
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 13

Trees I
– Types of trees

– Binary Tree ADT

– Binary Search Tree

– Height Balanced Trees
• AVL Trees

• Red-Black Trees

– Optimal Code Trees

– Huffman’s Algorithm

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Binary Search Trees

• A Binary Search Tree (BST) is a special type of binary tree

– it represents information is an ordered format

– A binary tree is binary search tree if for every node w,

all keys in the left subtree of w have values less than the key of w

all keys in the right subtree have values greater than key of w.

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Binary Search Trees

Definition: A binary search tree T is a binary tree;
either it is empty or each node in the tree contains an
identifier and:

– all keys in the left subtree of T are less (numerically or
alphabetically) than the identifier in the root node T;

– all identifiers in the right subtree of T are greater than the
identifier in the root node T;

– The left and right subtrees of T are also binary search trees.

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Binary Search Trees

Sun

Mon Tue

Fri Sat Thur Wed

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Binary Search Trees

• The main point to notice about such a tree is that, if
traversed inorder, the keys of the tree (i.e. its data
elements) will be encountered in a sorted fashion

• Furthermore, efficient searching is possible using the
binary search technique

– search time is O(log2n)

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Binary Search Trees

It should be noted that several binary search trees are
possible for a given data set, e.g, consider the following
tree:

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Binary Search Trees

Sun

Mon

Tue

Fri Sat

Thur
Wed

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Binary Search Trees

Sun

Mon

Tue

Fri

Thur

Wed

Sat

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Binary Search Trees

Let us consider how such a situation might arise

Construct a binary search tree:

– Assume we are building a binary search tree of words

– Initially, the tree is null, i.e. there are no nodes in the tree

– The first word is inserted as a node in the tree as the root,
with no children

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Binary Search Trees

On insertion of the second word, we check to see if it is
the same as the key in the root, less than it, or greater
than it

• If it is the same, no further action is required (duplicates
are not allowed)

• If it is less than the key in the current node, move to the
left subtree and compare again

• If the left subtree does not exist, then the word does not
exist and it is inserted as a new node on the left

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Binary Search Trees

• If, on the other hand, the word was greater than the key in the
current node, move to the right subtree and compare again

• If the right subtree does not exist, then the word does not exist
and it is inserted as a new node on the right

– This insertion can most easily be effected in a recursive
manner

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Binary Search Trees

– The point here is that the structure of the tree
depends on the order in which the data is
inserted in the list

– If the words are entered in sorted order, then the
tree will degenerate to a 1-D list

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

BST Operations

• Insert: E x BST ® BST :

The function value Insert(e,T) is the BST T with the element e
inserted as a leaf node; if the element already exists, no
action is taken

NO WINDOW!!!

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

BST Operations

• Delete: E x BST ® BST :

The function value Delete(e, T) is the BST T with the element
e deleted; if the element is not in the BST exists, no action is
taken.

NO WINDOW!!!

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Implementation of Insert(e, T)

• If T is empty (i.e. T is NULL)

– create a new node for e

– make T point to it

• If T is not empty

– if e < element at root of T

• Insert e in left child of T: Insert(e, T(1))

– if e > element at root of T

• Insert e in right child of T: Insert(e, T(2))

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Implementation of Delete(e, T)

First, we must locate the element e to be deleted in the tree

– if e is at a leaf node
• we can delete that node and be done

– if e is at an interior node at w
• we can’t simply delete the node at w as that would disconnect its

children

– if the node at w has only one child
• we can replace that node with its child

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Implementation of Delete(e, T)

– if the node at w has two children

• we replace the node at w with the lowest-valued element among
the descendents of its right child

• this is the left-most node of the right tree

• It is useful to have a function DeleteMin() which
removes the smallest element from a non-empty tree
and
returns the value of the element removed

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Implementation of Delete(e, T)

• If T is not empty

– if e < element at root of T

Delete e from left child of T: Delete(e, T(1))

– if e > element at root of T

Delete e from right child of T: Delete(e, T(2))

– if e = element at root of T and both children are empty

Remove T

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Implementation of Delete(e, T)

– if e = element at root of T and left child is empty

Replace T with T(2)

– if e = element at root of T and right child is empty

Replace T with T(1)

– if e = element at root of T and neither child is empty

Replace T with left-most node of T(2) ← “left-most node in right sub-tree!”

