04-630

Data Structures and Algorithms for Engineers

David Vernon Carnegie Mellon University Africa

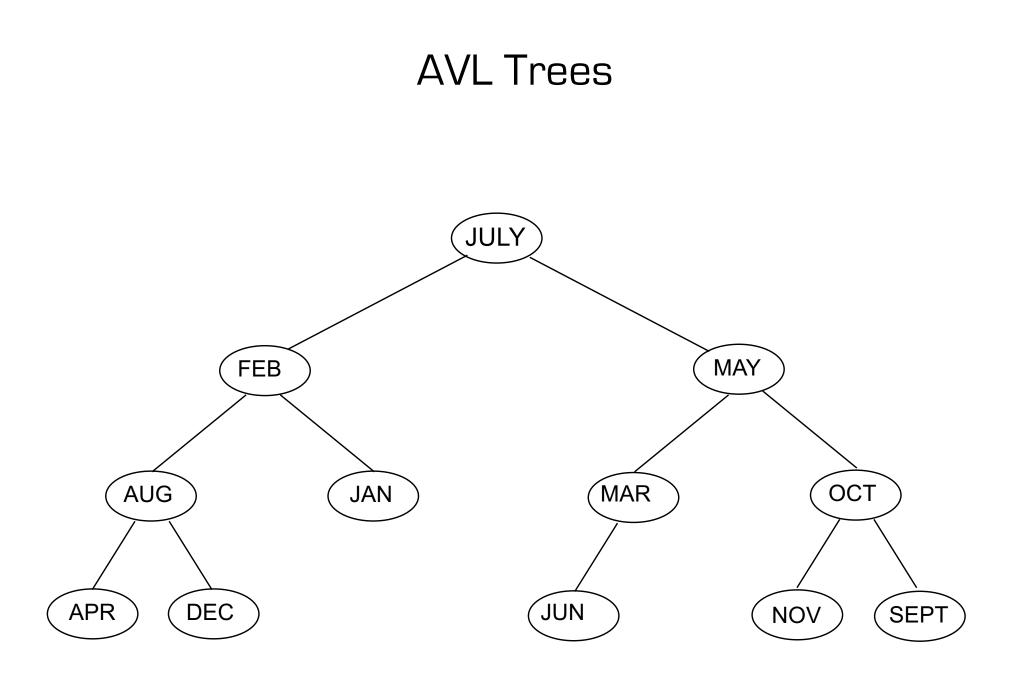
> vernon@cmu.edu www.vernon.eu

Lecture 14

Trees

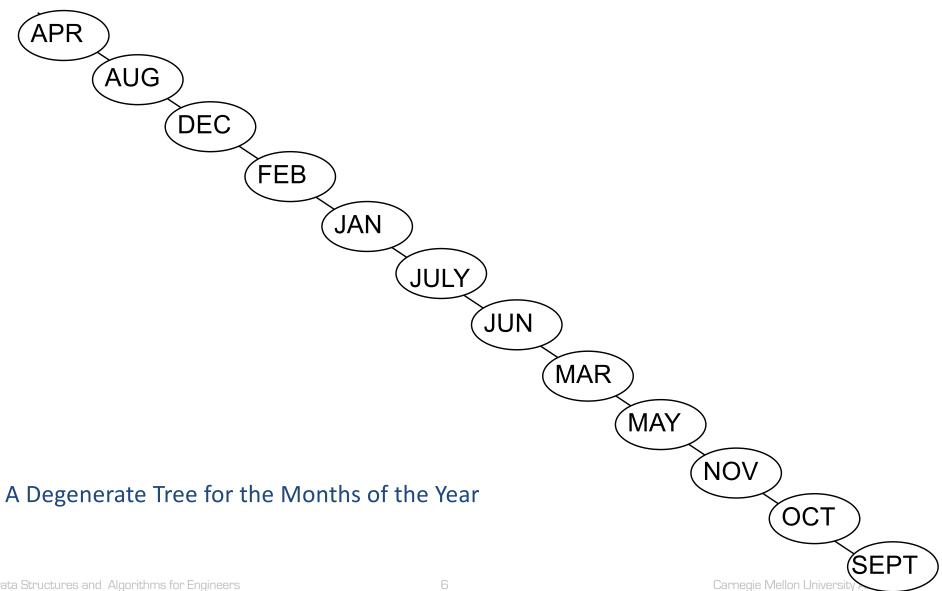
- Types of trees
- Binary Tree ADT
- Binary Search Tree
- Optimal Code Trees
- Height Balanced Trees
 - AVL Trees
 - Red-Black Trees
- Huffman's Algorithm

- We know from our study of Binary Search Trees (BST) that the average search and insertion time is O(log *n*)
 - If there are n nodes in the binary tree it will take, on average, log₂n comparisons/probes to find a particular node (or find out that it isn't there)
- However, this is only true if the tree is 'balanced'
 - Such as occurs when the elements are inserted in random order



A Balanced Tree for the Months of the Year

• However, if the elements are inserted in lexicographic order (i.e. in sorted order) then the tree degenerates into a skinny tree



- If we are dealing with a dynamic tree ...
- nodes are being inserted and deleted over time
 - For example, directory of files
 - For example, index of university students
- we may need to restructure balance the tree so that we keep it
 - Fat
 - Full
 - Complete

- Adelson-Velskii and Landis in 1962 introduced a binary tree structure that is balanced with respect to the heights of its subtrees
- Insertions (and deletions) are made such that the tree
 - starts off
 - and remains
- Height-Balanced

- Definition of AVL Tree
- An empty tree is height-balanced
- If T is a non-empty binary tree with left and right sub-trees T_1 and T_2 , then T is height-balanced iff
 - T_1 and T_2 are height-balanced, and

