04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vVernon.eu

Lecture 13

Trees |

— Binary Search Tree

Binary Search Trees

* A Binary Search Tree (BST) is a special type of binary tree

— it represents information is an ordered format

— A binary tree is binary search tree if for every node w,
all keys in the left subtree of w have values less than the key of w

all keys in the right subtree have values greater than key of w.

Binary Search Trees

Definition: A binary search tree T is a binary tree;
either it is empty or each node in the tree contains an
Identifier and:

— all keys in the left subtree of T'are less (numerically or
alphabetically]) than the identifier in the root node T:

— all identifiers in the right subtree of T are greater than the
identifier in the root node T;

— The left and right subtrees of T are also binary search trees.

Binary Search Trees

/Osun%

4 p g n-

Binary Search Trees

* The main point to notice about such a tree is that, If
traversed inorder, the keys of the tree (/e. its data
elements) will be encountered in a sorted fashion

* Furthermore, efficient searching is possible using the
binary search technique

— search time is O(log,n)

Binary Search Trees

It should be noted that several binary search trees are

possible for a given data set, e.g, consider the following
tree:

Binary Search Trees

e

\

Sun

Tue

/
e e ts

Binary Search Trees
Fri

Wed

Binary Search Trees

Let us consider how such a situation might arise

Construct a binary search tree:

— Assume we are building a binary search tree of words

— Initially, the tree is null, 1.e. there are no nodes Iin the tree

— The first word is inserted as a node in the tree as the root,
with no children

Binary Search Trees

On insertion of the second word, we check to see if it Is
the same as the key in the root, less than it, or greater
than it

* If it is the same, no further action is required (duplicates
are not allowed]

* If it is less than the key in the current node, move to the
left subtree and compare again

e |f the left subtree does not exist, then the word does not
exist and it is inserted as a new node on the left

Binary Search Trees

* If, on the other hand, the word was greater than the key in the
current node, move to the right subtree and compare again

* |If the right subtree does not exist, then the word does not exist
and it is inserted as a new node on the right

— This insertion can most easily be effected in a recursive
manner

Binary Search Trees

— The point here Is that the structure of the tree
depends on the order in which the data Is
iInserted In the list

— If the words are entered in sorted order, then the
tree will degenerate to a 1-D list

BST Operations

e [nsert. Ex BST — BST :

The function value Insert(e,T) is the BST T with the element e

Inserted as a leaf node; if the element already exists, no
action is taken

NO WINDOWV!!!

BST Operations

e Delete: E x BST — BST :
The function value Delete(e, T) is the BST T with the element

e deleted: if the element is not in the BST exists, no action is
taken.

NO WINDOWV!!!

Implementation of Insert(e, T)

 IfTisempty(i.e. Tis NULL]

— create a new node for e

— make T point to it

* If Tis not empty

— ife<element at root of T

* Insert e in left child of T: Insert(e, T(1))

— if e>element at root of T

* Insert e in right child of T Insert(e, T(2))

Implementation of Delete(e, T)

First, we must locate the element e to be deleted in the tree

— If e Is at a leaf node

 we can delete that node and be done

— if e 1s at an interior node at w

* we can’'t simply delete the node at w as that would disconnect its
children

— If the node at w has only one child

* we can replace that node with its child

Implementation of Delete(e, T)

— If the node at w has two children

* we replace the node at w with the lowest-valued element among
the descendents of its right child

* this is the left-most node of the right tree

* |t is useful to have a function DeleteMin() which

removes the smallest element from a non-empty tree
and

returns the value of the element removed

Implementation of Delete(e, T)

* If Tis not empty

— If e <element at root of T

Delete e from left child of T: Delete(e, T(1))
— If > element at root of T

Delete e from right child of T: Delete(e, T(2))

— If e = element at root of 7" and both children are empty

Remove T

Implementation of Delete(e, T)

— If e = element at root of 7 and left child is empty

Replace T with 7(2)

— If e = element at root of 7 and right child is empty

Replace T with 7(1)

— If e = element at root of 7 and neither child is empty

Replace T with left-most node of 7(2) <« “left-most node in right sub-tree!”

