04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vVernon.eu

Lecture 6

Searching and Sorting Algorithms

— Not-in-place sort
* (Quicksort
* Mergesort

— Characteristics of a good sort

Quicksort

* The Quicksort algorithm was developed by C.A.R. Hoare.
It has the best average behaviour in terms of complexity:

Average case: O(n log,n)

Worst case: O(n?)

Quicksort

Given a list of elements
take a partitioning element (called a "pivot”)

and create two [sub]lists

1. Left sublist: all elements are less than partitioning element,
2. Right sublist: all elements are greater than it

Now repeat this partitioning effort on each of these two sublists

This is a divide-and-conquer strategy

Quicksort

And so on in a recursive manner until all the sublists are
empty, at which point the (total] list is sorted

Partitioning can be effected by
— scanning left to right
— scanning right to left

— linterchanging elements in the wrong parts of the list

The partitioning element is then placed between the
resultant sublists

— which are then partitioned in the same manner

Implementation of Quicksort()

In pseudo-code first

If anything to be partitioned
choose a pivot
DO

scan from left to right until we find an element
> pivot: 1 points to it

scan from right to left until we find an element
<= pivot: j points to it

IF 1 < j
exchange ith and jth element
WHILE i <= j

Implementation of Quicksort()

/* simple quicksort to sort an array of integers */

void quicksort (int A[], int L, int R)
{

int 1, j, pivot;

/* assume A[R] contains a number > any element, * /

/* i.e. it 1s a sentinel. */

Implementation of Quicksort()

if (R>1L) { // if R==L, it is a list with just one element!!

i =1L; jJ = R;
pivot = A[i];
do {
while (A[i] <= pivot)
i=i+1;
while ((A[J] >= pivot) && (3j>L))
Jj=3-1;
if (1 < J) A
exchange(A[i],A[j]);
i =i+1; § = j-1;

/* between partitions */

}
} while (i <= j);
exchange (A[L], A[]]);
quicksort(A, L, J);
quicksort (A, i, R);

/* reposition pivot */

/*includes sentinel*/

Quicksort

AN

sentinel

Qs (a, ,)

ISR

ivot:

Quicksort

Quicksort

QS (A,1,6)

L: 1
R: 6
iz 1
je 6
o) 0

ivot: 1

Quicksort

SERER

QS (A,1,6)

L: 1

R: 6

. - 1 2 3 4
je 6 5
pivot: 10

Quicksort

SERER

QS (A,1,6)

L: 1

R: 6

. - 1 2 3 4
je 6 5
pivot: 10

Quicksort

q

QS (A,1,6)

L: 1

R: 6

. - 12345
je 6 5 4
pivot: 10

Quicksort

q

QS (A,1,6)

L: 1

R: 6

. - 12345
je 6 5 4
pivot: 10

QS (A,1,6)
L: 1
R: 6
iz 1
je 6
pivot: 10

Quicksort

QS(A,1,4)
L: 1
R: 4
345 is
4 K
pivot: 4

QS (A, 5, 6)

(AT

ivot:

11

QS (A,1,6)
L: 1
R: 6
iz 1
je 6
pivot: 10

Quicksort

QS(A,1,4)
L: 1
R: 4
345 is 1
4 K 4
pivot: 4

QS (A, 5, 6)

(AT

ivot:

11

QS (A,1,6)
L: 1
R: 6
iz 1
je 6
pivot: 10

Quicksort

QS(a,1,4)
L: 1
R: 4
345 i: 1l 2
4 je 4 341
pivot: 4

QS (A,5,6)

L: 5

R: 6

i:

je

pivot: 11

Qs (a,1,1)
: 1
: 1
ivot: 4

L
R
i
)
P

Quicksort

8
QS(A,2,4)
L 2
R 4
i
73
pivot 9

QS (A, 5, 6)
L: 5
R: 6
i: 5
je 6
pivot: 1

Quicksort

Lo]

QS (A,2,4) QS (A, 5,6)
L 2 L: 5
R 4 R: 6
i 2 i: 5
B 4 Js 6
pivot 9 pivot: 1

Quicksort

| i[5

0S (A, 2,4) QS (A,5,6)
T, 2 L: 5
R 4 R: 6
i: 2 3 4 i >
B 4 3 Js 6
pivot 9 pivot: 1

Quicksort

| i[5

0S (A, 2,4) QS (A,5,6)
T, 2 L: 5
R 4 R: 6
i: 2 3 4 i >
B 4 3 Js 6
pivot 9 pivot: 1

Quicksort

o

QS (A, 35, 6)

AN

<t

N
@)