 $-|height(T_1) - height(T_2)| \le 1$

• So, every sub-tree in a height-balanced tree is also height-balanced

Recall: Binary Tree Terminology

• The height of *T* is defined recursively as

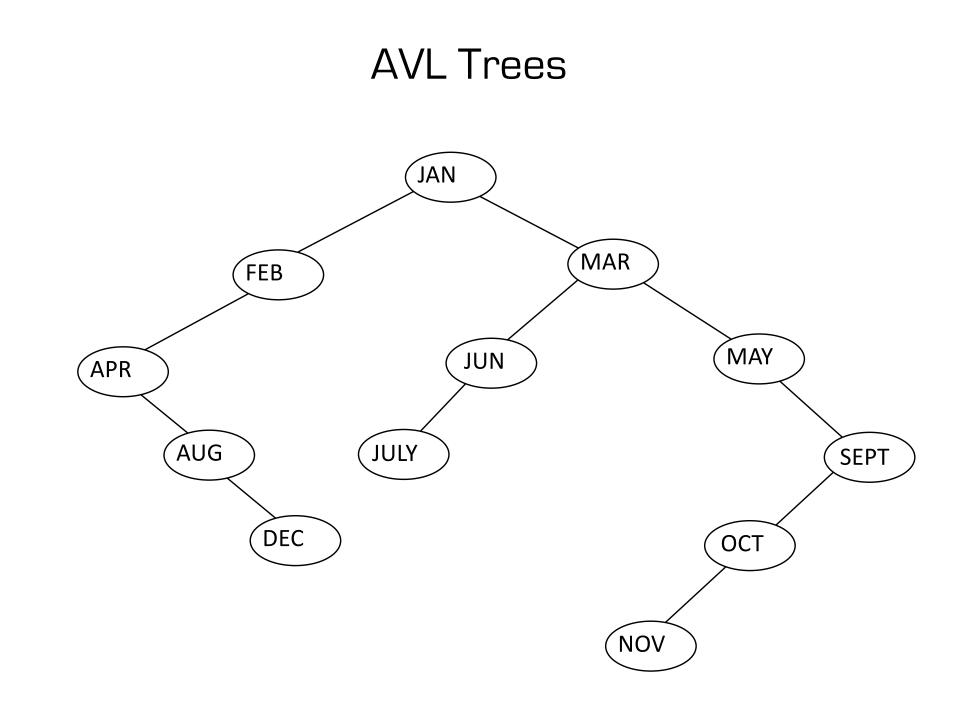
0 if T is empty and

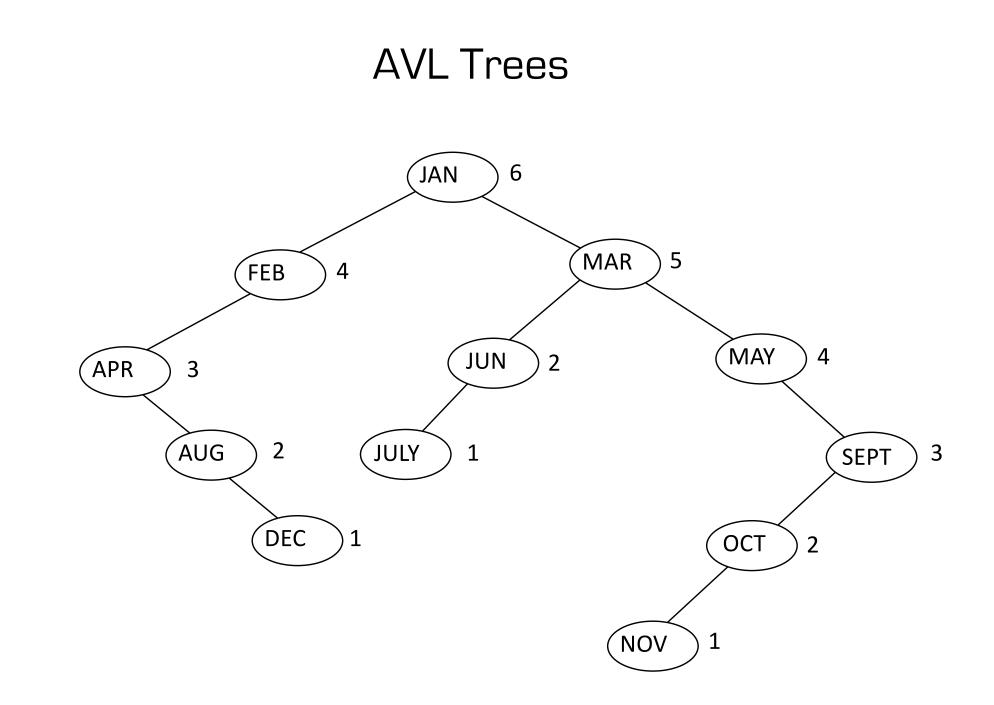
 $1 + max(height(T_1), height(T_2))$ otherwise, where T_1 and T_2 are the subtrees of the root

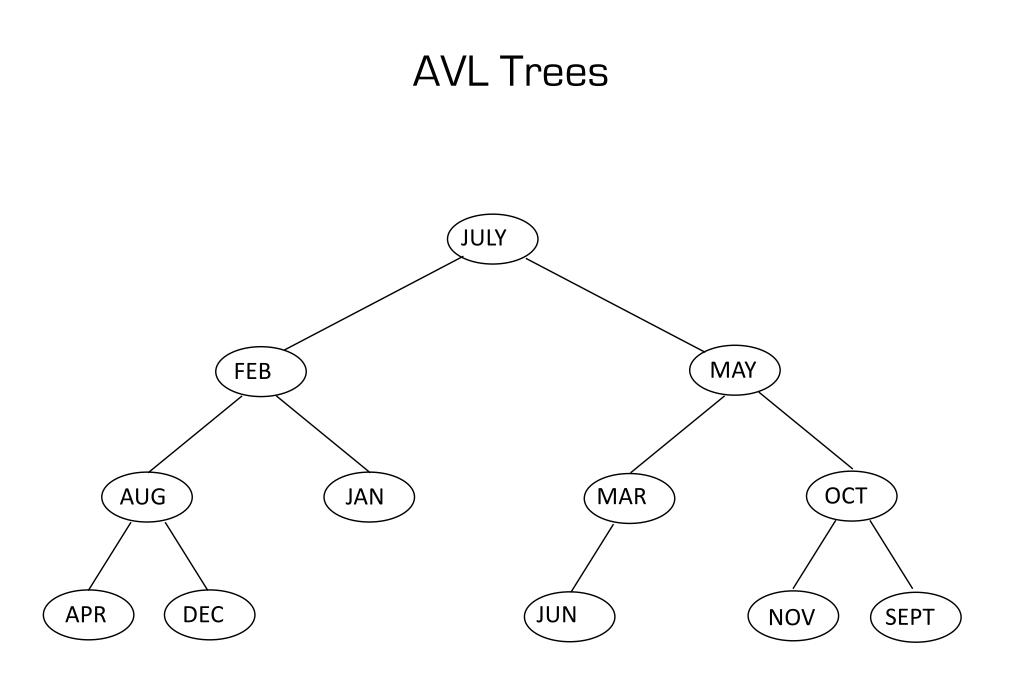
• The height of a tree is the length of a longest chain of descendents

Recall: Binary Tree Terminology

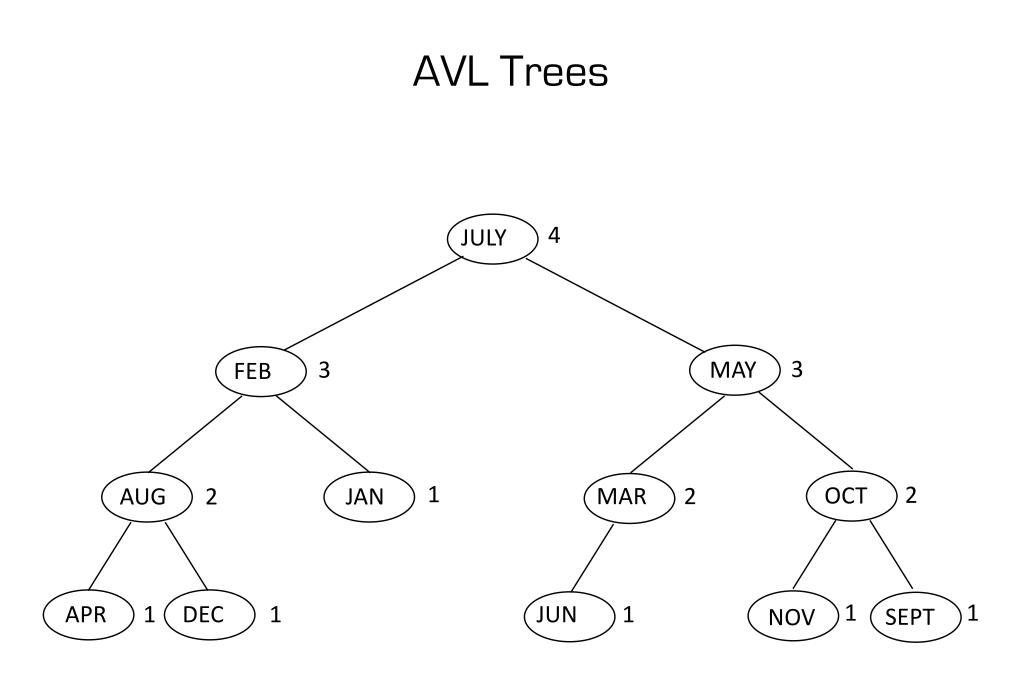
- Height Numbering
 - Number all external nodes O
 - Number each internal node to be one more than the maximum of the numbers of its children
 - Then the number of the root is the height of T
- The height of a node *u* in *T* is the height of the subtree rooted at *u*







A Balanced Tree for the Months of the Year



A Balanced Tree for the Months of the Year

- Let's construct a height-balanced tree
- Order of insertions:

March, May, November, August, April, January, December, July, February, June, October, September

• Before we do, we need a definition of a balance factor

• Balance Factor BF(T) of a node T in a binary tree is defined to be

 $height(T_1) - height(T_2)$

where T_1 and T_2 are the left and right subtrees of T

• For any node T in an AVL tree BF(T) = -1, 0, +1

- All re-balancing operations are carried out with respect to the closest ancestor of the new node having balance factor +2 or -2
- There are 4 types of re-balancing operations (called rotations)
 - RR
 - LL (symmetric with RR)
 - RL
 - LR (symmetric with RL)

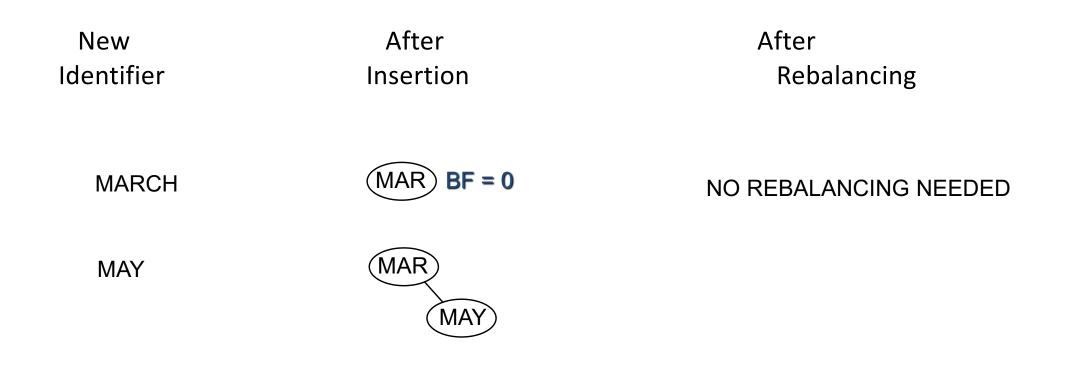
New Identifier After Insertion After Rebalancing

