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Lecture 12

Trees I
– Types of trees

– Binary Tree ADT

– Binary Search Tree

– Height Balanced Trees
• AVL Trees

• Red-Black Trees

– Optimal Code Trees

– Huffman’s Algorithm
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Trees

• Trees are everywhere

• Hierarchical method of structuring data

• Uses of trees:

– genealogical tree

– organizational tree

– expression tree

– binary search tree

– decision tree
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Uses of Trees

Organization Tree
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Uses of Trees

Code Tree
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Uses of Trees

Binary Seach Tree
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Uses of Trees

Decision Tree
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Trees

• Fundamentals

• Traversals

• Display

• Representation

• Abstract Data Type (ADT) approach

• Emphasis on binary tree

• Also multi-way trees, forests, orchards
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Tree Definitions

• A binary tree T of n nodes, n ³ 0, 

– either is empty, if n = 0

– or consists of a root node u and two binary trees u(1) and u(2) of n1
and n2 nodes, respectively, such that n = 1 + n1 + n2

• We say that u(1) is the first or left subtree of T, and u(2) is 
the second or right subtree of T
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Binary Tree

Binary Tree of zero nodes



Data Structures and  Algorithms for Engineers 11 Carnegie Mellon University Africa

Binary Tree

Binary Tree of 1 nodes

1 2
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Binary Tree

Binary Tree of 2 nodes
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Binary Tree

Binary Tree of 3 nodes
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Binary Tree

External nodes - have no subtrees

Internal nodes - always have two subtrees
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Binary Tree Terminology

• Let T be a binary tree with root u

• Let v be any node in T

• If v is the root of either u(1) or u(2), then we say u is the 
parent of v and that v is the child of u

• If w is also a child of u, and w is distinct from v, we say that 
v and w are siblings
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Binary Tree Terminology

• If v is the root of u(i)

• then v is the ith child of u;
u(1) is the left child and u(2) is the right child

• Also have grandparents and grandchildren
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Binary Tree Terminology

• Given a binary tree T of n nodes, n ³ 0

• then v is a descendent of u if either

– v is equal to u
or 

– v is a child of some node w and w is a descendant of u

• We write v descT u

• v is a proper descendent of u if v is a descendant of u and v
¹ u
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Binary Tree Terminology

• Given a binary tree T of n nodes, n ³ 0

• then v is a left descendent of u if either

– v is equal to u
or 

– v is a left child of some node w and w is a left descendant of u

• We write v ldescT u

• Similarly we have v rdescT u
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Binary Tree Terminology

• leftT relates nodes across a binary tree
rather than up and down a binary tree

• Given two nodes u and v in a binary tree T, we say that v is 
to the left of u if there is a new node w in T such that v is a 
left descendant of w and u is a right descendant of w

• We denote this relation by leftT and 
write v leftT u
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Binary Tree Terminology

• The external nodes of a tree define its frontier

• We can count the number of nodes in a binary tree in three 
ways:

– Number of internal nodes

– Number of external nodes

– Number of internal and external nodes

• The number of internal nodes is the size of the tree
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Binary Tree Terminology

• Let T be a binary tree of size n , n ³ 0,

• Then, the number of external nodes of T is n + 1
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Binary Tree Terminology

• The height of T is defined recursively as 

0 if T is empty and 

1 + max(height(T1), height(T2)) otherwise, 
where T1 and T2 are the subtrees of the root

• The height of a tree is the length of a longest chain of 
descendants
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Binary Tree Terminology

• Height Numbering

– Number all external nodes 0

– Number each internal node to be one more than the maximum of 
the numbers of its children

– Then the number of the root is the height of T

• The height of a node u in T is the height of the subtree
rooted at u
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Binary Tree Terminology

• Levels of nodes

– The level of a node in a binary tree is computed as follows

– Number the root node 0
– Number every other node to be 1 more than its parent

– Then the number of a node v is that node’s level

– The level of v is the number of branches on the path from 
the root to v
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Binary Tree Terminology

• Skinny Trees

– every internal node has at most one internal child
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Binary Tree Terminology

• Complete Binary Trees (Fat Trees)

– the external nodes appear on at most two adjacent levels

– Perfect Trees:  complete trees having all their external nodes on 
one level

– Left-complete Trees: the internal nodes on the lowest level is in the 
leftmost possible position

– Skinny trees are the highest possible trees

– Complete trees are the lowest possible trees
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Complete Tree
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Perfect Tree
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Left-Complete Tree
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Binary Tree Terminology

• A binary tree of height h ³ 0 
has size at least h

• A binary tree of height at most h ³ 0 
has size at most 2h – 1

• A binary tree of size n ³ 0 
has height at most n

• A binary tree of size n ³ 0 
has height at least é log (n + 1) ù
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Multiway Trees

• Multiway trees are defined in a similar way to binary trees, 
except that the degree 
(the maximum number of children) 
is no longer restricted to the value 2
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Multiway Trees

• A multiway tree T of n internal nodes, n ³ 0,

– either is empty, if n = 0,

– or consists of

• a root node u,

• an integer du ³ 1, the degree of u,

• and multiway trees u(1) of n1 nodes, ..., u(du) of ndu nodes 
such that n = 1 + n1 + ... + ndu
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Multiway Trees

• A multiway tree T is a d-ary tree, 
for some d > 0,  
if du = d, for all internal nodes u in T
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d-ary Tree
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Multiway Trees

• A multiway tree T is a (a, b)-tree, 
if  1 £ a £ du £ b, for all u in T

• Every binary tree is a (2, 2)-tree, and vice versa
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BINARY_TREE & TREE Specification