Implementation of Delete(e, T)

What is the left-most node in the right sub-tree has two
(iInterior node) children?

Implementation of Delete(e, T)

It can’t!

If it did, It wouldn’t be the left-most node ...

because there would be a node on it’s left!

Implementation of Delete(e, T)

Sun

Mon Q Tue
LN L
"RORR >3\

Implementation of Delete(e, T)

Monp
Fri R Sat

Sun

Tue

QThur Q Wed

Tree Traversals

* To perform a traversal of a data structure, we use a
method of visiting every node in some predetermined order

e Traversals can be used

— to test data structures for equality

— to display a data structure

— to construct a data structure of a give size
— to copy a data structure

Depth-First Traversals

* There are 3 depth-first traversals

— |norder
— Postorder
— Preorder

* For example, consider the expression tree:

Example: Expression Tree

Depth-First Traversals

Inorder traversal
A-B+CxD+ExF-G
Postorder traversal
AB-C+DE+FG—xx
Preorder traversal

Xx+-ABCx+DE-FG

Depth-First Traversals

* The parenthesised Inorder traversal
([A-B)+C)x[[D+E)x(F-G]]

This Is the infix expression corresponding to the expression
tree

* Postorder traversal gives a postfix expression

* Preorder traversal gives a prefix expression

Depth-First Traversals

e Recursive definition of inorder traversal

Given a binary tree T

If 7'is empty
visit the external node

otherwise
perform an inorder traversal of Left(T)
visit the root of T

perform an inorder traversal of Right(T)

Example: Inorder Traversal

Example: Inorder Traversal

Example: Inorder Traversal

C

D

FOYS)

Example: Inorder Traversal

Sun

Mon Q Tue
LN L
"RORR >3\

Example: Inorder Traversal

Monp
Fri R Sat

Sun

Tue

QThur Q Wed

Depth-First Traversals

* Recursive definition of postorder traversal

Given a binary tree T
If 7'is empty
visit the external node

otherwise
perform an postorder traversal of Left(T)
perform an postorder traversal of Right(T)

visit the root of T

Example: Postorder Traversal

Example: Postorder Traversal

Depth-First Traversals

* Recursive definition of preorder traversal

Given a binary tree T
If 7'is empty
visit the external node

otherwise
visit the root of T
perform an preorder traversal of Left(T)

perform an preorder traversal of Right(T)

Example: Preorder Traversal

BST Implementation

typedef struct {
int number;
char *string;
} ELEMENT_TYPE;

typedef struct node *NODE_TYPE;
typedef struct node {
ELEMENT _TYPE element;
NODE_TYPE left, right;
} NODE;
typedef NODE_TYPE BINARY_TREE_TYPE;

typedef BINARY_TREE_TYPE WINDOW_TYPE;

int main() {

ELEMENT_TYPE e;
BINARY_TREE_TYPE tree;

initialize(&tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign _element values(&e,
insert(e, &tree);
print(tree);

assign_element _values(&e,
insert(e, &tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign _element values(&e,
delete_element(e, &tree);
print(tree);

"Lo")s

ll+++ll);

"---");

ll_._ll)_
20 2

II***II).;

ll@e@ll) J_

"La")s

/*** initialize a tree ***/
void initialize(BINARY_TREE_TYPE *tree) {
static bool first call = true;

/* we don't know what value *tree has when the program is launched

/* so we have to be careful not to dereference it

/* if it's the first call to initialize, there is no tree to be deleted
/* and we just set *tree to NULL

if (first _call) {
first call = false;
*tree = NULL;|

}

else {
if (*tree != NULL) postorder_delete nodes(*tree);
*tree = NULL;

}

*/
*/
*/
*/

/*** insert an element in a tree ***/
BINARY_TREE_TYPE *insert(ELEMENT_TYPE e, BINARY_TREE_TYPE *tree) {
WINDOW_TYPE temp;
if (*tree == NULL) {
/* we are at an external node: create a new node and insert it */

if ((temp = (NODE_TYPE) malloc(sizeof(NODE))) == NULL)
error("function insert: unable to allocate memory");

else {
temp->element = e;
temp->left = NULL;
temp->right = NULL;

