
Data Structures and  Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu



Data Structures and  Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 6

Searching and Sorting Algorithms

– Linear Search & Binary Search

– In-place sorts
• Bubble Sort
• Selection Sort 
• Insertion Sort

– Not-in-place sort
• Quicksort
• Mergesort

– Characteristics of a good sort



Data Structures and  Algorithms for Engineers 3 Carnegie Mellon University Africa

Quicksort

• The Quicksort algorithm was developed by C.A.R. Hoare.  
It has the best average behaviour in terms of complexity:

Average case: O(n log2n)

Worst case: O(n2)



Data Structures and  Algorithms for Engineers 4 Carnegie Mellon University Africa

Quicksort

• Given a list of elements

• take a partitioning element (called a ”pivot”) 

• and create two (sub)lists

1. Left sublist: all elements are less than partitioning element,

2. Right sublist: all elements are greater than it

• Now repeat this partitioning effort on each of these two sublists

• This is a divide-and-conquer strategy



Data Structures and  Algorithms for Engineers 5 Carnegie Mellon University Africa

Quicksort

• And so on in a recursive manner until all the sublists are 
empty, at which point the (total) list is sorted

• Partitioning can be effected by 
– scanning left to right 

– scanning right to left

– iinterchanging elements in the wrong parts of the list

• The partitioning element is then placed between the 
resultant sublists
– which are then partitioned in the same manner



Data Structures and  Algorithms for Engineers 6 Carnegie Mellon University Africa

Implementation of Quicksort()

In pseudo-code first

If anything to be partitioned
choose a pivot
DO

scan from left to right until we find an element
> pivot: i points to it

scan from right to left until we find an element 
<= pivot: j points to it

IF  i < j
exchange ith and jth element

WHILE i <= j



Data Structures and  Algorithms for Engineers 7 Carnegie Mellon University Africa

Implementation of Quicksort()

/* simple quicksort to sort an array of integers */

void quicksort (int A[], int L, int R) 

{

int i, j, pivot;

/* assume A[R] contains a number > any element,    */

/* i.e. it is a sentinel.                          */



Data Structures and  Algorithms for Engineers 8 Carnegie Mellon University Africa

Implementation of Quicksort()

if ( R > L) { // if R==L, it is a list with just one element!!

i = L; j = R;

pivot = A[i];

do {

while (A[i] <= pivot) 

i=i+1;

while ((A[j] >= pivot) && (j>L)) 

j=j-1; 

if (i < j) {

exchange(A[i],A[j]); /* between partitions */

i = i+1; j = j-1;

}

} while (i <= j);

exchange(A[L], A[j]); /* reposition pivot */

quicksort(A, L, j);

quicksort(A, i, R);   /*includes sentinel*/

}

}



Data Structures and  Algorithms for Engineers 9 Carnegie Mellon University Africa

Quicksort

10 9 8 11 4 99

sentinel



Data Structures and  Algorithms for Engineers 10 Carnegie Mellon University Africa

Quicksort

10 9 8 11 4 99

i

QS(A, , )

L:       
R:       
i:        
j:       
pivot:  

j



Data Structures and  Algorithms for Engineers 11 Carnegie Mellon University Africa

Quicksort

10 9 8 11 4 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 
j:      6
pivot: 10 

j



Data Structures and  Algorithms for Engineers 12 Carnegie Mellon University Africa

Quicksort

10 9 8 11 4 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 2 3 4 
j:      6 5
pivot: 10 

j



Data Structures and  Algorithms for Engineers 13 Carnegie Mellon University Africa

Quicksort

10 9 8 4 11 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 2 3 4 
j:      6 5
pivot: 10 

j



Data Structures and  Algorithms for Engineers 14 Carnegie Mellon University Africa

Quicksort

10 9 8 4 11 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 2 3 4 5 
j:      6 5 4
pivot: 10 

j



Data Structures and  Algorithms for Engineers 15 Carnegie Mellon University Africa

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 2 3 4 5 
j:      6 5 4
pivot: 10 

j



Data Structures and  Algorithms for Engineers 16 Carnegie Mellon University Africa

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 2 3 4 5 
j:      6 5 4
pivot: 10 

j

QS(A,1,4)

L:      1
R:      4
i:        
j:       
pivot:  4 

QS(A,5,6)

L:      5
R:      6
i:        
j:       
pivot:  11 



Data Structures and  Algorithms for Engineers 17 Carnegie Mellon University Africa

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 2 3 4 5 
j:      6 5 4
pivot: 10 

j

QS(A,1,4)

L:      1
R:      4
i:    1    
j:      4
pivot:  4 

QS(A,5,6)

L:      5
R:      6
i:        
j:       
pivot:  11 



Data Structures and  Algorithms for Engineers 18 Carnegie Mellon University Africa

Quicksort

4 9 8 10 11 99

i

QS(A,1,6)

L:      1
R:      6
i:      1 2 3 4 5 
j:      6 5 4
pivot: 10 

j

QS(A,1,4)

L:      1
R:      4
i: 1 2       
j: 4 3 4 1      
pivot:  4 

QS(A,5,6)