MARCH

After Insertion After Rebalancing

MARCH

NO REBALANCING NEEDED

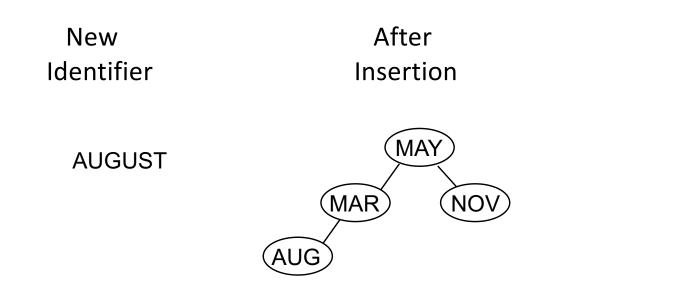


New Identifier	After Insertion	After Rebalancing
MARCH	(MAR) BF = 0	NO REBALANCING NEEDED
MAY	MAR BF = -1 MAY BF = 0	NO REBALANCING NEEDED

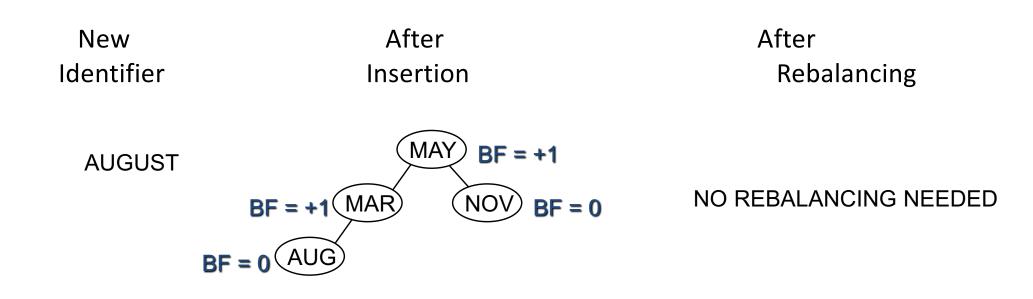
New Identifier	After Insertion	After Rebalancing
MARCH	(MAR) BF = 0	NO REBALANCING NEEDED
MAY	MAR BF = -1 MAY BF = 0	NO REBALANCING NEEDED
NOVEMBER	MAR MAY NOV	

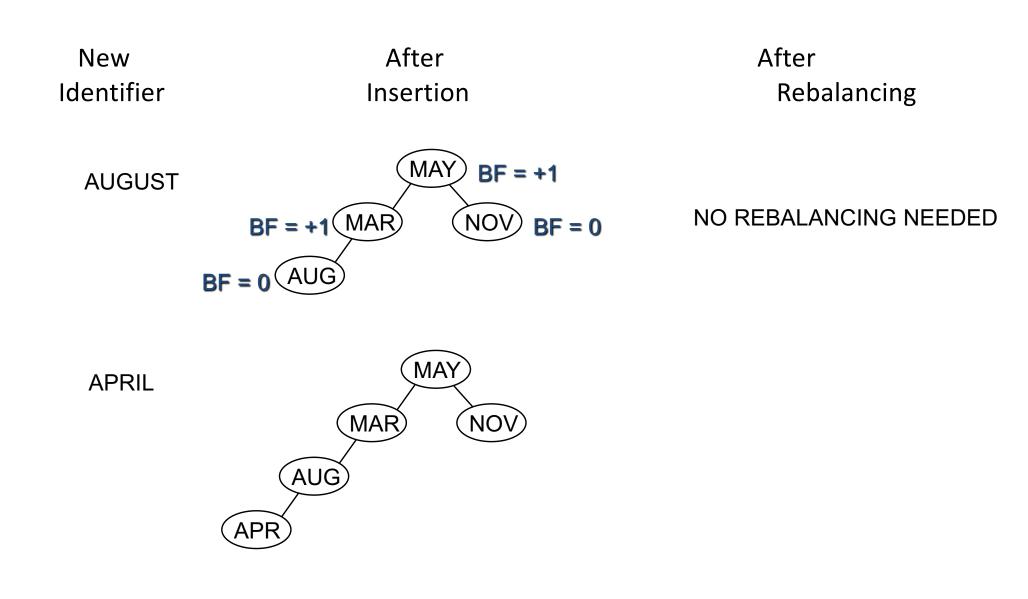
New Identifier	After Insertion	After Rebalancing
MARCH	(MAR) BF = 0	NO REBALANCING NEEDED
MAY	MAR BF = -1 MAY BF = 0	NO REBALANCING NEEDED
NOVEMBER	MAR BF = -2 MAY BF = -1 NOV BF = 0	

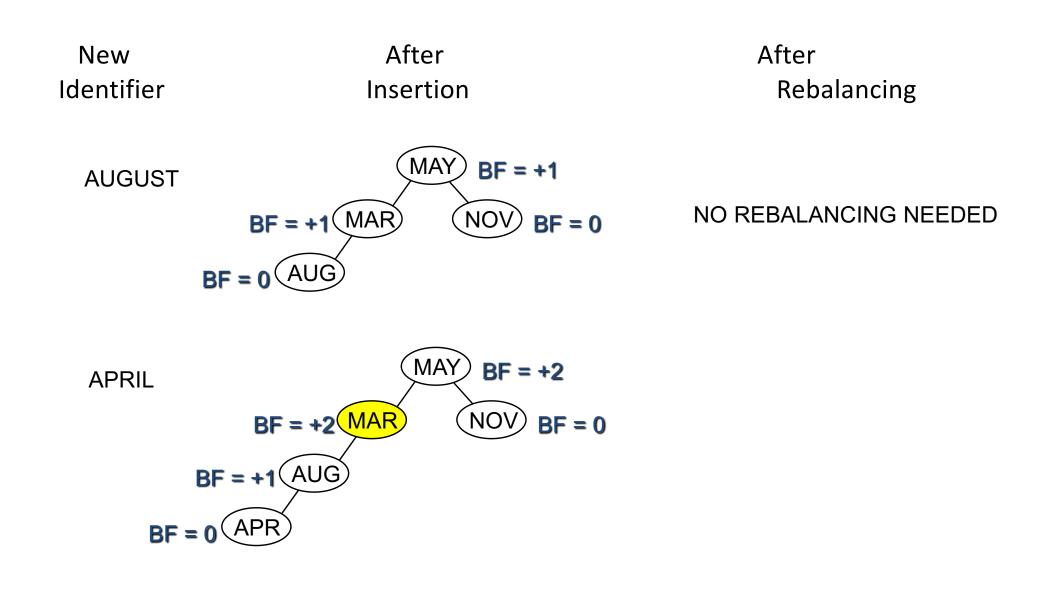
New	After	After
Identifier	Insertion	Rebalancing
MARCH	(MAR) BF = 0	NO REBALANCING NEEDED
MAY	(MAR) BF = -1	NO REBALANCING NEEDED
	MAY BF = 0	
NOVEMBER	MAR) BF = -2	(MAY) BF = 0
	MAY) BF = -1	BF = 0 MAR NOV BF = 0
	(NOV) BF = 0	
		RR rebalancing

