
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 5

Searching and Sorting Algorithms

– Linear Search & Binary Search

– In-place sorts
• Bubble Sort
• Selection Sort
• Insertion Sort

– Not-in-place sort
• Quicksort
• Mergesort

– Characteristics of a good sort

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Linear (Sequential) Search

Linear (Sequential) Search

• Begin at the beginning of the list

• Proceed through the list, sequentially and element by
element,

• Until the key is encountered
or
Until the end of the list is reached

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Linear (Sequential) Search

• Note: we treat a list as a general concept, decoupled from its
implementation

• The order of complexity is O(n)

• The list does not have to be in sorted order

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Implementation of linear search in C

int linear_search(item_type s[], item_type key, int low, int high) {

int i;

i = low;

while ((s[i] != key) && (i < high)) {

i = i+1;

}

if (s[i] == key) {

return (i);

}

else {

return(-1);

}

}

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Binary Search

• If the list is sorted, we can use a more efficient O(log2(n))
search strategy

• Check to see whether the key is

– equal to

– less than

– greater than

the middle element

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first lastmid

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Binary Search

• If key is equal to the middle element,
then terminate (found)

• If key is less than the middle element,
then search the left half

• If key is greater than the middle element, then search the right half

• Continue until either

– the key is found or

– there are no more elements to search

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Implementation of Binary_Search

Pseudo-code

binary_search(list, key, lower_bound, upper_bound)

identify sublist to be searched by setting bounds on search

REPEAT

get middle element of list

if middle element < key

then reset bounds to make the right sublist

the list to be searched

else reset bounds to make the left sublist

the list to be searched

UNTIL list is empty or key is found

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Implementation of binary search in C
(iterative approach)

typedef char item_type;

int binary_search(item_type s[], item_type key, int low, int high) {

int first, last, mid;

first = low;
last = high;

do {
mid = (first + last) / 2;
if (s[mid] < key) {

first = mid + 1;
}
else {

last = mid - 1;
}

} while ((first <= last) && (s[mid] != key));

if (s[mid] == key)
return (mid);

else
return (-1);

}

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first:
last:
mid:
list[mid]:
key: P

mid

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first: 1
last: 11
mid: 6
list[mid]: J
key: P

mid

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first: 1 7
last: 11 11
mid: 6 9
list[mid]: J O
key: P P

mid

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first: 1 7 10
last: 11 11 11
mid: 6 9 10
list[mid]: J O P
key: P P P

mid

FOUND!

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first:
last:
mid:
list[mid]:
key: E

mid

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first: 1
last: 11
mid: 6
list[mid]: J
key: E

mid

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first: 1 1
last: 11 5
mid: 6 3
list[mid]: J D
key: E E

mid

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

first last

first: 1 1 4
last: 11 5 5
mid: 6 3 4
list[mid]: J D F
key: E E E

mid

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Binary Search

A B D F G J K M O P R

firstlast

first: 1 1 4 4
last: 11 5 5 3
mid: 6 3 4 3
list[mid]: J D F D
key: E E E E

mid

first > last: NOT FOUND!

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Implementation of binary search in C
(recursive approach)

typedef char item_type;

int binary_search(item_type s[], item_type key, int low, int high) {

int mid;

if (low > high) return (-1); /* key not found */

mid = (low + high) / 2;

if (s[mid] == key) return(mid);

if (s[mid] > key) {

return(binary_search(s, key, low, mid-1));

}

else {

return(binary_search(s, key, mid+1, high));

}

}

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Sorting Algorithms

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Input: A sequence of n numbers < a1, a2, … an >

Output: the permutation (reordering) of the input
sequence such that a1 £ a2 £ … £ an

The Sorting Problem

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Sorting Algorithms

• In-place sorts

– Small number of elements stored outside the input data structure
– Additional space requirements O(1)
– Tradeoff: more computationally-complex algorithms (slower sorts)