L:      5
R:      6
i:        
j:       
pivot:  11 



Data Structures and  Algorithms for Engineers 19 Carnegie Mellon University Africa

Quicksort

4 9 8 10 11 99

i j

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,1,1)

L:      1
R:      1
i:
j:
pivot:  4 

QS(A,2,4)

L:      2
R:      4
i:
j:
pivot:  9 



Data Structures and  Algorithms for Engineers 20 Carnegie Mellon University Africa

Quicksort

4 9 8 10 11 99

i j

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,2,4)

L:      2
R:      4
i:      2 
j:      4 
pivot:  9 



Data Structures and  Algorithms for Engineers 21 Carnegie Mellon University Africa

Quicksort

4 9 8 10 11 99

ij

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,2,4)

L:      2
R:      4
i:      2 3 4 
j:      4 3 
pivot:  9 



Data Structures and  Algorithms for Engineers 22 Carnegie Mellon University Africa

Quicksort

4 8 9 10 11 99

ij

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,2,4)

L:      2
R:      4
i:      2 3 4 
j:      4 3 
pivot:  9 



Data Structures and  Algorithms for Engineers 23 Carnegie Mellon University Africa

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,2,4)

L:      2
R:      4
i:      2 3 4 
j:      4 3 
pivot:  9 

QS(A,2,3)

L:      2
R:      3
i:       
j:      
pivot:  8 

QS(A,4,4)

L:      4
R:      4
i:       
j:      
pivot:  10 



Data Structures and  Algorithms for Engineers 24 Carnegie Mellon University Africa

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,2,3)

L:      2
R:      3
i:      2 
j:      3
pivot:  8 

QS(A,4,4)

L:      4
R:      4
i:       
j:      
pivot:  10 



Data Structures and  Algorithms for Engineers 25 Carnegie Mellon University Africa

Quicksort

4 8 9 10 11 99

ij

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,2,3)

L:      2
R:      3
i:      2 3 
j:      3 2
pivot:  8 

QS(A,4,4)

L:      4
R:      4
i:       
j:      
pivot:  10 



Data Structures and  Algorithms for Engineers 26 Carnegie Mellon University Africa

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  
11 

QS(A,2,3)

L:      2
R:      3
i:      2 3 
j:      3 2
pivot:  8 

QS(A,4,4)

L:      4
R:      4
i:       
j:      
pivot:  10 

QS(A,2,2)

L:      2
R:      2
i:      
j:      
pivot:  8 

QS(A,3,3)

L:      3
R:      3
i:      
j:      
pivot:  9 



Data Structures and  Algorithms for Engineers 27 Carnegie Mellon University Africa

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  
11 

QS(A,4,4)

L:      4
R:      4
i:       
j:      
pivot:  10 



Data Structures and  Algorithms for Engineers 28 Carnegie Mellon University Africa

Quicksort

4 8 9 10 11 99

i j

QS(A,5,6)

L:      5
R:      6
i:      5 
j:      6
pivot:  11 

QS(A,5,5)

L:      5
R:      5
i:
j:
pivot:  11 

QS(A,6,6)

L:      6
R:      6
i:       
j:      
pivot:  99 



Data Structures and  Algorithms for Engineers 29 Carnegie Mellon University Africa

Quicksort



Data Structures and  Algorithms for Engineers 30 Carnegie Mellon University Africa

Quicksort

• Performance depends on which element is selected as the 
pivot

• The worst-case occurs when the list is sorted and the left-
most element is selected as the pivot

• Space complexity is O(n2) in the worst case



Data Structures and  Algorithms for Engineers 31 Carnegie Mellon University Africa

Mergesort

• Divide-and-conquer, recursive, O(n log n)

• Recursively partition the list into two lists L1 and L2

– L1 and L2 approx. n/2 elements each

• Stop when we have a collection of lists of 1 element

• Now, each L1 and L2 is merged into a list S

– Where the elements of L1 and L2 are put in S in order

• Pairs of sorted lists S1 and S2 are, in turn, merged as we ascend 
back up through the recursion



Data Structures and  Algorithms for Engineers 32 Carnegie Mellon University Africa

Mergesort



Data Structures and  Algorithms for Engineers 33 Carnegie Mellon University Africa

mergesort(item_type s[], int low, int high) { 

int i; /* counter                 */ 
int middle; /* index of middle element */ 

if (low < high) { 
middle = (low+high)/2; 
mergesort(s,low,middle); 
mergesort(s,middle+1,high); 
merge(s, low, middle, high); 

}
}

Merge Sort



Data Structures and  Algorithms for Engineers 34 Carnegie Mellon University Africa

Merge Sort

• The efficiency of mergesort depends on how we combine the 
two sorted halves into a single sorted list

• The key is to realize that each half (i.e. each sublist) is sorted

• So we just have to repeatedly 

– Take the ”front” element of either one list or the other 
(depending on which is smaller) and 

