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Lecture 5

Searching and Sorting Algorithms

– Linear Search & Binary Search

– In-place sorts
• Bubble Sort
• Selection Sort 
• Insertion Sort

– Not-in-place sort
• Quicksort
• Mergesort

– Characteristics of a good sort
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Linear (Sequential) Search

Linear (Sequential) Search

• Begin at the beginning of the list

• Proceed through the list, sequentially and element by 
element,

• Until the key is encountered
or
Until the end of the list is reached
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Linear (Sequential) Search

• Note: we treat a list as a general concept, decoupled from its 
implementation

• The order of complexity is O(n)

• The list does not have to be in sorted order
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Implementation of linear search in C

int linear_search(item_type s[], item_type key, int low, int high) {

int i;

i = low;

while ((s[i] != key) && (i < high)) {

i = i+1;

}

if (s[i] == key) {

return (i);

}

else {

return(-1);

}

}
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Binary Search

• If the list is sorted, we can use a more efficient O(log2(n)) 
search strategy

• Check to see whether the key is

– equal to

– less than

– greater than

the middle element
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Binary Search

A B D F G J K M O P R

first lastmid
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Binary Search

• If key is equal to the middle element, 
then terminate (found)

• If key is less than the middle element, 
then search the left half

• If key is greater than the middle element, then search the right half

• Continue until either

– the key is found or

– there are no more elements to search
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Implementation of Binary_Search

Pseudo-code

binary_search(list, key, lower_bound, upper_bound)

identify sublist to be searched by setting bounds on search

REPEAT

get middle element of list

if middle element < key

then reset bounds to make the right sublist  

the list to be searched

else reset bounds to make the left sublist

the list to be searched

UNTIL list is empty or key is found 



Data Structures and  Algorithms for Engineers 10 Carnegie Mellon University Africa

Implementation of binary search in C
(iterative approach)

typedef char item_type;

int binary_search(item_type s[], item_type key, int low, int high) {

int first, last, mid;

first = low;
last  = high;

do {
mid = (first + last) / 2;
if (s[mid] < key) {

first = mid + 1;
}
else {

last = mid - 1;
}

} while ( (first <= last) && (s[mid] != key) );

if (s[mid] == key)
return (mid);

else
return (-1);

}
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Binary Search

A B D F G J K M O P R

first last

first:     
last:    
mid:       
list[mid]:
key:       P 

mid
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Binary Search

A B D F G J K M O P R

first last

first:     1
last:     11
mid:       6 
list[mid]: J
key:       P 

mid
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Binary Search

A B D F G J K M O P R

first last

first:     1   7
last:     11  11
mid:       6   9
list[mid]: J   O
key:       P   P

mid
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Binary Search

A B D F G J K M O P R

first last

first:     1   7   10
last:     11  11   11
mid:       6   9   10
list[mid]: J   O    P
key:       P   P    P

mid

FOUND!
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Binary Search

A B D F G J K M O P R

first last

first:     
last:    
mid:       
list[mid]:
key:       E 

mid
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Binary Search

A B D F G J K M O P R

first last

first:     1
last:     11
mid:       6 
list[mid]: J
key:       E 

mid
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Binary Search

A B D F G J K M O P R

first last

first:     1   1
last:     11   5
mid:       6   3
list[mid]: J   D
key:       E   E

mid
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Binary Search

A B D F G J K M O P R

first last

first:     1   1   4
last:     11   5   5
mid:       6   3   4
list[mid]: J   D   F
key:       E   E   E

mid
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Binary Search

A B D F G J K M O P R

firstlast

first:     1   1   4   4
last:     11   5   5   3
mid:       6   3   4   3
list[mid]: J   D   F   D
key:       E   E   E   E

mid

first > last: NOT FOUND!
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Implementation of binary search in C
(recursive approach)

typedef char item_type;

int binary_search(item_type s[], item_type key, int low, int high) {

int mid;

if (low > high)  return (-1); /* key not found */

mid = (low + high) / 2;

if (s[mid] == key) return(mid);

if (s[mid] > key) {

return(binary_search(s, key, low, mid-1));

}

else {

return(binary_search(s, key, mid+1, high));

}

}
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Sorting Algorithms
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Input: A sequence of n numbers < a1, a2,  … an >

Output: the permutation (reordering) of the input 
sequence such that a1 £ a2 £ … £ an

The Sorting Problem
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Sorting Algorithms

• In-place sorts 

– Small number of elements stored outside the input data structure
– Additional space requirements O(1)
– Tradeoff: more computationally-complex algorithms (slower sorts)

• Bubble Sort

• Selection Sort 

• Insertion Sort
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Sorting Algorithms

• Not-in-place sort

– Additional space requirements not O(1)
– Tradeoff: less computationally-complex algorithms but greater memory 

requirements (possibly unpredictable)

• Quick Sort

• Merge Sort

• Characteristics of a good sort
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Bubble Sort

• Assume we are sorting a list represented by an array A of n 
integer elements

• Bubble sort algorithm in pseudo-code

FOR every element in the list, 
proceeding from the first to the last

WHILE list element > previous list element
bubble element back (up) the list
by successive swapping with 
the element just above/prior it
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Bubble Sort

10 9 8 11 4
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Bubble Sort
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9
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8
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Implementation of Bubble_Sort()

int bubble_sort(int *a, int size) {  // int a[]

int i,j, temp;

for (i=0; i < size-1; i++) { // why?

for (j=i; j >= 0; j--) {

if (a[j] > a[j+1]) {

/* swap */

temp = a[j+1];

a[j+1] = a[j];

a[j] = temp;

}

}

}

}
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Bubble Sort

A few observations:

– we don’t usually sort numbers; we usually sort records with keys 
• the key can be a number

• or the key could be a string

• the record would be represented with a struct

– The swap should be done with a function (so that a record can be 
swapped)

– We can make the preceding algorithm more efficient.  How? 
(hint: do we always have to bubble back to the top?)
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Bubble Sort

Exercise: implement these changes and write a driver 
program to test:

– the original bubble sort

– the more efficient bubble sort

– the bubble sort with a swap function

– the bubble sort with structures

– compute the order of time complexity of the bubble sort
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Selection Sort

Example: 

Initial Array

After 1st swap

After 4th swap

After 2nd swap

After 3rd swap

29 10 14 37 13

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37

10 13 14 29 37

- Shaded elements are selected
- Boldface elements are in order
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Selection Sort

• Assume we are sorting a list represented by an array A 
of n integer elements

• Selection sort algorithm in pseudo-code

last = n-1
Do

Select largest element from a[0..last]
Swap it with a[last]
last = last–1

While (last >= 1)
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Selection Sort

typedef  int  DataType;

void selectionSort(DataType a[] , int n) {

DataType temp;
int index_of_largest, index, last;

for(last= n-1; last >= 1; last--) {

// select largest item in a[0..last]
index_of_largest = 0;
for(index=1; index <= last; index++) {

if (a[index] > a[index_of_largest])
index_of_largest = index;

}

// swap largest item with last element
temp = a[index_of_largest];
a[index_of_largest] = a[last]);
a[last]) = temp;

}
}
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Insertion Sort
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Insertion Sort

typedef int DataType;

insertion_sort(DataType a[], int n) {

int i,j;
int temp;

for (i=1; i<n; i++) {
j=i;        
while ((j>0) && (a[j] < a[j-1])) {

temp = a[j-1]; // swap

a[j-1] = a[j];

a[j] = temp;

j = j-1;
} 

}
}


