
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 10

Stack ADT

Implementation using List ADT (array and linked-list)

Comparison of order of complexity

Stack applications

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Stacks

A stack is a special type of list

– all insertions and deletions take place at one end, called the top

– thus, the last one added is always the first one available for deletion

– also referred to as

• pushdown stack
• pushdown list
• LIFO list (Last In First Out)

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Stacks

Top

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Stack Operations

Declare: ® S :

The function value of Declare(S) is an empty stack

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Stack Operations

Empty: ® S :

The function Empty causes the stack to be emptied and it
returns position End(S)

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Stack Operations

IsEmpty: S ® B :

The function value IsEmpty(S) is true if S is empty; otherwise it is
false

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Stack Operations

Top: S ® E :

The function value Top(S) is the first element in the list;

if the list is empty, the value is undefined

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Stack Operations

Push: E x S ® S :

Push(e, S)
Insert an element e at the top of the stack

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Stack Operations

Pop: S ® E :

Pop(S)
Remove the top element from the stack: i.e. return the top
element and delete it from the stack

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Stack Operations

• All these operations can be directly implemented using the LIST
ADT operations on a List S

• Although it may be more efficient to use a dedicated
implementation

• It depends what you want: code efficiency or software re-use
(i.e. utilization efficiency)

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Stack Operations

Declare(S)

Empty(S)

Top(S)
Retrieve(First(S), S)

Push(e, S)
Insert(e, First(S), S)

Pop(S)
Retrieve(First(S), S)

Delete(First(S), S)

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Stack Errors

• Stack overflow errors occur when you attempt to Push() an
element on a stack that is full

• Stack underflow errors occur when you attempt to Pop() an
element off of an empty stack

• Your ADT implementation should provide guards that catch
these errors

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Stack Implementation

• The List ADT can be implemented
– As an array

– As a linked-list

• So, therefore, so can the Stack ADT

• What are the relative advantages and disadvantages of the
these two options?

• When would you pick one implementation over the other?

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Stack Operations

Declare(S)

Empty(S)

Top(S)
Retrieve(First(S), S)

Push(e, S)
Insert(e, First(S), S)

Pop(S)
Retrieve(First(S), S)
Delete(First(S), S)

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Stack Operations

Array Linked-List
Declare(S) O(1) O(1)

Empty(S) O(1) O(n)

Top(S) O(1) O(1)
Retrieve(First(S), S)

Push(e, S) O(n) … why? O(1)
Insert(e, First(S), S)

Pop(S) O(n) O(1)
Retrieve(First(S), S)
Delete(First(S), S)

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Stack Operations

Array Linked-List
Declare(S) O(1) O(1)

Empty(S) O(1) O(n)

Top(S) O(1) O(1)
Retrieve(Last(S), S)

Push(e, S) O(1) O(n) … !!!
Insert(e, end(S), S)

Pop(S) O(1) O(n) … !!!
Retrieve(Last(S), S)
Delete(Last(S), S)

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Stack Implementation

• Reusing the List ADT involves some compromises

• Alternative is to create a new Stack ADT

– With an implementation that avoids these compromises

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Stack Applications

• Reversing the order of a list of items

• Undo sequence (like those in a text editor)

• Page-visited history in a web browser

• Saving local variables when one function calls another, and it
calls another, and so on

• Parenthesis (begin-end token) matching

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Stack Applications

Saving local variables when one function calls another, and it calls
another, and so on

• A typical operating system keeps track of the chain of active
functions and local variables with a stack

• When a function is called, the run-time system pushes onto the
stack a frame containing local variables and maintains state of
program at the point of departure

• When a function returns to the point of departure, the function
frame is popped from the stack and control is passed to the code
at the point of departure.

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Stack Applications

int main () {
int i = 5;
foo(i);

}

foo(int j) {
int k;
k = j+1;
bar(k);

bar (int m) {
…

}

main
i: 5

foo
j: 5
k: 6

bar
m: 6

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Stack Applications

Token matching

// X is a an array of tokens, e.g. grouping symbol , variable, operator, number

for i=0 to n-1 do {
if X[i] is an opening grouping symbol {

S.push(X[i]) }
else {

if X[i] is a closing grouping symbol {
if S.isEmpty() then

error:: nothing to match with
if S.pop() is not equal to X[i]

error:: false {wrong type}
}

}
}
if S.isEmpty() then

return true {every symbol matched}
else

return false {some symbols were never matched}

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Stack Applications

Notation of expressions

Infix notation

Postfix notation

Prefix notation

(http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm)

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Stack Applications

create a new stack
while(input stream is not empty){

token = getNextToken();
if(token instanceof operand){

push(token);
}
else if (token instance of operator) {

op2 = pop();
op1 = pop();
result = calc(token, op1, op2);
push(result);

}
}
return pop();

Evaluation of Postfix Notation Expressions

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Stack Applications

Demonstrate with 2 3 4 + * 5 –

The time complexity is O(n) because each operand is scanned once, and
each operation is performed once

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Stack Applications

Infix transformation to Postfix

• This process also uses a stack

• We have to hold information that's expressed inside parentheses while
scanning to find the closing ')'

• We also have to hold information on operations that are of lower
precedence on the stack

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Stack Applications

Infix transformation to Postfix – Algorithm

1. Create an empty stack and an empty postfix output string/stream
2. Scan the infix input string/stream left to right
3. If the current input token is an operand, append it to the output string
4. If the current input token is an operator, pop off all operators that have

equal or higher precedence and append them to the output string; push
the operator onto the stack. The order of popping is the order in the
output.

5. If the current input token is '(', push it onto the stack
6. If the current input token is ')', pop off all operators and append them to the

output string until a '(' is popped; discard the '('.
7. If the end of the input string is found, pop all operators and append them to

the output string.

