04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vernon.eu

Lecture 13

Trees |

— Binary Search Tree

Binary Search Trees

* A Binary Search Tree [BST) is a special type of binary tree

— It represents information is an ordered format

— A binary tree is binary search tree if for every node w,
all keys in the left subtree of i have values less than the key of w and

all keys in the right subtree have values greater than key of w.

Binary Search Trees

* Definition: A binary search tree T is a binary tree; either it
IS empty or each node in the tree contains an identifier and:

— all keys in the left subtree of T are less ([numerically or
alphabetically]) than the identifier in the root node T;

— all identifers in the right subtree of T are greater than the identifier
In the root node T,

— The left and right subtrees of T are also binary search trees.

Binary Search Trees

/Osun%

4 "p g n-

Binary Search Trees

* The main point to notice about such a tree is that, if
traversed inorder, the keys of the tree (/.e. its data
elements) will be encountered in a sorted fashion

* Furthermore, efficient searching is possible using the
binary search technique

— search time is O(log,n)

Binary Search Trees

* |t should be noted that several binary search trees are
possible for a given data set, e.g, consider the following
tree:

Binary Search Trees

e

Fr'% S>
\

Sun

Tue

/
e lats

Binary Search Trees
Fri

Wed

Binary Search Trees

* Let us consider how such a situation might arise

To do so, we need to address how a binary search tree is
constructed

— Assume we are building a binary search tree of words

— Initially, the tree is null, i.e. there are no nodes in the tree

— The first word is inserted as a node in the tree as the root, with no
children

Binary Search Trees

— On insertion of the second word, we check to see if it is the
same as the key in the root, less than it, or greater than it

* If it is the same, no further action is required [duplicates are not
allowed]

* Ifit is less than the key in the current node, move to the left
subtree and compare again

e |f the left subtree does not exist, then the word does not exist
and it is inserted as a new node on the left

Binary Search Trees

* If, on the other hand, the word was greater than the key in the current
node, move to the right subtree and compare again

* If the right subtree does not exist, then the word does not exist and it
IS Inserted as a new node on the right

— This insertion can most easily be effected in a recursive manner

Binary Search Trees

— The point here is that the structure of the tree depends on the
order in which the data is inserted in the list

— If the words are entered in sorted order, then the tree will
degenerate to a 1-D list

BST Operations

e JInsert: ExBST — BST :

The function value Insert(e,T) is the BST T with the element e

iInserted as a leaf node; if the element already exists, no
action Is taken

NO WINDOW!!

BST Operations

e Delete: Ex BST — BST
The function value Delete(e, T) is the BST T with the element

e deleted:; if the element is not in the BST exists, no action is
taken.

NO WINDOW!!

Implementation of Insert(e, T)

 If T'isempty (i.e. Tis NULL)

— create a new node for e

— make T point to it

* |If T'is not empty

— if e<element at root of T
* Insert e in left child of T: Insert(e, T(1))
— ife>element at root of T

* Insert e in right child of T: Insert(e, T(2))

Implementation of Delete(e, T)

 First, we must locate the element e to be deleted in the tree

— if e is at a leaf node
* we can delete that node and be done

— If e is at an interior node at w

* we can't simply delete the node at w as that would disconnect its
children

— if the node at w has only one child

* we can replace that node with its child

Implementation of Delete(e, T)

— If the node at w has two children

* we replace the node at w with the lowest-valued element among the
descendents of its right child

* this is the left-most node of the right tree

e |t is useful to have a function DeleteMin with removes the smallest

element from a non-empty tree and returns the value of the element
removed

Implementation of Delete(e, T)

If T'is not empty

— If e<element at root of T
e Delete e from left child of T: Delete(e, T(1))

— iIf e>element at root of T’
* Delete efrom right child of T: Delete(e, T(2))

— if e = element at root of T and both children are empty
* Remove T

— if e = element at root of 7" and left child is empty

* Replace T with T(2)

Implementation of Delete(e, T)