• Bubble Sort

• Selection Sort

• Insertion Sort

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Sorting Algorithms

• Not-in-place sort

– Additional space requirements not O(1)
– Tradeoff: less computationally-complex algorithms but greater memory

requirements (possibly unpredictable)

• Quick Sort

• Merge Sort

• Characteristics of a good sort

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Bubble Sort

• Assume we are sorting a list represented by an array A of n
integer elements

• Bubble sort algorithm in pseudo-code

FOR every element in the list,
proceeding from the first to the last

WHILE list element > previous list element
bubble element back (up) the list
by successive swapping with
the element just above/prior it

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Bubble Sort

10 9 8 11 4

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Bubble Sort

10

9
Swap

8

11

4

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

Swap

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

Swap

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

No Swap

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4
Swap

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

Swap

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

Swap

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

8

4

9

10

11

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

8

4

9

10

11

Swap

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

Bubble Sort

10

9

8

11

4

9

10

8

11

4

9

8

10

11

4

8

9

10

11

4

8

9

10

11

4

8

9

10

4

11

8

9

4

10

11

4

8

9

10

11

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Implementation of Bubble_Sort()

int bubble_sort(int *a, int size) { // int a[]

int i,j, temp;

for (i=0; i < size-1; i++) { // why?

for (j=i; j >= 0; j--) {

if (a[j] > a[j+1]) {

/* swap */

temp = a[j+1];

a[j+1] = a[j];

a[j] = temp;

}

}

}

}

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

Bubble Sort

A few observations:

– we don’t usually sort numbers; we usually sort records with keys
• the key can be a number

• or the key could be a string

• the record would be represented with a struct

– The swap should be done with a function (so that a record can be
swapped)

– We can make the preceding algorithm more efficient. How?
(hint: do we always have to bubble back to the top?)

Data Structures and Algorithms for Engineers 44 Carnegie Mellon University Africa

Bubble Sort

Exercise: implement these changes and write a driver
program to test:

– the original bubble sort

– the more efficient bubble sort

– the bubble sort with a swap function

– the bubble sort with structures

– compute the order of time complexity of the bubble sort

Data Structures and Algorithms for Engineers 45 Carnegie Mellon University Africa

Selection Sort

Example:

Initial Array

After 1st swap

After 4th swap

After 2nd swap

After 3rd swap

29 10 14 37 13

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37

10 13 14 29 37

- Shaded elements are selected
- Boldface elements are in order

Data Structures and Algorithms for Engineers 46 Carnegie Mellon University Africa

Selection Sort

• Assume we are sorting a list represented by an array A
of n integer elements

• Selection sort algorithm in pseudo-code

last = n-1
Do

Select largest element from a[0..last]
Swap it with a[last]
last = last–1

While (last >= 1)

Data Structures and Algorithms for Engineers 47 Carnegie Mellon University Africa

Selection Sort

typedef int DataType;

void selectionSort(DataType a[] , int n) {

DataType temp;
int index_of_largest, index, last;

for(last= n-1; last >= 1; last--) {

// select largest item in a[0..last]
index_of_largest = 0;
for(index=1; index <= last; index++) {

if (a[index] > a[index_of_largest])
index_of_largest = index;

}

// swap largest item with last element
temp = a[index_of_largest];
a[index_of_largest] = a[last]);
a[last]) = temp;

}
}

Data Structures and Algorithms for Engineers 48 Carnegie Mellon University Africa

Insertion Sort

Data Structures and Algorithms for Engineers 49 Carnegie Mellon University Africa

Insertion Sort

typedef int DataType;

insertion_sort(DataType a[], int n) {

int i,j;
int temp;

for (i=1; i<n; i++) {
j=i;
while ((j>0) && (a[j] < a[j-1])) {

temp = a[j-1]; // swap

a[j-1] = a[j];

a[j] = temp;

j = j-1;
}

}
}

