
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 12

Trees I
– Types of trees

– Binary Tree ADT

– Binary Search Tree

– Height Balanced Trees
• AVL Trees

• Red-Black Trees

– Optimal Code Trees

– Huffman’s Algorithm

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Trees

• Trees are everywhere

• Hierarchical method of structuring data

• Uses of trees:

– genealogical tree

– organizational tree

– expression tree

– binary search tree

– decision tree

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Uses of Trees

Organization Tree

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Uses of Trees

Code Tree

0 1

0

1

1

0

a

b

c d

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Uses of Trees

Binary Seach Tree
Sun

Mon Tue

Fri Sat Thur Wed

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Uses of Trees

Decision Tree

Alert

Yes
Alarm?

Yes
Night?

No

Sensors
Operative?

Override?

No
No

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Trees

• Fundamentals

• Traversals

• Display

• Representation

• Abstract Data Type (ADT) approach

• Emphasis on binary tree

• Also multi-way trees, forests, orchards

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Tree Definitions

• A binary tree T of n nodes, n ³ 0,

– either is empty, if n = 0

– or consists of a root node u and two binary trees u(1) and u(2) of n1
and n2 nodes, respectively, such that n = 1 + n1 + n2

• We say that u(1) is the first or left subtree of T, and u(2) is
the second or right subtree of T

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Binary Tree

Binary Tree of zero nodes

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Binary Tree

Binary Tree of 1 nodes

1 2

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Binary Tree

Binary Tree of 2 nodes

1 2

1 2

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Binary Tree

Binary Tree of 3 nodes

1 2

1 2

1 2

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Binary Tree

External nodes - have no subtrees

Internal nodes - always have two subtrees

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Binary Tree Terminology

• Let T be a binary tree with root u

• Let v be any node in T

• If v is the root of either u(1) or u(2), then we say u is the
parent of v and that v is the child of u

• If w is also a child of u, and w is distinct from v, we say that
v and w are siblings

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Binary Tree Terminology

• If v is the root of u(i)

• then v is the ith child of u;
u(1) is the left child and u(2) is the right child

• Also have grandparents and grandchildren

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Binary Tree Terminology

• Given a binary tree T of n nodes, n ³ 0

• then v is a descendent of u if either

– v is equal to u
or

– v is a child of some node w and w is a descendant of u

• We write v descT u

• v is a proper descendent of u if v is a descendant of u and v
¹ u

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Binary Tree Terminology

• Given a binary tree T of n nodes, n ³ 0

• then v is a left descendent of u if either

– v is equal to u
or

– v is a left child of some node w and w is a left descendant of u

• We write v ldescT u

• Similarly we have v rdescT u

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Binary Tree Terminology

• leftT relates nodes across a binary tree
rather than up and down a binary tree

• Given two nodes u and v in a binary tree T, we say that v is
to the left of u if there is a new node w in T such that v is a
left descendant of w and u is a right descendant of w

• We denote this relation by leftT and
write v leftT u

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Binary Tree Terminology

• The external nodes of a tree define its frontier

• We can count the number of nodes in a binary tree in three
ways:

– Number of internal nodes

– Number of external nodes

– Number of internal and external nodes

• The number of internal nodes is the size of the tree

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Binary Tree Terminology

• Let T be a binary tree of size n , n ³ 0,

• Then, the number of external nodes of T is n + 1

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Binary Tree Terminology

• The height of T is defined recursively as

0 if T is empty and

1 + max(height(T1), height(T2)) otherwise,
where T1 and T2 are the subtrees of the root

• The height of a tree is the length of a longest chain of
descendants

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Binary Tree Terminology

• Height Numbering

– Number all external nodes 0

– Number each internal node to be one more than the maximum of
the numbers of its children

– Then the number of the root is the height of T

• The height of a node u in T is the height of the subtree
rooted at u

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Binary Tree Terminology

• Levels of nodes

– The level of a node in a binary tree is computed as follows

– Number the root node 0
– Number every other node to be 1 more than its parent

– Then the number of a node v is that node’s level

– The level of v is the number of branches on the path from
the root to v

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Binary Tree Terminology

• Skinny Trees

– every internal node has at most one internal child

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Binary Tree Terminology

• Complete Binary Trees (Fat Trees)

– the external nodes appear on at most two adjacent levels

– Perfect Trees: complete trees having all their external nodes on
one level

– Left-complete Trees: the internal nodes on the lowest level is in the
leftmost possible position