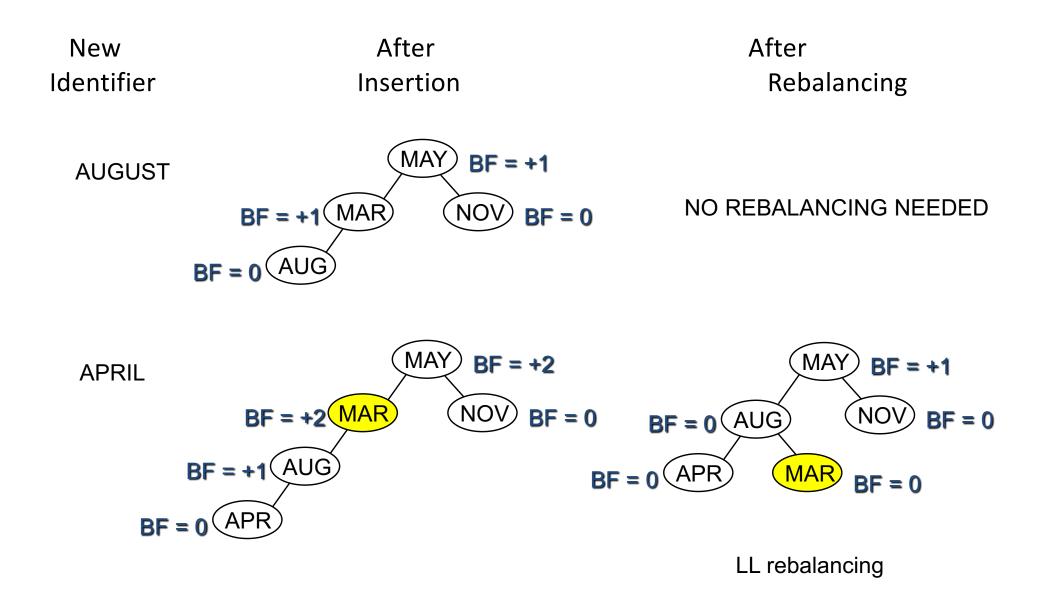


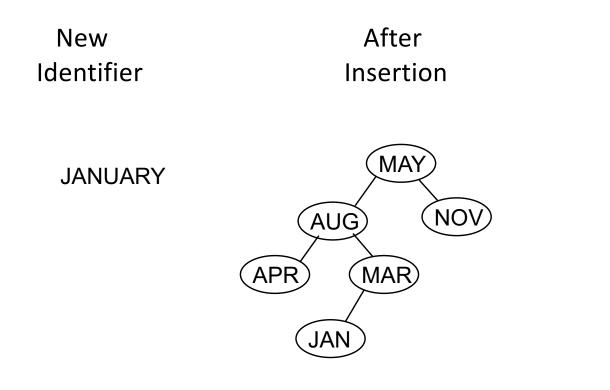
After Rebalancing



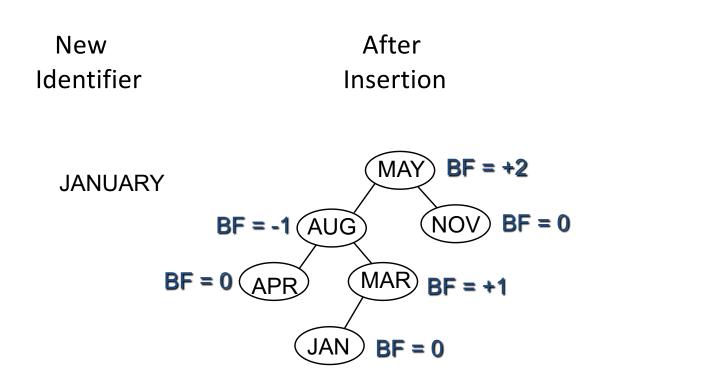


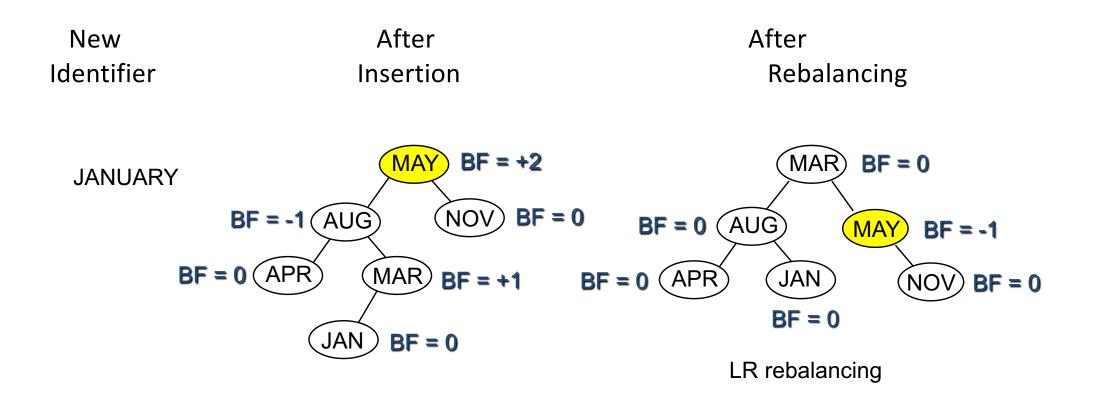


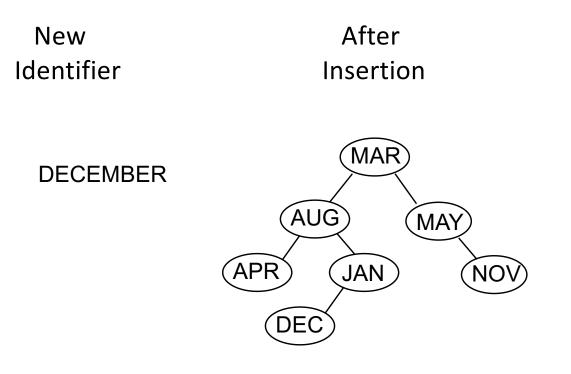




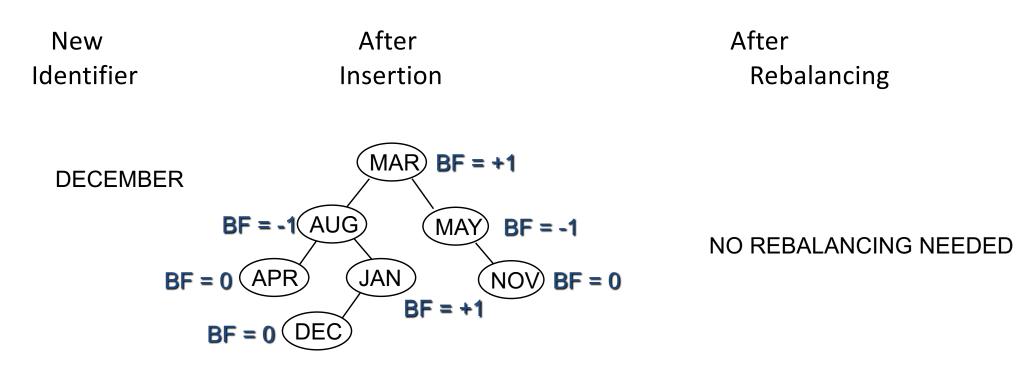
After Rebalancing

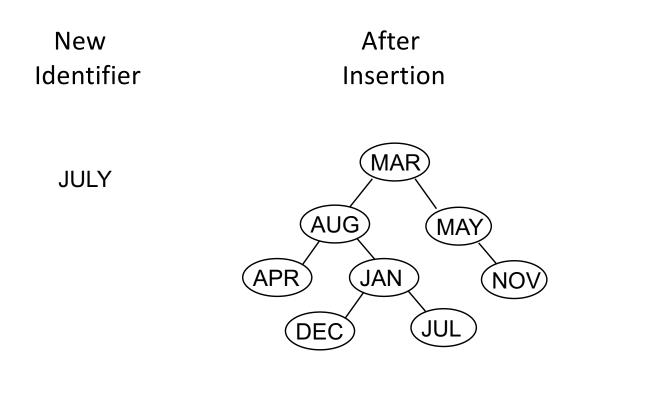




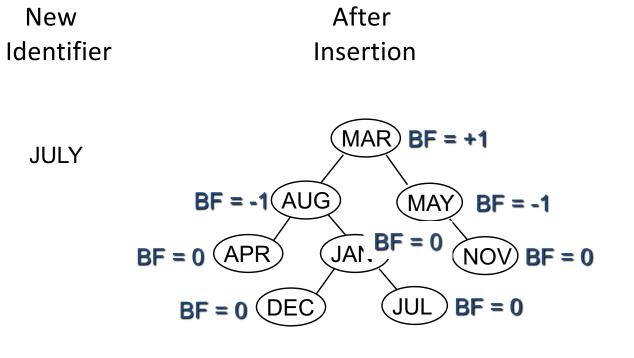


After Rebalancing





After Rebalancing



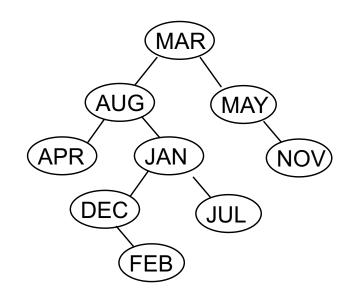
After Rebalancing

NO REBALANCING NEEDED



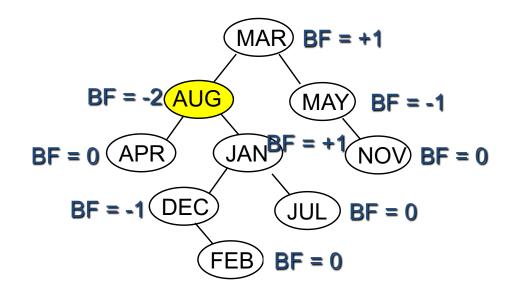
After Rebalancing

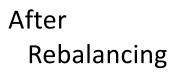
FEBRUARY



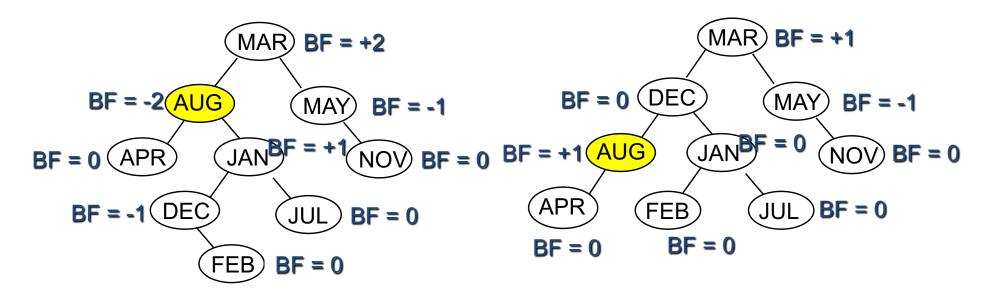


FEBRUARY





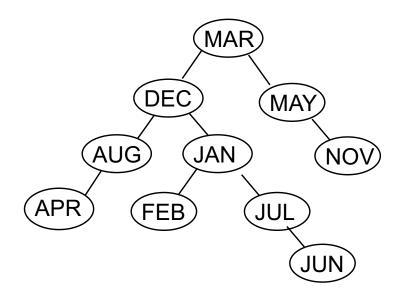
FEBRUARY

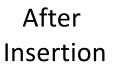


RL rebalancing

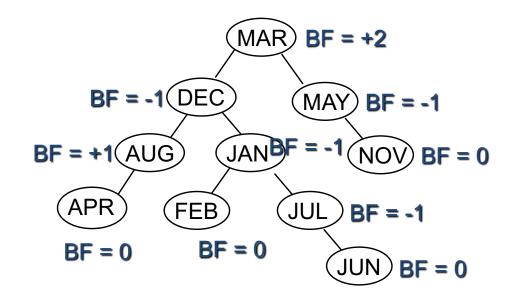
After Insertion After Rebalancing

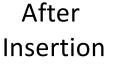
JUNE

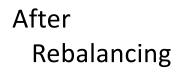




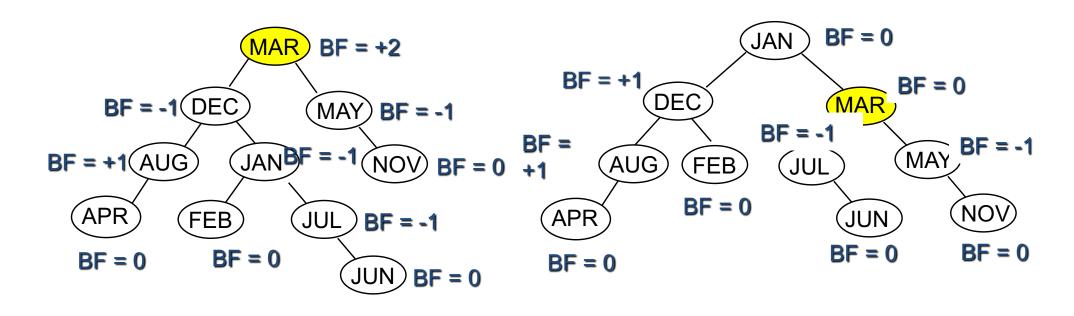
JUNE