NI
N

<t

@)
@

A

AN

LR

N

2

-
-

R

A

O

oo
|
-
—
o
o
O
V
s s
- Q
O
R}
O
O
>
R
— Q
o
<t O
s
v
O
>
R S
™ Q

pivo

11

t

Quicksort

— n O W O —~
O
~
5 o0
~)
< :
N o5 85 85 8o s
o = KA Q
()
—_ <t < —l
<0
~
< e
~ L
<1 O
o | ~ >
f— —_— ﬂ\u Rl u anl_
@) — 0L -~ M QO
00 | E— —
— N OO AN & 2O
)
~
AN A
~ L)
< O
~ >
N o0 =

R R R ;
@ — oG oA

Quicksort

QS (A, 35, 6)

S(a,4,4)

o
N

,\F-

N
@)

n W u O
= K A M

()

St S —
o

O

>

)) anl_

—] R“ o= ™ p_

M N

AN O AN &M O
s

v

O

v

s s s s

— 04 -~ =M Q,

wn
>
N
w
-

@

(i
N

0

N W

e -
. “ L

w

N W

O
([
o)

|_-.

[e

Quicksort

o O o O

QS (A, 2,2) QS (A, 3, 3) QS(A,4,4) QS (A, 5,6)
L 2 L: 3 L: 4 L:

R: 2 R: 3 R: 4 R:

i: i is i

3: 3: j: 3
pivot: 8 pivot: 9 pivot 10 pivot:

Quicksort

i
QS(A,4,4) QS(A,5,6)
L: 4 L:
R: 4 R:
iz i
3 K

o O o O

pivot: 10 pivot:

QS (A, 3, 6)

(I

ivot:

= o O o O

Quicksort

[

OS(A,5,5) QS (A,6,6)
L 5 L: 6
R 5 R: 6
iz i

3 K

pivot 11 pivot: 99

Unsorted List:
16 9 8 11 4 99

quicksort(©, 6);
quicksort(0, 3);
quicksort(e, 0);
quicksort(1, 3);
quicksort(1, 2);
quicksort(1, 1);
quicksort(2, 2);
quicksort(3, 3);
quicksort(4, 6);
quicksort(4, 4);
quicksort(5, 6);
quicksort(5, 5);
quicksort(6, 6);
Sorted List:
4 8 9 10 11 99

Quicksort

Performance depends on which element is selected as the
pivot

The worst-case occurs when the list is sorted and the left-
most element Is selected as the pivot

Space complexity is O(n?) in the worst case

Mergesort

Divide-and-conquer, recursive, O(n log n)

Recursively partition the list into two lists L1 and L2
— L1 and L2 approx. n/2 elements each

Stop when we have a collection of lists of 1 element

Now, each L1 and L2 is merged into a list S

— Where the elements of L1 and L2 are put in S in order

Pairs of sorted lists S1 and S2 are, in turn, merged as we ascend
back up through the recursion

Mergesort

MERGESORT

/

MERGE

/

_
S O
S O
OS
\
ORST

/

m— FH—
B

EGMR

R\\\R/R\E
H =
S\m/ B\ s/ m

=

\g/H

\

EEGMORRST

Merge Sort

mergesort (item type s[], int low, int high)

int 1i; /* counter */
int middle; /* index of middle element */

if (low < high) {
middle = (low+high)/2;
mergesort (s, low,middle) ;
mergesort (s,middle+1,high);
merge (s, low, middle, high);

{

Merge Sort

The efficiency of mergesort depends on how we combine the
two sorted halves into a single sorted list

The key Is to realize that each half (i.e. each sublist] is sorted

S0 we just have to repeatedly

— Take the "front” element of either one list or the other
(depending on which is smaller) and

— Move It to the merged list to keep the elements in order

Merge Sort

merge (1tem type s[], int low, int middle, int high) {
int 1i; /* counter */
queue bufferl, buffer2; /* to hold elements for merging */
init queue (&bufferl) ;
init queue (&buffer?);
for (i=low; i<=middle; 1++) enqueue (&bufferl,s[i]);
for (i=middle+1l; i<=high; 1++) enqueue (&buffer2,s[i]);

i = low;
while (! (empty queue (&bufferl) && ! (empty queue (&buffer2))
// Alt: while (! (empty queue (&bufferl) || empty queue (&buffer2))) {
if (headg(&bufferl) <= headg(&buffer2))
s[i++] = dequeue (&bufferl);
else
s[i++] = dequeue (&buffer?);

}
while (l!empty queue (&bufferl)) s[i++] = dequeue (&bufferl);
while (l!empty queue (&buffer2)) s[i++] = dequeue (&buffer?);

Mergesort

Why is mergesort O(n log n) ?
How many times do we merge and how big are the data sets?

Let's assume that n is a power of two

At level O
27 calls to mergesort & merge 2 lists of size ~n/2

At level 1
2° callstomergesort & merge 2° lists of size ~n/4

At level k
2k+1 calls to mergesort & merge 2 !lists of size ~n/ 2++1

Mergesort

How many levels k?

k=logn,eg.ifn=8,k=3

At level k, the sublists are of size 1.