• So far, no values associated with the nodes of a tree

• Now want to introduce an ADT called BINARY_TREE, which

– has value of type intelementtype associated with the internal 
nodes

– has value of type extelementtype associated with the external 
nodes

• These value don’t have any effect on BINARY_TREE 
operations
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BINARY_TREE & TREE Specification

• BINARY_TREE has explicit windows and window-manipulation 
operations

• A window allows us to ‘see’ the value in a node (and to gain 
access to it)

• Windows can be positioned over any internal or external node

• Windows can be moved from parent to child

• Windows can be moved from child to parent
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Window
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BINARY_TREE & TREE Specification

• Let BT denote denote the set of values of BINARY_TREE 
of elementtype

• Let E denote the set of values of type elementtype

• Let W denote the set of values of type windowtype

• Let B denote the set of Boolean values true and false
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BINARY_TREE Operations

• Empty: BT® BT :  
The function Empty(T) is an empty binary tree; if necessary, 
the tree is deleted

• IsEmpty: BT ® B :  
The function value IsEmpty(T) is true if T is empty; otherwise 
it is false
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Example
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BINARY_TREE Operations

• Root: BT ®W :  
The function value Root(T) is the window position of the 
single external node if T is empty; otherwise it is the window 
position of the root of  T
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Example
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BINARY_TREE Operations

• IsRoot: W x BT ® B :  
The function value IsRoot(w, T) is true if the window w is over 
the root; otherwise it is false
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Example
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BINARY_TREE Operations

• IsExternal: W x BT ® B :  
The function value IsExternal(w, T) is true if the window w is 
over an external node of T; otherwise it is false
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Example
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BINARY_TREE Operations

• Child: N x W x BT ® W :  
The function value Child(i, w, T) is undefined if the node in 
the window W is external or the node in w is internal and i is 
neither 1 nor 2; otherwise it is the ith child of the node in w



Data Structures and  Algorithms for Engineers 60 Carnegie Mellon University Africa

Example
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BINARY_TREE Operations

• Parent: W x BT ® W :  
The function value Parent(w, T) is undefined if T is empty or w
is over the root of T; otherwise it is the window position of 
the parent of the node in the window w
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Example
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BINARY_TREE Operations

• Examine: W x BT ® I :  
The function value Examine(w, T) is undefined if w is over an 
external node; otherwise it is element at the internal node in 
the window w
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Example
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BINARY_TREE Operations

• Replace: E x W x BT ® BT :  
The function value Replace(e, w, T) is undefined if w is over 
an external node; otherwise it is T, with the element at the 
internal node in w replaced by e
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Example
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BINARY_TREE Operations

• Insert: E x W x BT ® W x BT :  

The function value Insert(e, w, T) is undefined if w is over an 
internal node; otherwise it is T, with the external node in w
replaced by a new internal node with two external children.  

– Furthermore, the new internal node is given the value e and the 
window is moved over the new internal node.
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Example
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BINARY_TREE Operations

• Delete: W x BT ® W x BT :  

– The function value Delete(w, T) is undefined if w is over an external 
node;

– If w is over a leaf node (both its children are external nodes), then the 
function value is T with the internal node to be deleted replaced by its 
left external node
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BINARY_TREE Operations

• Delete: W x BT ® W x BT :  

If w is over an internal node with just one internal node child, then the 
function value is T with the internal node to be deleted replaced by its 
child (internal node)
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BINARY_TREE Operations

• Delete: W x BT ® W x BT :  

– if w is over an internal node with two internal node children, then the 
function value is T with the internal node to be deleted replaced by 
the leftmost internal node descendent in its right sub-tree

– In all cases, the window is moved over the replacement node



Data Structures and  Algorithms for Engineers 72 Carnegie Mellon University Africa

Example
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BINARY_TREE Operations

• Left: W x BT ® W  :  

The function value Left(w, T) is undefined if w is over an 
external node; otherwise it is the window position of the left 
(or first) child of the node w
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Example
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BINARY_TREE Operations

• Right: W x BT ® W  :  

The function value Right(w, T) is undefined if w is over an 
external node; otherwise it is the window position of the right 
(or second) child of the node w
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Example
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TREE Operations

• Degree: W x T ® I :  

The function value Degree(w, T) is the degree of the node in 
the window w
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d-ary Tree
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TREE Operations

• Child: N x W x T ® W :  

The function value Child(i, w, T) is undefined if the node in 
the window w is external, or if the node in w is internal and i
is outside the range 1..d, where d is the degree of the node; 
otherwise it is the ith child of the node in w
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d-ary Tree
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/* pointer implementation of BINART_TREE ADT */

#include <stdio.h>

#include <math.h>

#include <string.h>

#define FALSE 0

#define TRUE 1

typedef struct {

int number;

char *string;

} ELEMENT_TYPE;

BINARY_TREE Representation
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typedef struct node *NODE_TYPE;

typedef struct node{
ELEMENT_TYPE element;
NODE_TYPE left, right;

} NODE;

typedef NODE_TYPE BINARY_TREE_TYPE;
typedef NODE_TYPE WINDOW_TYPE;

BINARY_TREE Representation
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BINARY_TREE Representation
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BINARY_TREE Representation

Tree

Window
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BINARY_TREE Representation

• This implementation assumes that we are going to 
represent external nodes as NULL links

• For many ADT operations, we need to know if the window is 
over an internal or an external node

– we are over an external node if the window is NULL
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BINARY_TREE Representation

WINDOW
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BINARY_TREE Representations

Whenever we insert an internal node 

(remember we can only do this if the window is over an 
external node) 

we simply make its two children NULL