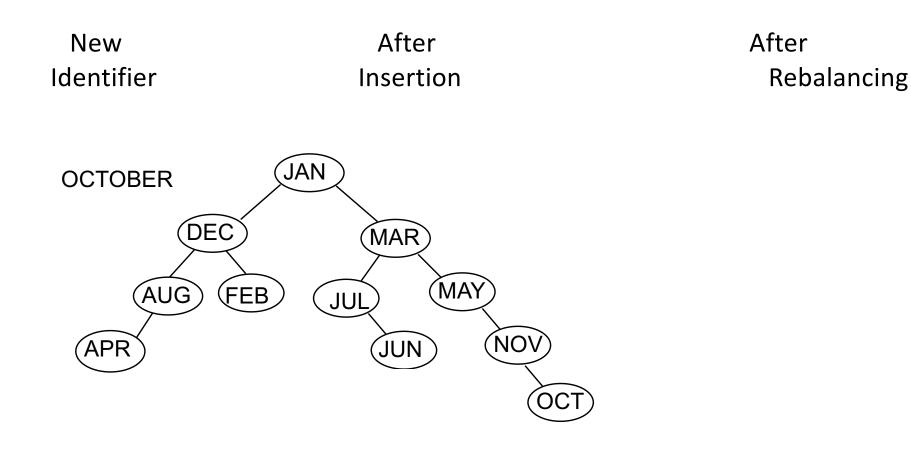


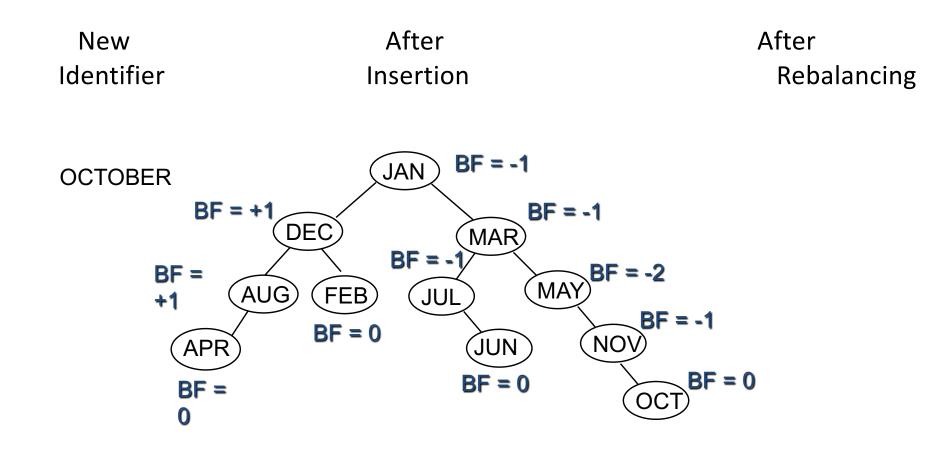


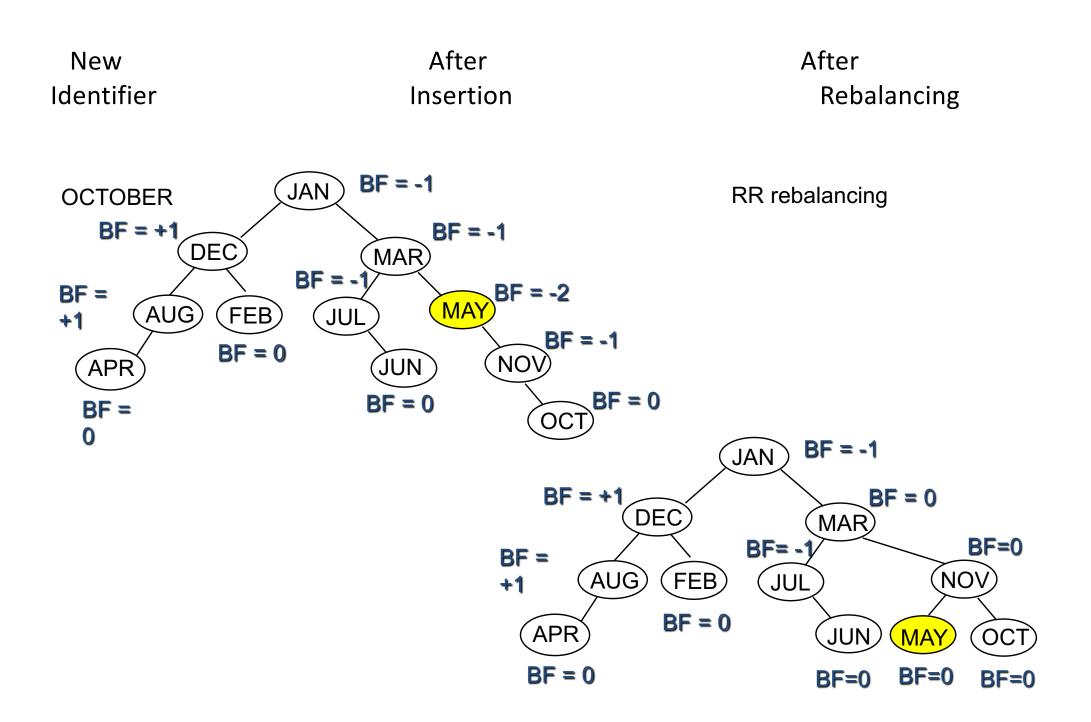
JUNE

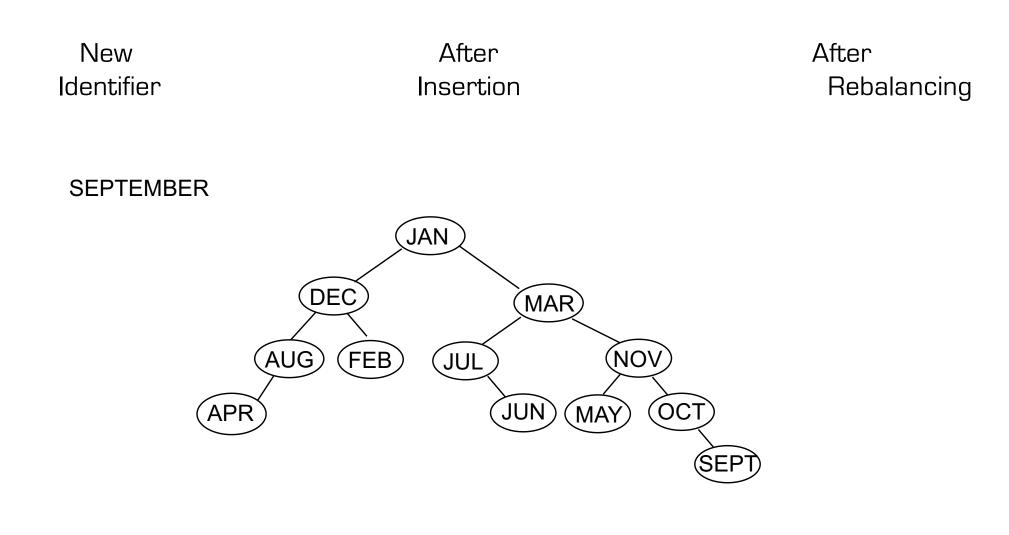


LR rebalancing





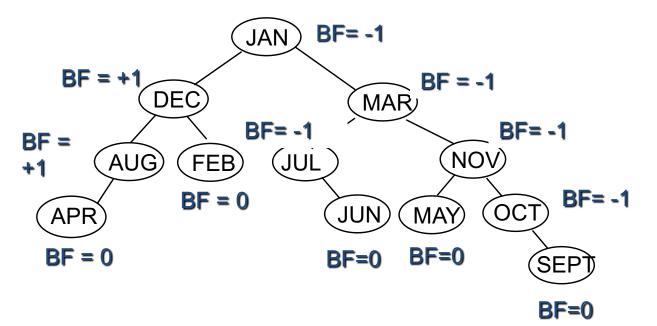




SEPTEMBER

After Insertion After Rebalancing

NO REBALANCING NEEDED

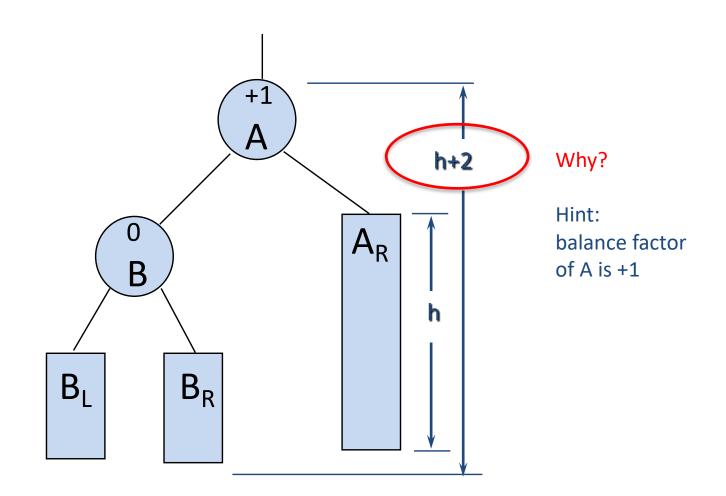


- Let's refer to the node inserted as Y
- Let's refer to the nearest ancestor having balance factor +2 or -2 as A

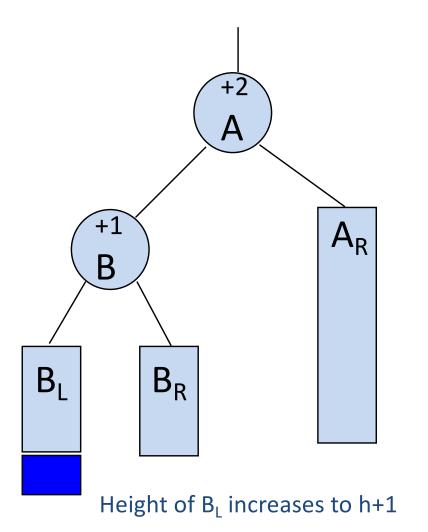
- LL: Y is inserted in the Left subtree of the Left subtree of A
 - LL: the path from A to Y
 - Left subtree then Left subtree
- LR: Y is inserted in the Right subtree of the Left subtree of A
 - LR: the path from A to Y
 - Left subtree then Right subtree

- RR: Y is inserted in the Right subtree of the Right subtree of A
 - RR: the path from A to Y
 - Right subtree then Right subtree
- RL: Y is inserted in the Left subtree of the Right subtree of A
 - RL: the path from A to Y
 - Right subtree then Left subtree