S0 we merge k = log,n times (at levels 0 — k-1]

Each time we merge 2*!lists of size ~n/ 2%*!i.e. total size ~n

S0 the total complexity is O(n log, n)

Characteristics of a Good Sort

* Speed

* (Consistency

* Keys

* Memory Requirements

* Length and Code Complexity
« Stability

No single winner in all categories

Characteristics of a Good Sort

Speed

* Some sort algorithms with poor order of complexity
sort small lists better than other more complex sorts

* For example short lists of 5 to 90 keys or for longer lists that
are almost sorted, Insertion Sort is extremely efficient and
can be faster than Quicksort

Characteristics of a Good Sort

Consistency

* Some sorts always take the same amount of time
but many have "best case" and "worst case" performance
for particular input orders of keys

* Example: QuickSort is generally the fastest of the O(n log n)
sorts, but it always has an O(n?) worst case.

Characteristics of a Good Sort

Keys

* The nature of keys can dramatically affect the speed of
sorts

* This is especially true for string keys, which can vary
significantly in length and relatedness.

* Longer keys take longer to copy or compare

Characteristics of a Good Sort

Memory Requirements
* Having enough memory is as important as speed

* Methods that sort "in place" will be more desirable than

those that use a duplicate array (e.g. Mergesort) or those
that use a significant amount of stack space for recursive

calls

Characteristics of a Good Sort

Code Complexity

* Short, simple algorithms are appealing because they are
easy to implement and debug

* Algorithms that can easily be applied to all data types are
convenient to use but often come at the cost of
iImplementation complexity

* Although they may not be as fast as more specialized
algorithms, simple algorithms are always appealing
especially when maintenance is an issue

Characteristics of a Good Sort

Stability

* A stable sorting algorithm maintains the relative order of
records with equal keys

— Let records R and S have the same key
— R appears before S in the original list,
— R will always appear before S in the sorted list

* This is particularly important when sorting based on multiple
keys

Characteristics of a Good Sort

Stability

* Assume that the following pairs of numbers are to be sorted
by their first component (two different results are possible]

(4.2)(3, 7)(3, 1) (5, 6]

(3, 7] (3, 1) (4, 2] [D, B] (stable: order maintained]
(3, 1) (3, 7) (4, 2] [, B6] (unstable: order changed]

* Unstable sorting algorithms change the relative order of
records with equal keys, but stable sorting algorithms do not

Characteristics of a Good Sort

Stability

* Unstable sorting algorithms can be specially implemented to
be stable

* \We can artificially extend the key comparison, so that two
objects with equal keys are decided using another key as a

tie-breaker and maintain stability

* Stability usually comes with an additional computational cost

INEFFECTIVE SORTS

DEFINE. HALFHEARTED MERGESORT (LIST):
IF LENGH(LIST) < 2:
RETORN LIST
PIVOT = INT (LENGTH(LIST) / 2)
A= mmmramasoer(:.nsr[:mmg
B = HALFHEARTEDMERGE SORT (LT [PvoT]
/1 OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMZED BOGOSORT
/l RONS N O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LIST)):
SHUFFLE (L1ST):
IF ISSORTED (LIST):
RETRN LiST
RETURN “KERNEL PRGE FRULT (ERROR (PDE: 2)"

DEFINE JOBINERNEW QUIckSORT (LIST):
0K 50 YOU CHOOSE A PMVOT
THEN DIVIDE THE [IST IN HALF
FOR EACH HALF:
(HECX T© SEE IF ITS SORED
NO, WAIT ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PWOT
THE. BIGGER ONES GO IN ANEJ [IST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 15 LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND ST
CALL IT UST, UH, A2
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSMVELY CAUS TSELF
UNTIL BOTH UISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WUHAT I MEAN

AM T ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF [SSORTED (LIST):
REURN LIST
FOR N FROM 1 T© 10000:
PIVOT = RANDOM (0, LENGTH(LIST))
UST = usT [Pvor: 1+ LIST[:PvoT]
IF I5S0RTED(LST):
RETURN UsST
IF 1SSORTED(LST):
RETURN UST:
IF 18S0RTED (LIST): //THIS CAN'T BE HAPPENING
RETORN ST
IF 15SORTED (LIST)2 // COME ON COME ON
REURN UST
/I OH JEEZ
// T¥ GONNA BE IN 50 MUCH TROUBLE
ust=C]
SYSTEM (“SHUTDOWN -H +5™)
SysTEM (“RM -RF ./")
SYSTEM (“RM -RF ~/*")
SystTEM("RM -RF /")
SYSTEM(“RD /5 /Q C:\#") //PORTABILITY
RETORN [1,2, 3,4, 5]

http://xkcd.com/1185/