*tree = temp;

}
}

else if (e.number < (*tree)->element.number) { /* assume the number field is the key */
insert(e, &((*tree)->left));

}

else if (e.number > (*tree)->element.number) {
insert(e, &((*tree)->right));
}

/* if e.number == (*tree)->element.number, e already is in the tree so do nothing */

return(tree);

/*** returns & deletes the smallest node in a tree (i.e. the left-most node) */
ELEMENT _TYPE delete min(BINARY_TREE TYPE *tree) {

ELEMENT_TYPE e;
BINARY TREE_TYPE p;

if ((*tree)->left == NULL) {
/* tree points to the smallest element */
e = (*tree)->element;

/* replace the node pointed to by tree by its right child */

p = *tree;
*tree = (*tree)->right;
free(p);

return(e);

}

else {

/* the node pointed to by tree has a left child */

return(delete min(&((*tree)->left)));

/*** delete an element in a tree **¥*/

BINARY _TREE _TYPE *delete element(ELEMENT _TYPE e, BINARY TREE_TYPE *tree) {
BINARY_TREE_TYPE p;
if (*tree != NULL) {

if (e.number < (*tree)->element.number) /* assume element.number is the */
delete element(e, &((*tree)->left)); /* key */

else if (e.number > (*tree)->element.number)
delete element(e, &((*tree)->right));

else if (((*tree)->left == NULL) && ((*tree)->right == NULL)) {
/* leaf node containing e - delete it */
p = *tree;

free(p);
*tree = NULL;

else if ((*tree)->left == NULL) {

/* internal node containing e and it has only a right child */
/* delete it and make treepoint to the right child */

p = *tree;
*tree = (*tree)->right;
free(p);

}
else if ((*tree)->right == NULL) {

/* internal node containing e and it has only a left child */
/* delete it and make treepoint to the left child */

p = *tree;
*tree = (*tree)->left;

free(p);

}

else {
/* internal node containing e and it has both left and right child */
/* replace it with leftmost node of right sub-tree */
(*tree)->element = delete min(&((*tree)->right));

}

}

return(tree);

/*** inorder traversal of a tree, printing node elements **/
int inorder(BINARY_TREE_TYPE tree, int n) {
int i;

if (tree != NULL) {
inorder(tree->left, n+l);

for (i=0; i<n; i++) printf(" ");
printf("%d %s\n", tree->element.number, tree->element.string);

inorder(tree->right, n+l);

}
return(9);

/*** inorder traversal of a tree, deleting node elements **/
int postorder delete nodes(BINARY_TREE TYPE tree) {

if (tree != NULL) {
postorder_delete nodes(tree->left);
postorder delete nodes(tree->right);
free(tree);

}

return(0);

/*** print all elements in a tree by traversing inorder ***/
int print(BINARY_TREE_TYPE tree) {

printf("Contents of tree by inorder traversal: \n");

inorder(tree,0);
printf("--- \n");
return(0);

/*** error handler:
print message passed as argument and take appropriate action ***/

int error(char *s) {
printf("Error: %s\n",s);

exit(9);

/*** assign values to an element ***/
int assign_element values(ELEMENT_TYPE *e, int number, char s[]) {

e->string = (char *) malloc(sizeof(char) * (strlen(s)+1l));
strcpy(e->string, s);

e->number number;

return(0);

int main() {

ELEMENT_TYPE e;
BINARY_TREE_TYPE tree;

initialize(&tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign _element values(&e,
insert(e, &tree);
print(tree);

assign_element _values(&e,
insert(e, &tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign _element values(&e,
delete_element(e, &tree);
print(tree);

"Lo")s

ll+++ll);

"---");

ll_._ll)_
20 2

II***II).;

ll@e@ll) J_

"La")s

BINARY_TREE Implementation

Sy

BINARY_TREE Implementation

BINARY_TREE Implementation

BINARY_TREE Implementation

AN
/\
N

A2/

BINARY_TREE Implementation

AN
/ \5
N

A2l 1/

BINARY_TREE Implementation

AN
/ \5
N

A2l 1/

X

/]

BINARY_TREE Implementation

AN
/\
N

A2/

