04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vernon.eu

Lecture 14

Trees

— Height Balanced Trees
* AVL Trees

AVL Trees

* We know from our study of Binary Search Trees [BST] that
the average search and insertion time is O(log n)

— If there are n nodes in the binary tree it will take, on average, log,n
comparisons/ probes to find a particular node (or find out that it isn't
there]

* However, this is only true if the tree is ‘balanced

— Such as occurs when the elements are inserted in random order

AVL Trees

(us> <D (R 5
CORCE

A Balanced Tree for the Months of the Year

AVL Trees

* However, if the elements are inserted in lexicographic order

(1.e. In sorted order] then the tree degenerates into a skinny
tree

AVL Trees

A Degenerate Tree for the Months of the Year

AVL Trees

If we are dealing with a dynamic tree ...

nodes are being inserted and deleted over time

— For example, directory of files
— For example, index of university students

we may need to restructure - balance - the tree so that we
keep It

— Fat

— Full

— Complete

AVL Trees

Adelson-Velskii and Landis in 13962 introduced a binary tree

structure that is balanced with respect to the heights of its
subtrees

Insertions (and deletions) are made such that the tree
— starts off

— and remains

Height-Balanced

AVL Trees

Definition of AVL Tree

An empty tree Is height-balanced

If T'is a non-empty binary tree with left and right sub-trees T;
and 715, then T Iis height-balanced iff

— T; and T’ are height-balanced, and

— |height(T;) - height(T,)| < 1

AVL Trees

* 50, every sub-tree in a height-balanced tree is also
height-balanced

Recall: Binary Tree Terminology

* The height of T is defined recursively as
0 if Tis empty and

1 + max(height(T,;), height(T,)) otherwise,
where T; and T, are the subtrees of the root

* The height of a tree is the length of a longest chain of
descendents

Recall: Binary Tree Terminology

* Height Numbering

— Number all external nodes O

— Number each internal node to be one more than the maximum of
the numbers of its children

— Then the number of the root is the height of T’

* The height of a node u In T Is the height of the subtree
rooted at u

AVL Trees

AVL Trees

AVL Trees

< < (tane 5
CGORCY

A Balanced Tree for the Months of the Year

AVL Trees

w

\
(o1 G

A Balanced Tree for the Months of the Year

AVL Trees

Let’'s construct a height-balanced tree

Order of insertions:

March, May, November, August, April, January, December,
July, February, June, October, September

Before we do, we need a definition of a balance factor

AVL Trees

* Balance Factor BF(T) of a node T in a binary tree is defined
to be

height(T;) - height(T))

where T; and T, are the left and right subtrees of T

* Foranynode T in an AVL tree
BF(T)=-1,0,+1

AVL Trees

* All re-balancing operations are carried out with respect to

the closest ancestor of the new node having balance factor
+2 or -2

* There are 4 types of re-balancing operations (called
rotations]

— RR
— LL [symmetric with RR)]
— RL
— LR (symmetric with RL]

New After After
|dentifier Insertion Rebalancing

MARCH

New After After
|dentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED

New After After
|dentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED

MAY (MAR)
(MAY)

New After After

|dentifier Insertion Rebalancing
MARCH BF =0 NO REBALANCING NEEDED
MAY (MAR) BF = -1 NO REBALANCING NEEDED

(MAY) BF =0

New
|dentifier

MARCH

MAY

NOVEMBER

After
Insertion

(MAR) BF =0

After
Rebalancing

NO REBALANCING NEEDED

NO REBALANCING NEEDED

New
|dentifier

MARCH

MAY

NOVEMBER

After
Insertion

(MAR) BF =0

(MAR) BF = -1
(MAY) BF =0

After
Rebalancing

NO REBALANCING NEEDED

NO REBALANCING NEEDED

New
|dentifier

MARCH

MAY

NOVEMBER

After After
Insertion Rebalancing

BF=0 NO REBALANCING NEEDED

@ BF = -1 NO REBALANCING NEEDED

(MAY) BF =0

(MAY) BF =0
BF=0(MAR) (NOV) BF =0

RR rebalancing

New After After
|dentifier Insertion Rebalancing

AUGUST
TS
s

New After After
|dentifier Insertion Rebalancing

AUGUST
=0 NO REBALANCING NEEDED

New After After
|dentifier Insertion Rebalancing

AUGUST
=0 NO REBALANCING NEEDED

APRIL @

New After After
|dentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

APRIL

New After After
|dentifier Insertion Rebalancing

AUGUST

NO REBALANCING NEEDED

APRIL

LL rebalancing

New After After
|dentifier Insertion Rebalancing

JANUARY @
(ugy Moy
(aPR) (WAR)

