
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 7

Abstract Data Types (ADT)

– Abstract Data Types (ADT)

– Information hiding

– Types and typing

– Design goals

– Design practices

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Abstract Data Types

• ADTs are an old concept

– Specify the complete set of values which a variable of this type may
assume

– Specify completely the set of all possible operations which can be
applied to values of this type

– Do so without reference to the underlying implementation
(hence abstract)

– Information hiding (Dave Parnas)

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Abstract Data Types

• It’s worth noting that object-oriented programming gives us
a way of combining (or encapsulating) both of these
specifications in one logical definition

– Class definition
(data members and methods, i.e. function members)

– Objects are instantiated classes

• Actually, object-oriented programming provides much more
than this (e.g. inheritance and polymorphism)

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Abstract Data Types

Typing and Data Types

– Data types allow programmers to specify what kind of data a variable
(or data structure) can store

– Typing is necessary so a computer knows how values in memory will
be represented
• Native types typically include integer, floating point, character, string,...

• Native data types are built into languages

– ADTs are programmer-defined data types that are created from
native types or other ADTs with the express purpose of hiding certain
complexities.

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Abstract Data Types

An ADT …

– Hides the way information is stored and the details of how the
operations do what they do

– Exposes “services” that programmers can use to access, add, delete,
manipulate, and transform data

– Are designed for general use, without a particular application or
program flow in mind

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Abstract Data Types

Example

Native types
int MyInteger;
char MyLetter;
float ARealNumber;

Programmer defined type
#define SIZE 500
struct SomeStructType { /* stack is implemented as */
char items[SIZE]; /* an array of items */
int num; /* number of items */
};

typedef struct SomeStructType MyType; /* struct type */

MyType stack; /* stack is a struct data structure */

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Abstract Data Types

Example

Native types
int MyInteger;
char MyLetter;
float ARealNumber;

Programmer defined type
#define SIZE 500
struct SomeStructType { /* stack is implemented as */
char items[SIZE]; /* an array of items */
int num; /* number of items */
};

typedef struct SomeStructType *MyType; /* pointer type */

MyType stack; /* variable is a pointer to a stack */

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Abstract Data Types

ADT Design Goals

– The primary goal in designing an ADT is to hide complexity and
implementation details

– Encapsulation is the principle of hiding the way that data is
structured, the algorithms used, and providing access to the data
and services by way of well-defined interfaces

– We can design systems as a collection of related and interacting
capsules that hide various complexities within them

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Abstract Data Types

ADT Design Goals

– We must decide
• What data and operational details do we want to hide?

• What we have to expose so that (application) programmers can do what
they need to do

– We must design
• The data organization (structure) … & decide how we will allocate

resources, store and access data

• The primitive data types or other ADTs that make up the ADT and the
relationships between individual elements of the ADT we are creati

• The internal and exposed (external) operations are required to operate
on the data

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Abstract Data Types

ADT Design Goals

– As in all software, in designing an ADT it must be correct:

• Potentially many applications will depend upon the ADT

• The data structure or algorithm should work correctly for all possible
inputs that might be encountered

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Abstract Data Types

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Abstract Data Types

Pre- and post-condition checks should be built into ADTs

– protects callers from doing “bad things” and helps prevent logical
defects during execution

– checks can be derived from assertions made during algorithm
analysis

– The goal in assertion checking is to

• check the input (preconditions)

• check for termination (normal and abnormal)

• check the result (post conditions)

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Abstract Data Types

Well designed and developed ADTs can

– Improve usability of services

– Hiding complexity, makes complex operations simple

– Take the underlying implementation understandable

– Facilitate reuse

– Ease maintenance and modifiability

• Poorly designed ADTs can totally undermine these
characteristics

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Abstract Data Types

Design the ADT before you code

– Decide what the data and operations of the ADT will be before you
write the code

– Consider modeling the ADT formally in terms of pre-conditions, post-
conditions, invariants...

– ADT operations should do only 1 thing

– Reuse your own operations – never duplicate data or operations

– Think first. Code second.

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Abstract Data Types

Decide what you will hide

– Hide as much as possible from the user of the ADT

– Create the most intuitive interfaces possible for programmers

– Reduce inter-module dependencies to the greatest extent possible

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Abstract Data Types

• Comment your code – Code is written once and read many
times

• Standardize to promote consistency
– Use coding/comment standards and naming conventions

use them on internal and external operations and data

• Include headers explaining what the code does
– Traditionally called “headers” because they are comments at the

beginning or “head” of the code body

– Provides an overview of what the code module does and something
about its history

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Abstract Data Types

/***
* Source File: FooBar.c
* Description: This file contains routines for implementing foobar functions.

* Author: Gill Bates
* Initial Production Date: 5/5/07
* Version: V1.2
* Calling Convention: FooBar(int FooInput, int BarOutput);
* Parameter List:
* int FooInput – integer foo like data
* int BarOutput – integer bar like data
* Preconditions: FooInput must be greater than or equal to zero

* Postconditions: BarOutput will be set to the relevant bar value based on FooInput
* Functional Abstract: ...
* **
* Revision History
* 12/25/07: Changed FooInput from float to int. Author: Jack Sommers
* 07/04/08: Fixed problem with error message. Author: Jill Smith

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Abstract Data Types

• Keep your code modules as simple as possible
– many small, simple operations are often easier to understand than a

single complex operation

• Don’t be cute and clever with code
– collapsing 5 lines of code into 1, may yield no advantage at all at

execution time

– complex code is defect prone

– hard to understand what that 1 line of code does

– it is better to be sure and correct, than cute and clever and maybe
wrong!

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Abstract Data Types

• Design error handling from the very beginning

• Good error handling is a result of good correctness and
behavioral analysis:
– error anticipation

– how the application will react to various types of errors, especially if
aborts/halts are possible

– managing the consequences of errors

