
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 15

Trees
– Types of trees

– Binary Tree ADT

– Binary Search Tree

– Height Balanced Trees
• AVL Trees

• Red-Black Trees

– Optimal Code Trees

– Huffman’s Algorithm

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Red-Black Trees

• The goal of height-balancing is to ensure that the tree is as
complete as possible and that, consequently, it has minimal
height for the number of nodes in the tree

• As a result, the number of probes it takes to search the tree
(and the time it takes) is minimized.

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Red-Black Trees

• A perfect or a complete tree with n nodes has height O(log2n)

– So the time it takes to search a perfect or a complete tree with n nodes
is O(log2n)

• A skinny tree could have height O(n)

– So the time it takes to search a skinny tree can be O(n)

• Red-Black trees are similar to AVL trees in that they allow us to
construct trees which have a guaranteed search time O(log2n)

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Red-Black Trees

• A red-black tree is a binary tree whose nodes can be
coloured either red or black to satisfy the following
conditions:

1. Black condition: Each root-to-frontier path contains exactly the
same number of black nodes

2. Red condition: Each red node that is not the root has a black
parent

3. Each external node is black

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Red-Black Trees

• A red-black search tree is a red-black tree that is also a
binary search tree

• For all n>= 1, every red-black tree of size n has height
O(log2n)

– Thus, red-black trees provide a guaranteed worst-case search time
of O(log2n)

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Red-Black Trees

Red-black tree (condition 3)

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Red-Black Trees

Red-black tree (condition 3)

Undetermined colour (both red and black satisfy conditions 1 & 2)

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Red-Black Trees

If root was red, then right child would have to be black
(because if it was red, by Condition 2 it would have to have a
black parent) but then Condition 1, the black condition, would
be violated ... so the root can’t be red in this case.

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Red-Black Trees

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Red-Black Trees

a

b

c

To satisfy black condition, either

(1) node a is black and nodes b and
c are red, or

(2) nodes a, b, and c are red.

In both cases, a red condition is
violated.

Therefore, this is not a red-black
tree (i.e. it cannot be coloured in a way
that satisfies all three conditions)

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Red-Black Trees

• For all n >= 1, every red-black tree of size n has height
O(log2n)

• Thus, red-black trees provide a guaranteed worst-case
search time of O(log2n)

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Red-Black Trees

• Insertions and deletions can cause red and black conditions
to be violated

• Trees then have to be restructured

• Restructuring called a promotion (or rotation)

– Single promotion

– 2 promotion

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Red-Black Trees

• Single promotion

• Also referred to as

– single (left) rotation

– single (right) rotation

• Promotes a node one level

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Red-Black Trees

u

v

1 2

3

T

v

u

32

1

T’

Promote v
(Left Rotation)

Promote u
(Right Rotation)

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Red-Black Trees

• A single promotion (Left Rotation or Right Rotation)
preserves the binary-search condition

• Same manner as an AVL rotation

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Red-Black Trees

u

v

1 2

3

T

v

u

32

1

T’

Promote v
(Left Rotation)

Promote u
(Right Rotation)

keys(1) < key(v) < key(u)
key(v) < keys(2) < key(u)
key(u) < keys(3)

keys(1) < key(v)
key(v) < keys(2) < key(u)
key(v) < key(u) < keys(3)

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Red-Black Trees

• 2-Promotion

• Zig-zag promotion

• Composed of two single promotions

• And hence preserves the binary-search condition

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Red-Black Trees

u

v

1

4

Zig-zag promote w

w

2 3

w

v

1 2

u

3 4

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Red-Black Trees

u

v

1

4

single promote w

w

2 3

u

w

3

4

v

1 2

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Red-Black Trees

single promote w
u

w

3

4

v

1 2

w

v

1 2

u

3 4

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Red-Black Trees

Zig-zag promote w

u

v

4

1

w

32

w

u

1 2

v

3 4

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Red-Black Trees

Insertions

– A red-black tree can be searched in logarithmic time, worst case

– Insertions may violate the red-black conditions necessitating
restructuring

– This restructuring can also be effected in logarithmic time

– Thus, an insertion (or a deletion) can be effected in logarithmic time

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Red-Black Trees

• Just as with AVL trees, we perform the insertion by

– first searching the tree until an external node is reached (if the key is
not already in the tree)