– Skinny trees are the highest possible trees

– Complete trees are the lowest possible trees

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Complete Tree

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

Perfect Tree

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

Left-Complete Tree

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

Binary Tree Terminology

• A binary tree of height h ³ 0
has size at least h

• A binary tree of height at most h ³ 0
has size at most 2h – 1

• A binary tree of size n ³ 0
has height at most n

• A binary tree of size n ³ 0
has height at least é log (n + 1) ù

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Multiway Trees

• Multiway trees are defined in a similar way to binary trees,
except that the degree
(the maximum number of children)
is no longer restricted to the value 2

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

Multiway Trees

• A multiway tree T of n internal nodes, n ³ 0,

– either is empty, if n = 0,

– or consists of

• a root node u,

• an integer du ³ 1, the degree of u,

• and multiway trees u(1) of n1 nodes, ..., u(du) of ndu nodes
such that n = 1 + n1 + ... + ndu

Data Structures and Algorithms for Engineers 44 Carnegie Mellon University Africa

Multiway Trees

• A multiway tree T is a d-ary tree,
for some d > 0,
if du = d, for all internal nodes u in T

Data Structures and Algorithms for Engineers 45 Carnegie Mellon University Africa

d-ary Tree

Data Structures and Algorithms for Engineers 46 Carnegie Mellon University Africa

Multiway Trees

• A multiway tree T is a (a, b)-tree,
if 1 £ a £ du £ b, for all u in T

• Every binary tree is a (2, 2)-tree, and vice versa

Data Structures and Algorithms for Engineers 47 Carnegie Mellon University Africa

BINARY_TREE & TREE Specification

• So far, no values associated with the nodes of a tree

• Now want to introduce an ADT called BINARY_TREE, which

– has value of type intelementtype associated with the internal
nodes

– has value of type extelementtype associated with the external
nodes

• These value don’t have any effect on BINARY_TREE
operations

Data Structures and Algorithms for Engineers 48 Carnegie Mellon University Africa

BINARY_TREE & TREE Specification

• BINARY_TREE has explicit windows and window-manipulation
operations

• A window allows us to ‘see’ the value in a node (and to gain
access to it)

• Windows can be positioned over any internal or external node

• Windows can be moved from parent to child

• Windows can be moved from child to parent

Data Structures and Algorithms for Engineers 49 Carnegie Mellon University Africa

Window

Data Structures and Algorithms for Engineers 50 Carnegie Mellon University Africa

BINARY_TREE & TREE Specification

• Let BT denote denote the set of values of BINARY_TREE
of elementtype

• Let E denote the set of values of type elementtype

• Let W denote the set of values of type windowtype

• Let B denote the set of Boolean values true and false

Data Structures and Algorithms for Engineers 51 Carnegie Mellon University Africa

BINARY_TREE Operations

• Empty: BT® BT :
The function Empty(T) is an empty binary tree; if necessary,
the tree is deleted

• IsEmpty: BT ® B :
The function value IsEmpty(T) is true if T is empty; otherwise
it is false

Data Structures and Algorithms for Engineers 52 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 53 Carnegie Mellon University Africa

BINARY_TREE Operations

• Root: BT ®W :
The function value Root(T) is the window position of the
single external node if T is empty; otherwise it is the window
position of the root of T

Data Structures and Algorithms for Engineers 54 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 55 Carnegie Mellon University Africa

BINARY_TREE Operations

• IsRoot: W x BT ® B :
The function value IsRoot(w, T) is true if the window w is over
the root; otherwise it is false

Data Structures and Algorithms for Engineers 56 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 57 Carnegie Mellon University Africa

BINARY_TREE Operations

• IsExternal: W x BT ® B :
The function value IsExternal(w, T) is true if the window w is
over an external node of T; otherwise it is false

Data Structures and Algorithms for Engineers 58 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 59 Carnegie Mellon University Africa

BINARY_TREE Operations

• Child: N x W x BT ® W :
The function value Child(i, w, T) is undefined if the node in
the window W is external or the node in w is internal and i is
neither 1 nor 2; otherwise it is the ith child of the node in w

Data Structures and Algorithms for Engineers 60 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 61 Carnegie Mellon University Africa

BINARY_TREE Operations

• Parent: W x BT ® W :
The function value Parent(w, T) is undefined if T is empty or w
is over the root of T; otherwise it is the window position of
the parent of the node in the window w

Data Structures and Algorithms for Engineers 62 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 63 Carnegie Mellon University Africa

BINARY_TREE Operations

• Examine: W x BT ® I :
The function value Examine(w, T) is undefined if w is over an
external node; otherwise it is element at the internal node in
the window w

Data Structures and Algorithms for Engineers 64 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 65 Carnegie Mellon University Africa

BINARY_TREE Operations

• Replace: E x W x BT ® BT :
The function value Replace(e, w, T) is undefined if w is over
an external node; otherwise it is T, with the element at the
internal node in w replaced by e

Data Structures and Algorithms for Engineers 66 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 67 Carnegie Mellon University Africa

BINARY_TREE Operations

• Insert: E x W x BT ® W x BT :

The function value Insert(e, w, T) is undefined if w is over an
internal node; otherwise it is T, with the external node in w
replaced by a new internal node with two external children.

