04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vernon.eu

Lecture /

Abstract Data Types [ADT]
— Abstract Data Types (ADT)
— Information hiding
— Types and typing
— Design goals

— Design practices

Abstract Data Types

 ADTs are an old concept

— Specify the complete set of values which a variable of this type may
assume

— Specify completely the set of all possible operations which can be
applied to values of this type

— Do so without reference to the underlying implementation
(hence abstract)

— Information hiding (Dave Parnas]

Abstract Data Types

* |t's worth noting that object-oriented programming gives us
a way of combining [or encapsulating] both of these
specifications in one logical definition

— Class definition
(data members and methods, i.e. function members]

— 0Objects are instantiated classes

* Actually, object-oriented programming provides much more
than this (e.g. inheritance and polymorphism)

Abstract Data Types

Typing and Data Types

— Data types allow programmers to specify what kind of data a variable
(or data structure) can store

— Typing is necessary so a computer knows how values in memory will
be represented
* Native types typically include integer, floating point, character, string,...
* Native data types are built into languages

— ADTs are programmer-defined data types that are created from
native types or other ADTs with the express purpose of hiding certain
complexities.

Abstract Data Types

An ADT ...

— Hides the way information is stored and the details of how the
operations do what they do

— Exposes “services” that programmers can use to access, add, delete,
manipulate, and transform data

— Are designed for general use, without a particular application or
program flow in mind

Abstract Data Types

Example

Native types
int MyInteger;
char MyLetter;
float ARealNumber;

Programmer defined type

#define SIZE 500
struct SomeStructType { /* stack is implemented as */

char items[SIZE]; /* an array of items */
int num; /* number of items */

i
typedef struct SomeStructType MyType; /* struct type */

MyType stack; /* stack is a struct data structure */

Abstract Data Types

Example

Native types
int MyInteger;
char MyLetter;
float ARealNumber;

Programmer defined type

#define SIZE 500
struct SomeStructType { /* stack is implemented as */

char items[SIZE]; /* an array of items */
int num; /* number of items */

i
typedef struct SomeStructType *MyType; /* pointer type */

MyType stack; /* variable 1s a pointer to a stack */

Abstract Data Types

ADT Design Goals

— The primary goal in designing an ADT is to hide complexity and
iImplementation details

— Encapsulation is the principle of hiding the way that data is
structured, the algorithms used, and providing access to the data
and services by way of well-defined interfaces

— We can design systems as a collection of related and interacting
capsules that hide various complexities within them

Abstract Data Types

ADT Design Goals

— We must decide
* \What data and operational details do we want to hide?

* \What we have to expose so that (application) programmers can do what
they need to do

— We must design

* The data organization (structure] ... & decide how we will allocate
resources, store and access data

* The primitive data types or other ADTs that make up the ADT and the
relationships between individual elements of the ADT we are creati

* The internal and exposed [external) operations are required to operate
on the data

Abstract Data Types

ADT Design Goals

— As in all software, in designing an ADT it must be correct:

* Potentially many applications will depend upon the ADT

* The data structure or algorithm should work correctly for all possible
Inputs that might be encountered

Abstract Data Types

ADT

(|
o Public ADT Implementation

Application Methods or [T Details

Functions
> Foo()
» Bar()
> In()
> Out()
> Up()

» Down()

S—

Abstract Data Types

Pre- and post-condition checks should be built into ADTs

— protects callers from doing "bad things” and helps prevent logical
defects during execution

— checks can be derived from assertions made during algorithm
analysis

— The goal in assertion checking is to

* check the input (preconditions]
* check for termination [normal and abnormal)

* check the result [post conditions]

Abstract Data Types

\Well designed and developed ADTs can

— Improve usability of services

— Hiding complexity, makes complex operations simple
— Take the underlying implementation understandable
— Facilitate reuse

— Ease maintenance and modifiability

* Poorly designed ADTs can totally undermine these
characteristics

Abstract Data Types

Design the ADT before you code

— Decide what the data and operations of the ADT will be before you
write the code

— Consider modeling the ADT formally in terms of pre-conditions, post-
conditions, invariants...

— ADT operations should do only 1 thing

— Reuse your own operations - never duplicate data or operations

— Think first. Code second.

Abstract Data Types

Decide what you will hide

— Hide as much as possible from the user of the ADT
— Create the most intuitive interfaces possible for programmers

— Reduce inter-module dependencies to the greatest extent possible

Abstract Data Types

* Comment your code - Code is written once and read many
times

e Standardize to promote consistency

— Use coding/comment standards and naming conventions
use them on internal and external operations and data

* |nclude headers explaining what the code does

— Traditionally called "headers” because they are comments at the
beginning or "head” of the code body

— Provides an overview of what the code module does and something
about its history

Abstract Data Types

/**k**k*k**********************************

* Source File: FooBar.c

* Description: This file contains routines for implementing foobar functions.
* Author: Gill Bates

* TInitial Production Date: 5/5/07

* Version: V1.2

* Calling Convention: FooBar(int FoolInput, int BarOutput);

* Parameter List:

* int Foolnput - integer foo like data

* int BarOutput - integer bar like data

* Preconditions: FoolInput must be greater than or equal to zero

* Postconditions: BarOutput will be set to the relevant bar value based on FoolInput
* Functional Abstract:

* RS b b A b b b b db b b 4 b b b b db b b g b db b b 4 b b g b I b b g b b b b g b b g b g 4

* Revision History

* 12/25/07: Changed FooInput from float to int. Author: Jack Sommers

* 07/04/08: Fixed problem with error message. Author: Jill Smith

Abstract Data Types

* Keep your code modules as simple as possible

many small, simple operations are often easier to understand than a
single complex operation

e Don’t be cute and clever with code

collapsing 2 lines of code into 1, may yield no advantage at all at
execution time

complex code Is defect prone
hard to understand what that 1 line of code does

It Is better to be sure and correct, than cute and clever and maybe
wrong!

Abstract Data Types

* Design error handling from the very beginning

* (Good error handling is a result of good correctness and
behavioral analysis:
— error anticipation

— how the application will react to various types of errors, especially if
aborts/halts are possible

— managing the consequences of errors