Balanced Subtree



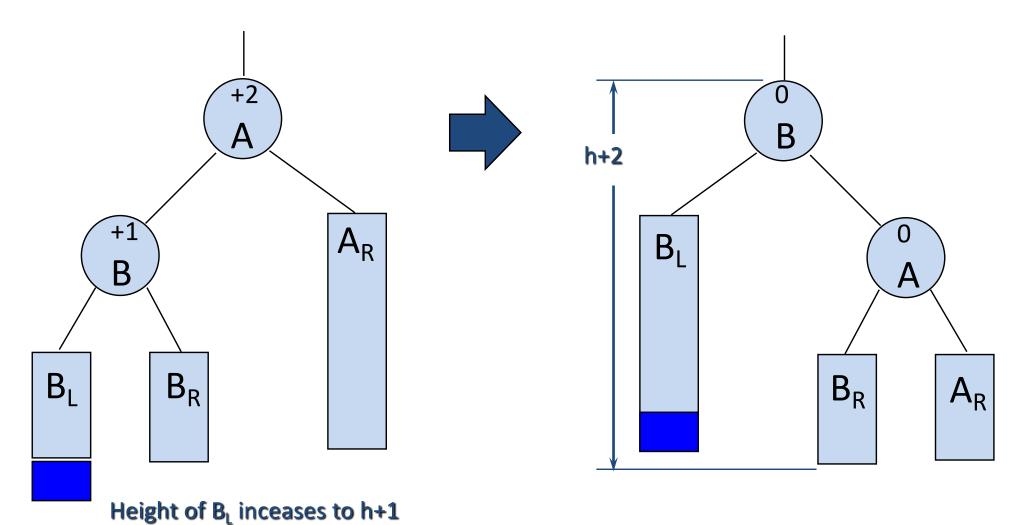
Unbalanced following insertion



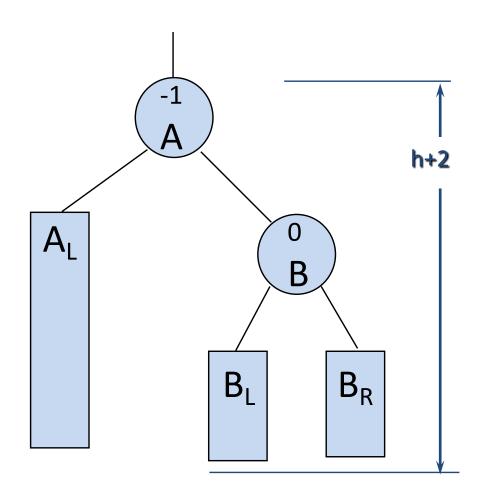
AVL Trees - LL rotation

Unbalanced following insertion

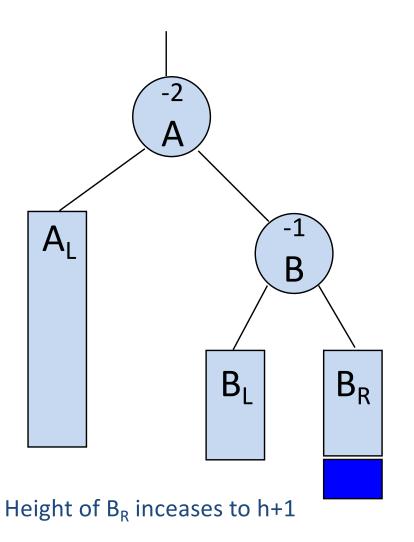
Rebalanced subtree



Balanced Subtree



Unbalanced following insertion

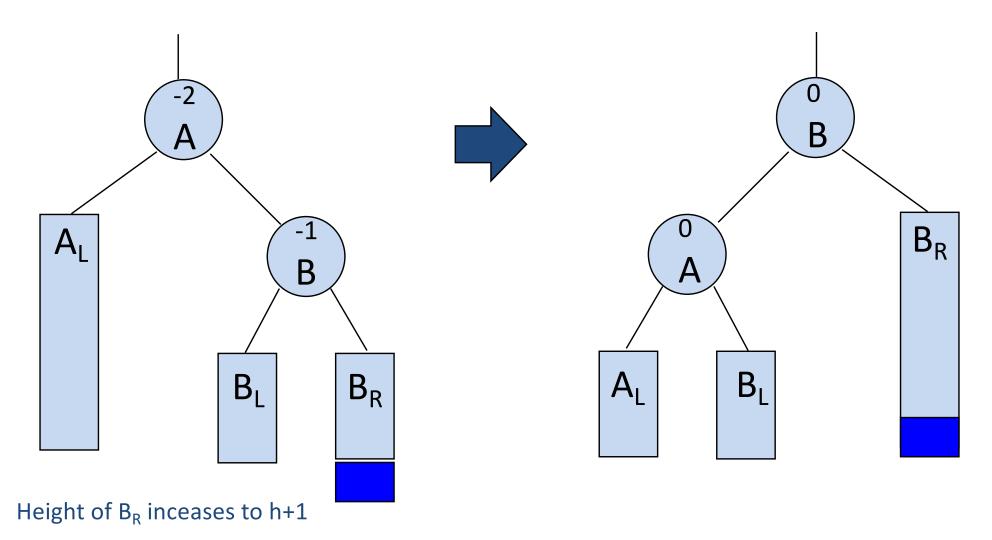


Data Structures and Algorithms for Engineers

AVL Trees - RR Rotation

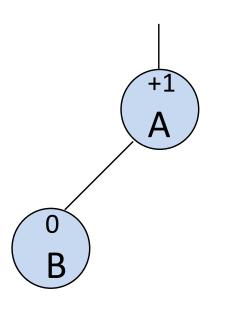
Unbalanced following insertion

Rebalanced subtree

