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Lecture 14

Trees

— Height Balanced Trees
* AVL Trees



AVL Trees

* We know from our study of Binary Search Trees [BST] that
the average search and insertion time is O(log n)

— If there are n nodes in the binary tree it will take, on average, log,n
comparisons/ probes to find a particular node (or find out that it isn't
there]

* However, this is only true if the tree is ‘balanced

— Such as occurs when the elements are inserted in random order



AVL Trees
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AVL Trees

* However, if the elements are inserted in lexicographic order

(1.e. In sorted order] then the tree degenerates into a skinny
tree



AVL Trees

A Degenerate Tree for the Months of the Year



AVL Trees

If we are dealing with a dynamic tree ...

nodes are being inserted and deleted over time

— For example, directory of files
— For example, index of university students

we may need to restructure - balance - the tree so that we
keep It

— Fat

— Full

— Complete



AVL Trees

Adelson-Velskii and Landis in 13962 introduced a binary tree

structure that is balanced with respect to the heights of its
subtrees

Insertions (and deletions) are made such that the tree
— starts off

— and remains

Height-Balanced



AVL Trees

Definition of AVL Tree

An empty tree Is height-balanced

If T'is a non-empty binary tree with left and right sub-trees T;
and 715, then T Iis height-balanced iff

— T; and T’ are height-balanced, and

— |height(T;) - height(T,)| < 1



AVL Trees

* 50, every sub-tree in a height-balanced tree is also
height-balanced



Recall: Binary Tree Terminology

* The height of T is defined recursively as
0 if Tis empty and

1 + max(height(T,;), height(T,)) otherwise,
where T; and T, are the subtrees of the root

* The height of a tree is the length of a longest chain of
descendents



Recall: Binary Tree Terminology

* Height Numbering

— Number all external nodes O

— Number each internal node to be one more than the maximum of
the numbers of its children

— Then the number of the root is the height of T’

* The height of a node u In T Is the height of the subtree
rooted at u



AVL Trees



AVL Trees
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AVL Trees
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AVL Trees

Let’'s construct a height-balanced tree

Order of insertions:

March, May, November, August, April, January, December,
July, February, June, October, September

Before we do, we need a definition of a balance factor



AVL Trees

* Balance Factor BF(T) of a node T in a binary tree is defined
to be

height(T;) - height(T))

where T; and T, are the left and right subtrees of T

* Foranynode T in an AVL tree
BF(T)=-1,0,+1



AVL Trees

* All re-balancing operations are carried out with respect to

the closest ancestor of the new node having balance factor
+2 or -2

* There are 4 types of re-balancing operations (called
rotations]

— RR
— LL [symmetric with RR)]
— RL
— LR (symmetric with RL]
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New After After
|dentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED



New After After
|dentifier Insertion Rebalancing

MARCH BF =0 NO REBALANCING NEEDED

MAY (MAR)
(MAY)



New After After

|dentifier Insertion Rebalancing
MARCH BF =0 NO REBALANCING NEEDED
MAY (MAR) BF = -1 NO REBALANCING NEEDED

(MAY) BF =0
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MARCH

MAY

NOVEMBER

After
Insertion

(MAR) BF =0

After
Rebalancing

NO REBALANCING NEEDED

NO REBALANCING NEEDED



New
|dentifier

MARCH

MAY

NOVEMBER

After
Insertion

(MAR) BF =0

(MAR) BF = -1
(MAY) BF =0

After
Rebalancing

NO REBALANCING NEEDED

NO REBALANCING NEEDED



New
|dentifier

MARCH

MAY

NOVEMBER

After After
Insertion Rebalancing

BF=0 NO REBALANCING NEEDED

@ BF = -1 NO REBALANCING NEEDED

(MAY) BF =0

(MAY) BF =0
BF=0(MAR) (NOV) BF =0

RR rebalancing
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New After After
|dentifier Insertion Rebalancing

AUGUST
=0 NO REBALANCING NEEDED




New After After
|dentifier Insertion Rebalancing

AUGUST
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New After After
|dentifier Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

APRIL




New After After
|dentifier Insertion Rebalancing

AUGUST

NO REBALANCING NEEDED

APRIL

LL rebalancing
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New After After
|dentifier Insertion Rebalancing

JANUARY




New After After
|dentifier Insertion Rebalancing

BF =0

=0 (APR)  (JAND BF=0

BF =0

JANUARY

LR rebalancing
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New After After
|dentifier Insertion Rebalancing

DECEMBER

NO REBALANCING NEEDED




New After After

|dentifier Insertion Rebalancing
JULY



New After After
|dentifier Insertion Rebalancing

JULY

NO REBALANCING NEEDED




New After After
|dentifier Insertion Rebalancing

FEBRUARY



New After After
|dentifier Insertion Rebalancing

FEBRUARY




New After After
|dentifier Insertion Rebalancing

FEBRUARY

BF=+1

i BF=0(DEC)  (MAY) BF =-1
+1BF=0 BF = +1(AUG) =°|3|==o
& @

BF=0 BF=0

RL rebalancing
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New After After
|dentifier Insertion Rebalancing

JUNE




New
|dentifier

JUNE

After
Insertion

After
Rebalancing

LR rebalancing
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New After After
|dentifier Insertion Rebalancing

OCTOBER



New After After
|dentifier Insertion Rebalancing

RR rebalancing

BF=0 BF=0 BF=0



New After After
|dentifier Insertion Rebalancing

SEPTEMBER



New After After
|dentifier Insertion Rebalancing

SEPTEMBER NO REBALANCING NEEDED

BF=0



AVL Trees

e |Let’'s refer to the node inserted as Y

* Let's refer to the nearest ancestor having balance factor +2
or-2 as A



AVL Trees

e LL:YIsinserted in the
Left subtree of the Left subtree of A

— LL: the pathfrom Ato Y
— Left subtree then Left subtree

* LR:Yisinserted in the
Right subtree of the Left subtree of A

— LR: the path from AtoY
— Left subtree then Right subtree



AVL Trees

* RR:Yisinserted in the
Right subtree of the Right subtree of A

— RR: the path from Ato Y
— Right subtree then Right subtree

* RL:Yisinserted in the
Left subtree of the Right subtree of A

— RL: the path from Ato Y
— Right subtree then Left subtree



Balanced Subtree

AVL Trees
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AVL Trees

Unbalanced following insertion

Height of B, increases to h+1



AVL Trees - LL rotation

Unbalanced following insertion

Height of B, inceases to h+1
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AVL Trees
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Unbalanced following insertion
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AVL Trees



AVL Trees - RR Rotation
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AVL Trees
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AVL Trees
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Unbalanced following insertion



AVL Trees - LR rotation (a]
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Balanced Subtree

AVL Trees
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AVL Trees
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AVL Trees - LR rotation (b]
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Balanced Subtree
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AVL Trees

Unbalanced following insertion
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Balanced Subtree
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Unbalanced following insertion

AVL Trees
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AVL Trees - RL rotation
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AVL Trees

* To carry out this rebalancing we need to locate A, I.e. to
window A

— A is the nearest ancestor to Y whose balance factor becomes +2 or -
2 following insertion

— Equally, A is the nearest ancestor to Y whose balance factor was +1
or -1 before insertion

* \We also need to locate F, the parent of A ... (why?]