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Implementation of Delete(e, T)

What is the left-most node in the right sub-tree has two
(interior node) children?

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Implementation of Delete(e, T)

It can’t!

If it did, it wouldn’t be the left-most node ...

because there would be a node on it’s left!

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Implementation of Delete(e, T)

Sun

Mon Tue

Fri Sat Thur Wed

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Implementation of Delete(e, T)

Sun

Mon

Tue

Fri Sat

Thur Wed

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Tree Traversals

• To perform a traversal of a data structure, we use a
method of visiting every node in some predetermined order

• Traversals can be used

– to test data structures for equality

– to display a data structure

– to construct a data structure of a give size

– to copy a data structure

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Depth-First Traversals

• There are 3 depth-first traversals

– Inorder

– Postorder

– Preorder

• For example, consider the expression tree:

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Example: Expression Tree

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Depth-First Traversals

• Inorder traversal

A - B + C x D + E x F - G

• Postorder traversal

A B - C + D E + F G - x x

• Preorder traversal

x + -A B C x + D E - F G

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Depth-First Traversals

• The parenthesised Inorder traversal

((A - B) + C) x ((D + E) x (F - G))

This is the infix expression corresponding to the expression
tree

• Postorder traversal gives a postfix expression

• Preorder traversal gives a prefix expression

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Depth-First Traversals

• Recursive definition of inorder traversal

Given a binary tree T

if T is empty

visit the external node

otherwise
perform an inorder traversal of Left(T)
visit the root of T
perform an inorder traversal of Right(T)

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

1

2

3

4

5

6

10

8

7 9 11

12

13

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

Example: Inorder Traversal

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Sun

Mon Tue

Fri Sat Thur Wed

Example: Inorder Traversal

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

Example: Inorder Traversal

Sun

Mon

Tue

Fri Sat

Thur Wed

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Depth-First Traversals

• Recursive definition of postorder traversal

Given a binary tree T
if T is empty

visit the external node

otherwise
perform an postorder traversal of Left(T)
perform an postorder traversal of Right(T)
visit the root of T

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Example: Postorder Traversal

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

Example: Postorder Traversal

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

Depth-First Traversals

• Recursive definition of preorder traversal

Given a binary tree T
if T is empty

visit the external node

otherwise
visit the root of T
perform an preorder traversal of Left(T)
perform an preorder traversal of Right(T)

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

Example: Preorder Traversal

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Example: Preorder Traversal

´

´+

- -+

A B D E F G

C

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

BST Implementation

Data Structures and Algorithms for Engineers 44 Carnegie Mellon University Africa

BST Implementation

Data Structures and Algorithms for Engineers 45 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 46 Carnegie Mellon University Africa

BST Implementation

Data Structures and Algorithms for Engineers 47 Carnegie Mellon University Africa

BST Implementation

Data Structures and Algorithms for Engineers 48 Carnegie Mellon University Africa

BST Implementation

Data Structures and Algorithms for Engineers 49 Carnegie Mellon University Africa

BST Implementation

Data Structures and Algorithms for Engineers 50 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 51 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 52 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 53 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 54 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 55 Carnegie Mellon University Africa

BST Implementation

Data Structures and Algorithms for Engineers 56 Carnegie Mellon University Africa

BINARY_TREE Implementation

3

Data Structures and Algorithms for Engineers 57 Carnegie Mellon University Africa

BINARY_TREE Implementation

3

1

Data Structures and Algorithms for Engineers 58 Carnegie Mellon University Africa

BINARY_TREE Implementation

3

51

Data Structures and Algorithms for Engineers 59 Carnegie Mellon University Africa

BINARY_TREE Implementation

3

51

2

Data Structures and Algorithms for Engineers 60 Carnegie Mellon University Africa

BINARY_TREE Implementation

3

5

4

1

2

Data Structures and Algorithms for Engineers 61 Carnegie Mellon University Africa

BINARY_TREE Implementation

3

5

4 6

1

2

Data Structures and Algorithms for Engineers 62 Carnegie Mellon University Africa

BINARY_TREE Implementation

4

5

6

1

2