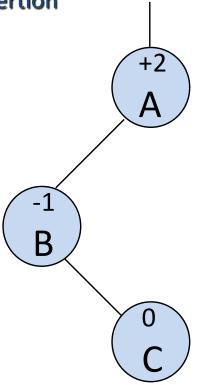


Data Structures and Algorithms for Engineers

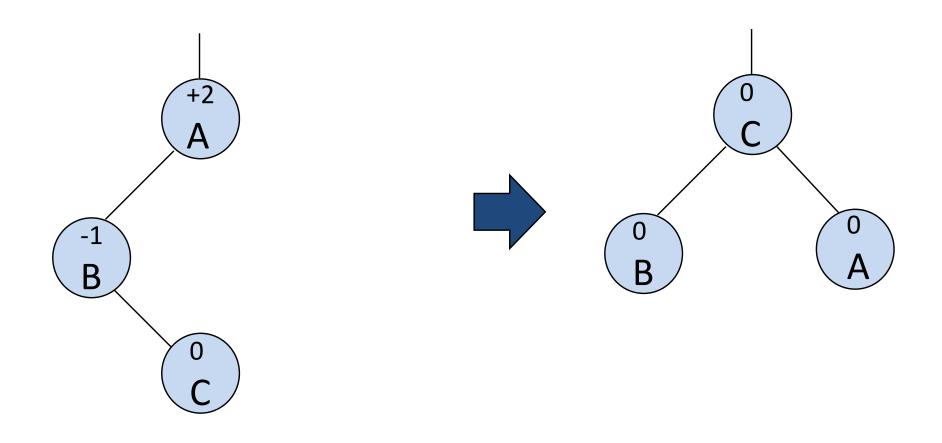
Balanced Subtree

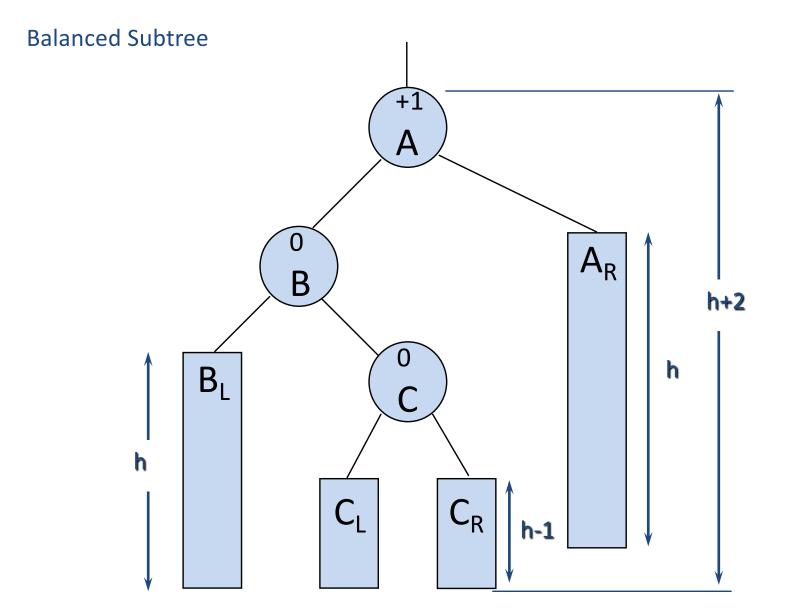


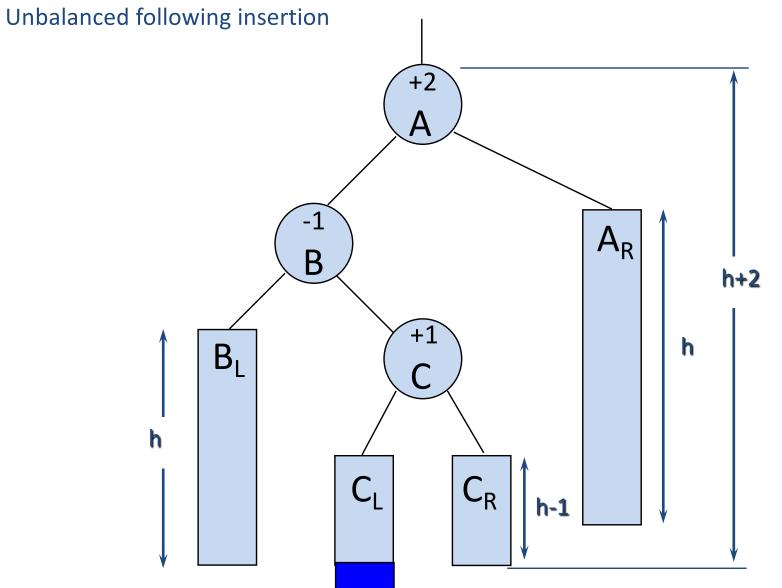
Unbalanced following insertion



AVL Trees - LR rotation (a)



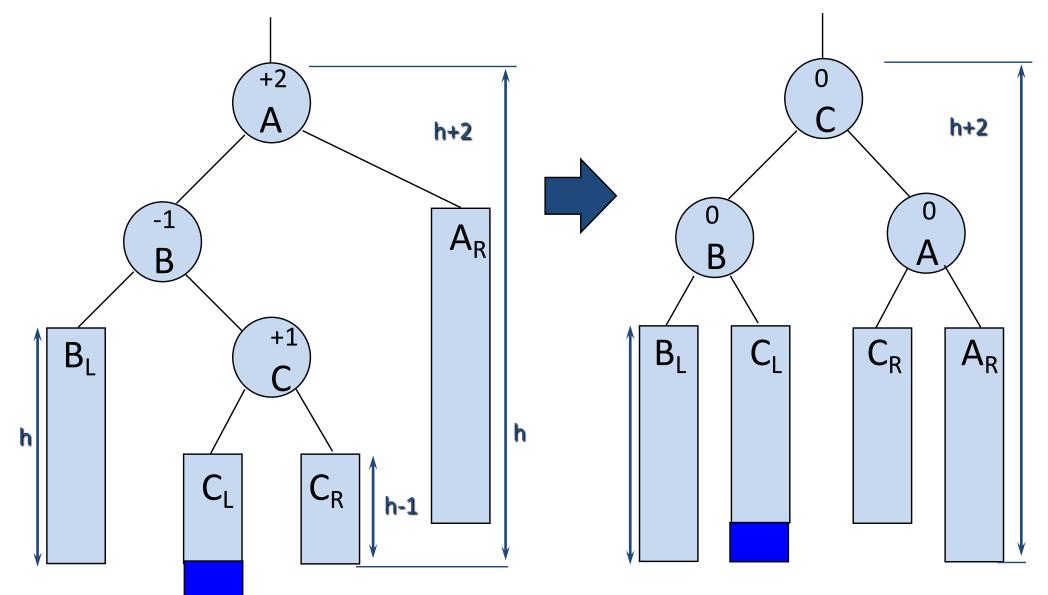




Data Structures and Algorithms for Engineers

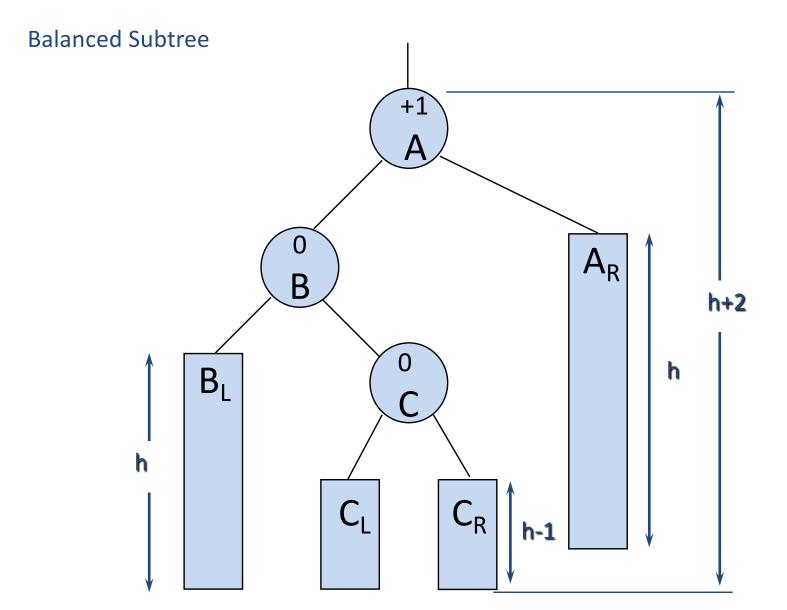
Carnegie Mellon University Africa

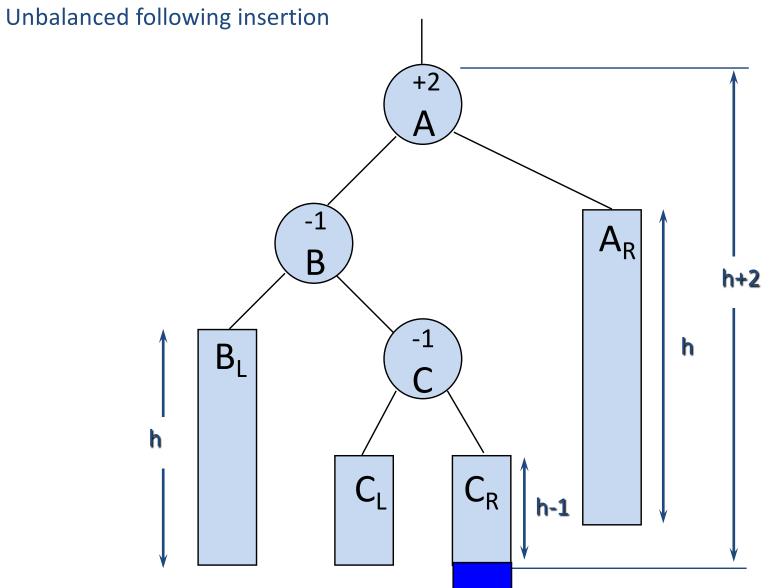
AVL Trees - LR rotation (b)



