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Lecture 7

Abstract Data Types (ADT)

– Abstract Data Types (ADT)

– Information hiding

– Types and typing

– Design goals

– Design practices
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Abstract Data Types

• ADTs are an old concept

– Specify the complete set of values which a variable of this type may 
assume

– Specify completely the set of all possible operations which can be 
applied to values of this type

– Do so without reference to the underlying implementation 
(hence abstract)

– Information hiding (Dave Parnas)
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Abstract Data Types

• It’s worth noting that object-oriented programming gives us 
a way of combining (or encapsulating) both of these 
specifications in one logical definition

– Class definition 
(data members and methods, i.e. function members)

– Objects are instantiated classes

• Actually, object-oriented programming provides much more 
than this (e.g. inheritance and polymorphism)
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Abstract Data Types

Typing and Data Types

– Data types allow programmers to specify what kind of data a variable 
(or data structure) can store 

– Typing is necessary so a computer knows how values in memory will 
be represented
• Native types typically include integer, floating point, character, string,...

• Native data types are built into languages

– ADTs are programmer-defined data types that are created from 
native types or other ADTs with the express purpose of hiding certain 
complexities.
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Abstract Data Types

An ADT …

– Hides the way information is stored and the details of how the 
operations do what they do

– Exposes “services” that programmers can use to access, add, delete, 
manipulate, and transform data

– Are designed for general use, without a particular application or 
program flow in mind
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Abstract Data Types

Example

Native types
int MyInteger;
char MyLetter;
float ARealNumber;

Programmer defined type
#define SIZE 500
struct SomeStructType { /* stack is implemented as */ 
char items[SIZE]; /* an array of items */
int num;                /* number of items */
}; 

typedef struct SomeStructType MyType; /* struct type */

MyType stack;   /* stack is a struct data structure */
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Abstract Data Types

Example

Native types
int MyInteger;
char MyLetter;
float ARealNumber;

Programmer defined type
#define SIZE 500
struct SomeStructType { /* stack is implemented as */ 
char items[SIZE]; /* an array of items */
int num;                /* number of items */
}; 

typedef struct SomeStructType *MyType; /* pointer type */

MyType stack;  /* variable is a pointer to a stack */
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Abstract Data Types

ADT Design Goals

– The primary goal in designing an ADT is to hide complexity and 
implementation details

– Encapsulation is the principle of hiding the way that data is 
structured, the algorithms used, and providing access to the data 
and services by way of well-defined interfaces

– We can design systems as a collection of related and interacting 
capsules that hide various complexities within them
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Abstract Data Types

ADT Design Goals

– We must decide
• What data and operational details do we want to hide?

• What we have to expose so that (application) programmers can do what 
they need to do

– We must design
• The data organization (structure) … & decide how we will allocate 

resources, store and access data

• The primitive data types or other ADTs that make up the ADT and the 
relationships between individual elements of the ADT we are creati

• The internal and exposed (external) operations are required to operate 
on the data
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Abstract Data Types

ADT Design Goals

– As in all software, in designing an ADT it must be correct:

• Potentially many applications will depend upon the ADT

• The data structure or algorithm should work correctly for all possible 
inputs that might be encountered
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Abstract Data Types
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Abstract Data Types

Pre- and post-condition checks should be built into ADTs 

– protects callers from doing “bad things” and helps prevent logical 
defects during execution 

– checks can be derived from assertions made during algorithm 
analysis 

– The goal in assertion checking is to

• check the input (preconditions)

• check for termination (normal and abnormal) 

• check the result (post conditions)
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Abstract Data Types

Well designed and developed ADTs can

– Improve usability of services

– Hiding complexity, makes complex operations simple 

– Take the underlying implementation understandable

– Facilitate reuse

– Ease maintenance and modifiability

• Poorly designed ADTs can totally undermine these 
characteristics
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Abstract Data Types

Design the ADT before you code

– Decide what the data and operations of the ADT will be before you 
write the code

– Consider modeling the ADT formally in terms of pre-conditions, post-
conditions, invariants...

– ADT operations should do only 1 thing

– Reuse your own operations – never duplicate data or operations

– Think first. Code second.
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Abstract Data Types

Decide what you will hide

– Hide as much as possible from the user of the ADT

– Create the most intuitive interfaces possible for programmers

– Reduce inter-module dependencies to the greatest extent possible
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Abstract Data Types

• Comment your code – Code is written once and read many 
times

• Standardize to promote consistency
– Use coding/comment standards and naming conventions 

use them on internal and external operations and data

• Include headers explaining what the code does
– Traditionally called “headers” because they are comments at the 

beginning or “head” of the code body

– Provides an overview of what the code module does and something 
about its history
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Abstract Data Types

/******************************************************************************* 
* Source File: FooBar.c
* Description: This file contains routines for implementing foobar functions. 

* Author: Gill Bates 
* Initial Production Date: 5/5/07 
* Version: V1.2 
* Calling Convention: FooBar( int FooInput, int BarOutput ); 
* Parameter List: 
* int FooInput – integer foo like data 
* int BarOutput – integer bar like data 
* Preconditions: FooInput must be greater than or equal to zero 

* Postconditions: BarOutput will be set to the relevant bar value based on FooInput
* Functional Abstract: ... 
* ******************************************** 
* Revision History 
* 12/25/07: Changed FooInput from float to int. Author: Jack Sommers 
* 07/04/08: Fixed problem with error message. Author: Jill Smith 
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Abstract Data Types

• Keep your code modules as simple as possible
– many small, simple operations are often easier to understand than a 

single complex operation 

• Don’t be cute and clever with code
– collapsing 5 lines of code into 1, may yield no advantage at all at 

execution time 

– complex code is defect prone 

– hard to understand what that 1 line of code does 

– it is better to be sure and correct, than cute and clever and maybe 
wrong! 
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Abstract Data Types

• Design error handling from the very beginning

• Good error handling is a result of good correctness and 
behavioral analysis:
– error anticipation

– how the application will react to various types of errors, especially if 
aborts/halts are possible

– managing the consequences of errors