– Move it to the merged list to keep the elements in order



Data Structures and  Algorithms for Engineers 35 Carnegie Mellon University Africa

merge(item_type s[], int low, int middle, int high){
int i;                  /* counter */
queue buffer1, buffer2; /* to hold elements for merging */
init_queue(&buffer1);
init_queue(&buffer2);
for (i=low; i<=middle; i++) enqueue(&buffer1,s[i]);
for (i=middle+1; i<=high; i++) enqueue(&buffer2,s[i]);

i = low;
while (!(empty_queue(&buffer1) &&  !(empty_queue(&buffer2)) {
// Alt: while (!(empty_queue(&buffer1) || empty_queue(&buffer2))) {

if (headq(&buffer1) <= headq(&buffer2))
s[i++] = dequeue(&buffer1);

else 
s[i++] = dequeue(&buffer2);

}
while (!empty_queue(&buffer1)) s[i++] = dequeue(&buffer1);
while (!empty_queue(&buffer2)) s[i++] = dequeue(&buffer2);

}

Merge Sort



Data Structures and  Algorithms for Engineers 36 Carnegie Mellon University Africa

Mergesort

Why is mergesort O(n log n) ?

How many times do we merge and how big are the data sets?

Let’s assume that n is a power of two

At level 0
21 calls to mergesort & merge 21 lists of size ~n/2

At level 1
22 calls to mergesort & merge 22 lists of size ~n/4
…
At level k
2k+1 calls to mergesort & merge 2k+1 lists of size ~n/ 2k+1



Data Structures and  Algorithms for Engineers 37 Carnegie Mellon University Africa

Mergesort

How many levels k?

k = log2n, e.g. if n = 8, k = 3

At level k, the sublists are of size 1.

So we merge k = log2n times (at levels 0 – k-1)

Each time we merge  2k+1 lists of size ~n/ 2k+1 i.e. total size ~n

So the total complexity is O(n log2 n)



Data Structures and  Algorithms for Engineers 38 Carnegie Mellon University Africa

Characteristics of a Good Sort

• Speed

• Consistency

• Keys

• Memory Requirements

• Length and Code Complexity 

• Stability

No single winner in all categories



Data Structures and  Algorithms for Engineers 39 Carnegie Mellon University Africa

Characteristics of a Good Sort

Speed

• Some sort algorithms with poor order of complexity 
sort small lists better than other more complex sorts

• For example short lists of 5 to 50 keys or for longer lists that 
are almost sorted, Insertion Sort is extremely efficient and 
can be faster than Quicksort



Data Structures and  Algorithms for Engineers 40 Carnegie Mellon University Africa

Characteristics of a Good Sort

Consistency

• Some sorts always take the same amount of time 
but many have "best case" and "worst case" performance 
for particular input orders of keys

• Example: QuickSort is generally the fastest of the O(n log n) 
sorts, but it always has an O(n2) worst case.



Data Structures and  Algorithms for Engineers 41 Carnegie Mellon University Africa

Characteristics of a Good Sort

Keys

• The nature of keys can dramatically affect the speed of 
sorts

• This is especially true for string keys, which can vary 
significantly in length and relatedness.

• Longer keys take longer to copy or compare



Data Structures and  Algorithms for Engineers 42 Carnegie Mellon University Africa

Characteristics of a Good Sort

Memory Requirements

• Having enough memory is as important as speed

• Methods that sort "in place" will be more desirable than 
those that use a duplicate array (e.g. Mergesort) or those 
that use a significant amount of stack space for recursive 
calls



Data Structures and  Algorithms for Engineers 43 Carnegie Mellon University Africa

Characteristics of a Good Sort

Code Complexity

• Short, simple algorithms are appealing because they are 
easy to implement and debug

• Algorithms that can easily be applied to all data types are 
convenient to use but often come at the cost of 
implementation complexity

• Although they may not be as fast as more specialized 
algorithms, simple algorithms are always appealing 
especially when maintenance is an issue



Data Structures and  Algorithms for Engineers 44 Carnegie Mellon University Africa

Characteristics of a Good Sort

Stability

• A stable sorting algorithm maintains the relative order of 
records with equal keys

– Let records R and S have the same key

– R appears before S in the original list, 

– R will always appear before S in the sorted list

• This is particularly important when sorting based on multiple 
keys



Data Structures and  Algorithms for Engineers 45 Carnegie Mellon University Africa

Characteristics of a Good Sort

Stability

• Assume that the following pairs of numbers are to be sorted 
by their first component (two different results are possible)

(4, 2) (3, 7) (3, 1) (5, 6)

(3, 7) (3, 1) (4, 2) (5, 6) (stable: order maintained)
(3, 1) (3, 7) (4, 2) (5, 6) (unstable: order changed)

• Unstable sorting algorithms change the relative order of 
records with equal keys, but stable sorting algorithms do not



Data Structures and  Algorithms for Engineers 46 Carnegie Mellon University Africa

Characteristics of a Good Sort

Stability

• Unstable sorting algorithms can be specially implemented to 
be stable

• We can artificially extend the key comparison, so that two 
objects with equal keys are decided using another key as a 
tie-breaker and maintain stability

• Stability usually comes with an additional computational cost



Data Structures and  Algorithms for Engineers 47 Carnegie Mellon University Africa

http://xkcd.com/1185/