(AN

New After After
|dentifier Insertion Rebalancing

JANUARY

New After After
|dentifier Insertion Rebalancing

BF =0

=0 (APR) (JAND BF=0

BF =0

JANUARY

LR rebalancing

New After After

|dentifier Insertion Rebalancing
DECEMBER

New After After
|dentifier Insertion Rebalancing

DECEMBER

NO REBALANCING NEEDED

New After After

|dentifier Insertion Rebalancing
JULY

New After After
|dentifier Insertion Rebalancing

JULY

NO REBALANCING NEEDED

New After After
|dentifier Insertion Rebalancing

FEBRUARY

New After After
|dentifier Insertion Rebalancing

FEBRUARY

New After After
|dentifier Insertion Rebalancing

FEBRUARY

BF=+1

i BF=0(DEC) (MAY) BF =-1
+1BF=0 BF = +1(AUG) =°|3|==o
& @

BF=0 BF=0

RL rebalancing

New After
|dentifier Insertion

JUNE

CEONN T

WS G Giov

BPR) FED QD
(JUND

After
Rebalancing

New After After
|dentifier Insertion Rebalancing

JUNE

New
|dentifier

JUNE

After
Insertion

After
Rebalancing

LR rebalancing

New After After
|dentifier Insertion Rebalancing

OCTOBER @

CEIRN TS
DRI
PR TOIRED

New After After
|dentifier Insertion Rebalancing

OCTOBER

New After After
|dentifier Insertion Rebalancing

RR rebalancing

BF=0 BF=0 BF=0

New After After
|dentifier Insertion Rebalancing

SEPTEMBER

New After After
|dentifier Insertion Rebalancing

SEPTEMBER NO REBALANCING NEEDED

BF=0

AVL Trees

e |Let’'s refer to the node inserted as Y

* Let's refer to the nearest ancestor having balance factor +2
or-2 as A

AVL Trees

e LL:YIsinserted in the
Left subtree of the Left subtree of A

— LL: the pathfrom Ato Y
— Left subtree then Left subtree

* LR:Yisinserted in the
Right subtree of the Left subtree of A

— LR: the path from AtoY
— Left subtree then Right subtree

AVL Trees

* RR:Yisinserted in the
Right subtree of the Right subtree of A

— RR: the path from Ato Y
— Right subtree then Right subtree

* RL:Yisinserted in the
Left subtree of the Right subtree of A

— RL: the path from Ato Y
— Right subtree then Left subtree

Balanced Subtree

AVL Trees

4

o

o

Br

R

h+2

h

|

Hint:
balance factor
of Ais +1

AVL Trees

Unbalanced following insertion

Height of B, increases to h+1

AVL Trees - LL rotation

Unbalanced following insertion

Height of B, inceases to h+1

=

Rebalanced subtree

|

h+2

/

AVL Trees

|

/\

2

Balanced Subtree

Unbalanced following insertion

/

al

B,

Height of By inceases to h+1

AVL Trees

AVL Trees - RR Rotation

Unbalanced following insertion Rebalanced subtree

=

N /
A, 3 \ B,

Bl |Bg all

L

Height of By inceases to h+1

AVL Trees

/

Balanced Subtree

AVL Trees

/

Unbalanced following insertion

AVL Trees - LR rotation (a]

3 aa
5

Balanced Subtree

AVL Trees

h-1

>

h+2

AVL Trees

Unbalanced following insertion

>

. Ay
h+2

h‘l y

AVL Trees - LR rotation (b]

\”

h-1

==

==

Balanced Subtree

AVL Trees

h-1

>

h+2

AVL Trees

Unbalanced following insertion

>

5, Ay
h+2

h‘l y

\”

h-1

==

AVL Trees - LR rotation (c]

==

Balanced Subtree

AVL Trees

h+2

\

h-1

Unbalanced following insertion

AVL Trees

h+2

\

h-1

AVL Trees - RL rotation

h-1

h+
AL CL

Cr| | B

(-

AVL Trees

* To carry out this rebalancing we need to locate A, I.e. to
window A

— A is the nearest ancestor to Y whose balance factor becomes +2 or -
2 following insertion

— Equally, A is the nearest ancestor to Y whose balance factor was +1
or -1 before insertion

* \We also need to locate F, the parent of A ... (why?]