– Furthermore, the new internal node is given the value e and the
window is moved over the new internal node.

Data Structures and Algorithms for Engineers 68 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 69 Carnegie Mellon University Africa

BINARY_TREE Operations

• Delete: W x BT ® W x BT :

– The function value Delete(w, T) is undefined if w is over an external
node;

– If w is over a leaf node (both its children are external nodes), then the
function value is T with the internal node to be deleted replaced by its
left external node

Data Structures and Algorithms for Engineers 70 Carnegie Mellon University Africa

BINARY_TREE Operations

• Delete: W x BT ® W x BT :

If w is over an internal node with just one internal node child, then the
function value is T with the internal node to be deleted replaced by its
child (internal node)

Data Structures and Algorithms for Engineers 71 Carnegie Mellon University Africa

BINARY_TREE Operations

• Delete: W x BT ® W x BT :

– if w is over an internal node with two internal node children, then the
function value is T with the internal node to be deleted replaced by
the leftmost internal node descendent in its right sub-tree

– In all cases, the window is moved over the replacement node

Data Structures and Algorithms for Engineers 72 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 73 Carnegie Mellon University Africa

BINARY_TREE Operations

• Left: W x BT ® W :

The function value Left(w, T) is undefined if w is over an
external node; otherwise it is the window position of the left
(or first) child of the node w

Data Structures and Algorithms for Engineers 74 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 75 Carnegie Mellon University Africa

BINARY_TREE Operations

• Right: W x BT ® W :

The function value Right(w, T) is undefined if w is over an
external node; otherwise it is the window position of the right
(or second) child of the node w

Data Structures and Algorithms for Engineers 76 Carnegie Mellon University Africa

Example

Data Structures and Algorithms for Engineers 77 Carnegie Mellon University Africa

TREE Operations

• Degree: W x T ® I :

The function value Degree(w, T) is the degree of the node in
the window w

Data Structures and Algorithms for Engineers 78 Carnegie Mellon University Africa

d-ary Tree

Data Structures and Algorithms for Engineers 79 Carnegie Mellon University Africa

TREE Operations

• Child: N x W x T ® W :

The function value Child(i, w, T) is undefined if the node in
the window w is external, or if the node in w is internal and i
is outside the range 1..d, where d is the degree of the node;
otherwise it is the ith child of the node in w

Data Structures and Algorithms for Engineers 80 Carnegie Mellon University Africa

d-ary Tree

Data Structures and Algorithms for Engineers 81 Carnegie Mellon University Africa

/* pointer implementation of BINART_TREE ADT */

#include <stdio.h>

#include <math.h>

#include <string.h>

#define FALSE 0

#define TRUE 1

typedef struct {

int number;

char *string;

} ELEMENT_TYPE;

BINARY_TREE Representation

Data Structures and Algorithms for Engineers 82 Carnegie Mellon University Africa

typedef struct node *NODE_TYPE;

typedef struct node{
ELEMENT_TYPE element;
NODE_TYPE left, right;

} NODE;

typedef NODE_TYPE BINARY_TREE_TYPE;
typedef NODE_TYPE WINDOW_TYPE;

BINARY_TREE Representation

Data Structures and Algorithms for Engineers 83 Carnegie Mellon University Africa

BINARY_TREE Representation

Data Structures and Algorithms for Engineers 84 Carnegie Mellon University Africa

BINARY_TREE Representation

Tree

Window

Data Structures and Algorithms for Engineers 85 Carnegie Mellon University Africa

BINARY_TREE Representation

• This implementation assumes that we are going to
represent external nodes as NULL links

• For many ADT operations, we need to know if the window is
over an internal or an external node

– we are over an external node if the window is NULL

Data Structures and Algorithms for Engineers 86 Carnegie Mellon University Africa

BINARY_TREE Representation

WINDOW

Data Structures and Algorithms for Engineers 87 Carnegie Mellon University Africa

BINARY_TREE Representations

Whenever we insert an internal node

(remember we can only do this if the window is over an
external node)

we simply make its two children NULL

