP-complete that
way…
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The Big Question

• Does P = NP?

Is the original DECISION problem as easy as VERIFICATION?

• Most important open problem in theoretical computer 
science. Clay Institute of Mathematics offers $1m prize
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The Big Question

https://commons.wikimedia.org/wiki/File:P_np_np-complete_np-hard.svg
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The Big Question

• If P=NP, then

– There are efficient algorithms for TSP and factoring
– Cryptography is impossible on  conventional machines
– Modern banking system will collapse

• If not, then

– Can’t hope to write efficient algorithm for TSP

– But maybe efficient algorithm still exists for testing the primality of a 
number – i.e., there are some problems that are NP, but not NP-
complete
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The Answer?

• Probably no, since

– Thousands of researchers have spent four decades in search of 
polynomial algorithms for many fundamental NP-complete problems 
without success

– Consensus opinion: P ¹ NP

• But maybe yes, since

– No success in proving P ¹ NP either
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Dealing with NP-Completeness

• Hope that a worst case doesn’t occur

– Complexity theory deals with worst case behavior. The instance(s)
you want to solve may be "easy"
• TSP where all points are on a line or circle
• 13,509 US city TSP problem solved (Cook et. al., 1998)

• Change the problem

– Develop a heuristic, and hope it produces a good solution. 
– Design an approximation algorithm: algorithm that is guaranteed to 

find a high- quality solution in polynomial time
• active area of research, but not always possible

• Keep trying to prove P = NP
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Conclusion

• It is not known whether NP problems are tractable or 
intractable

• But, there exist provably intractable problems

– Even worse – there exist problems with running times unimaginably 
worse than exponential

• More bad news: there are provably noncomputable
(undecidable) problems

– There are no (and there will never be) algorithms to solve these 
problems
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Summary

• NP - class of problems which admit non-deterministic 
polynomial-time algorithms

• P - class of problems which admit (deterministic) polynomial-
time algorithms

• NP-Complete - the hardest of the NP problems (every NP 
problem can be transformed to an NP-Complete problem in 
polynomial time)

• So, is NP = P or not?
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Summary

• We don’t know!

• The NP=P? problem has been open since it was posed in 
1971 and is one of the most difficult unresolved problems in 
computer science
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Summary

• A polynomial function is one that is bounded from above by 
some function nk for some fixed value of k
(i.e. k ¹ f(n) )

• An exponential function is one that is bounded from above by 
some function kn for some fixed value of k
(i.e. k ¹ f(n) )

• Strictly speaking, nn is not exponential but super-exponential
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Summary

• Polynomial-time algorithm

– Order-of-magnitude time performance bounded from above by a 
polynomial function of n

– Reasonable algorithm

• Super-polynomial / exponential and super-exponential time 
algorithms

– Order-of-magnitude time performance bounded from above by a 
super-polynomial, exponential, or super-exponential function of n

– Unreasonable algorithm
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Summary

• There are many (approx. 1000) important and diverse 
problems which exhibit the same properties as the monkey 
puzzle problem (e.g. TSP)

• All admit unreasonable, exponential-time, solutions

• None are known to admit reasonable ones
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Summary

• But no-one has been able to prove that any of them REQUIRE 
super-polynomial time

• Best known lower-bounds are O(n)
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Summary

• Examples of NP-Complete Problems

– 2-D arrangments (cf. pattern matching / recognition)

– Path-finding (e.g. travelling salesman TSP; Hamiltonian)

– Scheduling and matching (e.g. time-tabling)

– Determining logical truth in the propositional calculus

– Colouring maps and graphs
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Summary

• All NP-Complete problems seem to require

– construction of partial solutions
– and then backtracking when we find they are wrong

in the development of the final solution

• However

– if we could ‘guess’ at each point in the construction which partial 
solutions were to lead to the ‘right’ answer

– then we could avoid the construction of these partial solutions and 
construct only the correct solution
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Summary

• Important property of NP-Compete problems

– Either all NP-Complete problems are tractable
or none of them are

– If there exists a polynomial-time algorithm for any single
NP-Complete problem, then there would be necessarily a polynomial-time 
algorithm for all NP-Complete problems

– If there is an exponential lower bound for any NP-Complete problem, 
they all are intractable



Data Structures and  Algorithms for Engineers 86 Carnegie Mellon University Africa

Summary