— if e = element at root of 7 and right child is empty

* Replace T with T(1)
— if e = element at root of 7'and neither child is empty

* Replace T with left-most node of 7(2)

Implementation of Delete(e, T)

Sun

Mon Q Tue
AN
"ROR R >3\

Implementation of Delete(e, T)

Monp
Fri R Sat

Sun

Tue

QThur Q Wed

Tree Traversals

* To perform a traversal of a data structure, we use a
method of visiting every node in some predetermined order

e Traversals can be used

— to test data structures for equality

— to display a data structure

— to construct a data structure of a give size
— to copy a data structure

Depth-First Traversals

* There are 3 depth-first traversals

— Inorder
— Postorder
— Preorder

* For example, consider the expression tree:

Example: Expression Tree

Depth-First Traversals

Inorder traversal
A-B+CxD+ExF-G
Postorder traversal
AB-C+DE+FG—xx
Preorder traversal

Xx+-ABCx+DE-FG

Depth-First Traversals

* The parenthesised Inorder traversal
(A-B)+C)x([D+E)x[F-0G)

This is the infix expression corresponding to the expression
tree

* Postorder traversal gives a postfix expression

* Preorder traversal gives a prefix expression

Depth-First Traversals

e Recursive definition of inorder traversal
Given a binary tree T

If T'is empty
visit the external node

otherwise
perform an inorder traversal of Left(T)
visit the root of T

perform an inorder traversal of Right(T)

Example: Inorder Traversal

C

D

//Q\i/\//\\

Example: Inorder Traversal

Sun

Mon Q Tue
AN
"ROR R >3\

Example: Inorder Traversal

Monp
Fri R Sat

Sun

Tue

QThur Q Wed

Depth-First Traversals

* Recursive definition of postorder traversal

Given a binary tree T
If T'is empty
visit the external node
otherwise
perform an postorder traversal of Left(T)
perform an postorder traversal of Right(T)
visit the root of T

Example: Postorder Traversal

Example: Postorder Traversal

/N

any
PR
SRAVANYA

—_—

D

Depth-First Traversals

* Recursive definition of preorder traversal

Given a binary tree T
If T'is empty
visit the external node
otherwise
visit the root of T
perform an preorder traversal of Left(T)
perform an preorder traversal of Right(T)

Example: Preorder Traversal

BST Implementation

typedef struct {
int numberj
char *string;
} ELEMENT_TYPE;

typedef struct node *NODE_TYPE;
typedef struct node {
ELEMENT _TYPE element;
NODE_TYPE left, right;
} NODE;
typedef NODE_TYPE BINARY_TREE_TYPE;

typedef BINARY_TREE_TYPE WINDOW_ TYPE;

int main() {

ELEMENT_TYPE e;
BINARY_TREE_TYPE tree;

initialize(&tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign_element _values(&e,
insert(e, &tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign_element_values(&e,
delete_element(e, &tree);
print(tree);

L")

l|+++");

"---")s

II...II).
P B | >

ll***ll);

llee@ll) ;

L")

/*** initialize a tree ***/
\void initialize(BINARY_TREE_TYPE *tree) {
static bool first _call = true;

/* we don't know what value *tree has when the program is launched

/* so we have to be careful not to dereference it

/* if it's the first call to initialize, there is no tree to be deleted
/* and we just set *tree to NULL

if (first_call) {
first_call = false;
*tree = NULL;|

}

else {
if (*tree != NULL) postorder_delete nodes(*tree);
*tree = NULL;

}

*/
*/
*/
*/

/*** insert an element in a tree ***/
BINARY_TREE_TYPE *insert(ELEMENT_TYPE e, BINARY_TREE_TYPE *tree) {
WINDOW_TYPE temp;
if (*tree == NULL) {
/* we are at an external node: create a new node and insert it */

if ((temp = (NODE_TYPE) malloc(sizeof(NODE))) == NULL)
error("function insert: unable to allocate memory");

else {
temp->element = e;
temp->left = NULL;
temp->right = NULL;

*tree = temp;