– then inserting the new (internal) node

• We then have to recolour and restructure, if necessary

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Red-Black Trees

insertion at v

v ?

vIf new node is red, is the tree red-black?
If the new node is black, is the tree red-black?

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Red-Black Trees

• Recolouring:

– Colour new node red

– This preserves the black condition

– but may violate the red condition

• Red condition can be violated only if the parent of an internal
node is also red

• Must transform this ‘almost red-black tree’ into a red-black
tree

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Red-Black Trees

insertion at v

v

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Red-Black Trees

• Recolouring and restructuring algorithm

– The node u is a red node in a BST, T

– u is the only candidate violating node

– Apart from u, the tree T is red-black

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Red-Black Trees

• Case 1:

– u is the root

– T is red-black

insertion at v

v

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Red-Black Trees

• Case 2:

– u is not the root

– its parent v is the root

– Colour v black

• Since v is the parent and the root,
it is on the path to all external nodes
and therefore the black condition is satisfied

v

u

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Red-Black Trees

v

u

Recolour
v

u

Is there anything unexpected about this figure?

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Red-Black Trees

v

u

Recolour
v

u

Is there anything unexpected about this figure?

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Red-Black Trees

• Case 3:

– u is not the root,

– its parent v is not the root,

– v is the left child of its parent w

– (x is the right child of w,
i.e. x is v’s sibling)

w

v x

u

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

Red-Black Trees

• Case 3.1:

– x is red

– Colour v and x black and w red

– Now repeat the restructuring with u := w

(since the recolouring of w to red may cause a red violation)

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Red-Black Trees

Recolour

Note:
w must be black,
v must be red,
u must be red.
Why?

w

v x

u

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

Red-Black Trees

• u must be red because we colour new nodes that way by
convention (to preserve the black condition)

• v must be red because otherwise it would be black and then
we wouldn’t have violated the red condition and we wouldn’t
be restructuring anything!

• w must be black because every red node (that isn’t the root)
has a black parent (and x is red so w must be black)

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Red-Black Trees

w

v x

u

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Red-Black Trees

• Case 3.2:

– x is black

– u is the left child of v

– Promote v

– Colour v black

– Colour w red

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

Red-Black Trees

Restructure and recolour

w

v x

u
Promote v;
colour v black;
colour w red

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

Red-Black Trees

v

wu

x

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

Red-Black Trees

• Case 3.3:

– x is red

– u is the right child of v

– Colour v and x black

– Colour w red

– Repeat the restructuring with u := w

(since the recolouring of w to red may cause a red violation)

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Red-Black Trees

Recolour

w

v x

u

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

Red-Black Trees

w

v x

u

Data Structures and Algorithms for Engineers 44 Carnegie Mellon University Africa

Red-Black Trees

• Case 3.4:

– x is black

– u is the right child of v

– Zig-zag promote u

– Colour u black

– Colour w red

Data Structures and Algorithms for Engineers 45 Carnegie Mellon University Africa

Red-Black Trees

Restructure and recolour

w

v x

u Zig-zag promote u;
colour u black;
colour w red

Data Structures and Algorithms for Engineers 46 Carnegie Mellon University Africa

Red-Black Trees

u

v w

x

Data Structures and Algorithms for Engineers 47 Carnegie Mellon University Africa

Red-Black Trees

• Case 4:

– u is not the root,

– its parent v is not the root,

– v is the right child of its parent w

– (x is the left child of w, i.e. x is v’s sibling)

• This case is symmetric to case 3.