Data Structures and Agontums for Engineers

Carnegie Mellon University Africa

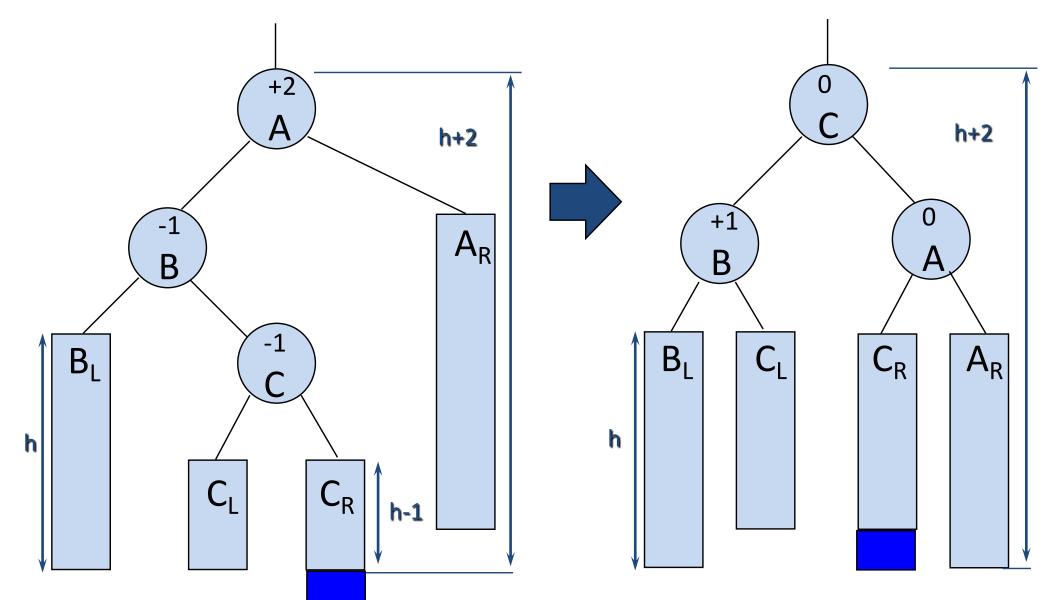


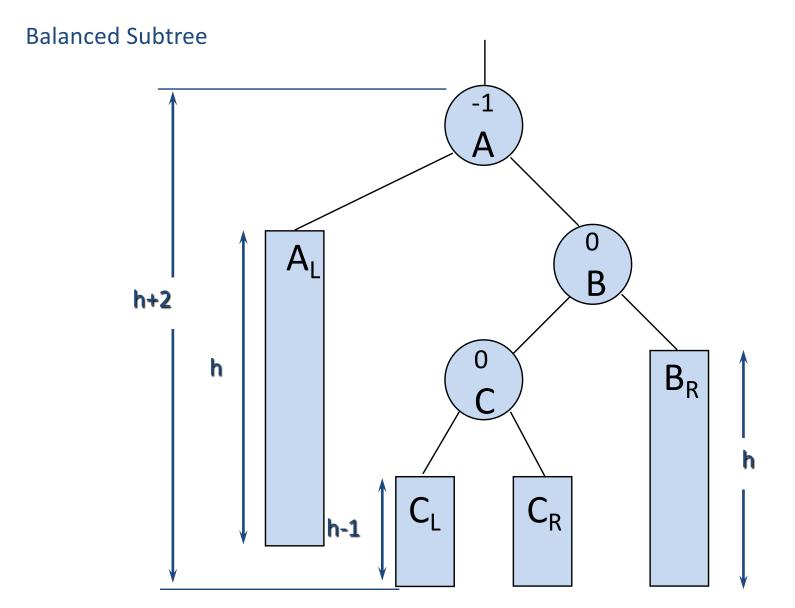


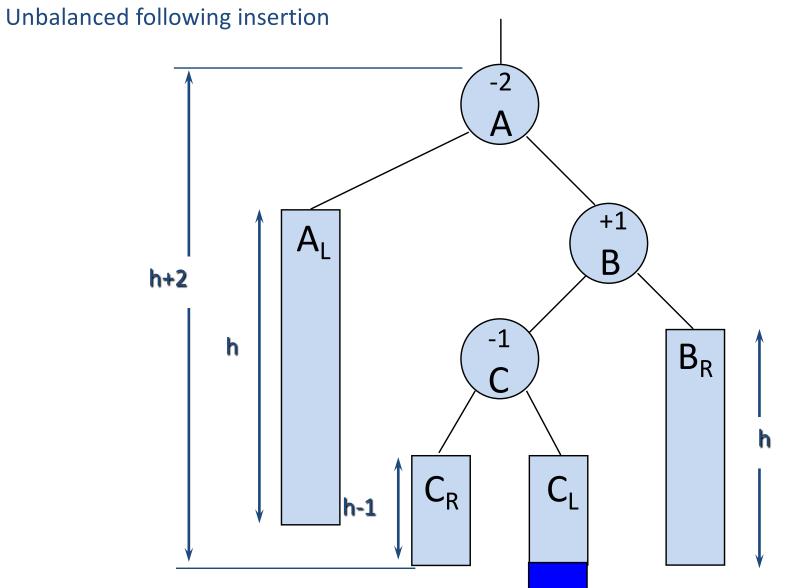
Data Structures and Algorithms for Engineers

Carnegie Mellon University Africa

AVL Trees - LR rotation (c)

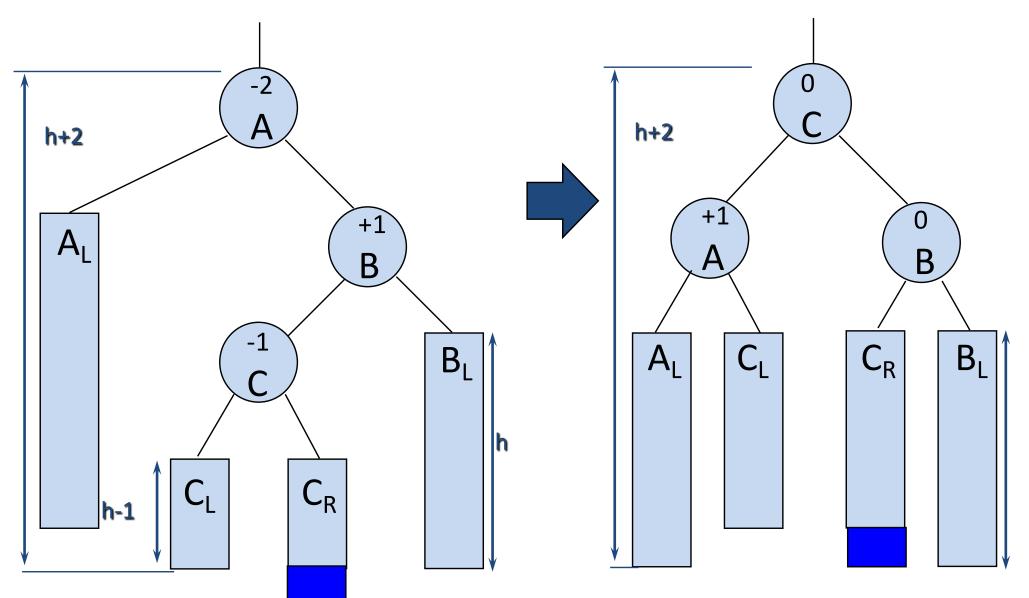






Data Structures and Algorithms for Engineers

AVL Trees - RL rotation



Data Structures and Algorithms for Engineers

- To carry out this rebalancing we need to locate A, i.e. to window A
 - A is the nearest ancestor to Y whose balance factor becomes +2 or -2 following insertion
 - Equally, A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion
- We also need to locate F, the parent of A ... (why?)