}
}

else if (e.number < (*tree)->element.number) { /* assume the number field is the key */
insert(e, &((*tree)->left));
}

else if (e.number > (*tree)->element.number) {
insert(e, &((*tree)->right));
}

/* if e.number == (*tree)->element.number, e already is in the tree so do nothing */

return(tree);

/*** returns & deletes the smallest node in a tree (i.e. the left-most node) */
ELEMENT _TYPE delete min(BINARY_TREE TYPE *tree) {

ELEMENT _TYPE e;
BINARY_ TREE_TYPE p;

if ((*tree)->left == NULL) {
/* tree points to the smallest element */
e = (*tree)->element;
/* replace the node pointed to by tree by its right child */

p = *tree;
*tree = (*tree)->right;
free(p);

return(e);

}
else {

/* the node pointed to by tree has a left child */

return(delete min(&((*tree)->left)));

/*** delete an element in a tree **¥*/

BINARY _TREE _TYPE *delete element(ELEMENT _TYPE e, BINARY TREE_TYPE *tree) {
BINARY_TREE_TYPE p;
if (*tree != NULL) {

if (e.number < (*tree)->element.number) /* assume element.number is the */
delete element(e, &((*tree)->left)); /* key */

else if (e.number > (*tree)->element.number)
delete element(e, &((*tree)->right));

else if (((*tree)->left == NULL) && ((*tree)->right == NULL)) {
/* leaf node containing e - delete it */
p = *tree;

free(p);
*tree = NULL;

else if ((*tree)->left == NULL) {

/* internal node containing e and it has only a right child */
/* delete it and make treepoint to the right child */

p = *tree;
*tree = (*tree)->right;
free(p);

}
else if ((*tree)->right == NULL) {

/* internal node containing e and it has only a left child */
/* delete it and make treepoint to the left child */

p = *tree;
*tree = (*tree)->left;

free(p);

}

else {
/* internal node containing e and it has both left and right child */
/* replace it with leftmost node of right sub-tree */
(*tree)->element = delete min(&((*tree)->right));

}

}

return(tree);

/*** inorder traversal of a tree, printing node elements **/
int inorder(BINARY_TREE_TYPE tree, int n) {
int i;

if (tree != NULL) {
inorder(tree->left, n+l);

for (i=0; i<n; i++) printf(" ");
printf("%d %s\n", tree->element.number, tree->element.string);

inorder(tree->right, n+l);

}
return(0);

/*** inorder traversal of a tree, deleting node elements **/
int postorder delete nodes(BINARY_TREE TYPE tree) {

if (tree != NULL) {
postorder_delete nodes(tree->left);
postorder_delete nodes(tree->right);
free(tree);

}

return(0);

/*** print all elements in a tree by traversing inorder ***/
int print(BINARY_TREE_TYPE tree) {

printf("Contents of tree by inorder traversal: \n");

inorder(tree,0);
printf("--- \n");
return(0);

/*** error handler:
print message passed as argument and take appropriate action ***/

int error(char *s) {
printf("Error: %s\n",s);

exit(9);

/*** assign values to an element ***/
int assign_element values(ELEMENT_TYPE *e, int number, char s[]) {

e->string = (char *) malloc(sizeof(char) * (strlen(s)+1l));
strcpy(e->string, s);

e->number number;

return(0);

int main() {

ELEMENT_TYPE e;
BINARY_TREE_TYPE tree;

initialize(&tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign_element _values(&e,
insert(e, &tree);
print(tree);

assign_element_values(&e,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign_element_values(&e,
delete_element(e, &tree);
print(tree);

L")

l|+++");

"---")s

II...II).
P B | >

ll***ll);

llee@ll) ;

L")

BINARY_TREE Implementation

Sy

BINARY_TREE Implementation

BINARY_TREE Implementation

BINARY_TREE Implementation

AN
/\
N

A2/

BINARY_TREE Implementation

AN
/ \5
N

AER VAt

BINARY_TREE Implementation

AN
/ \5
N

AER VAt

X

/]

BINARY_TREE Implementation

AN
/\
N

A2/

