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Lecture 19

Trees

 Red-Black Trees



Red-Black Trees

* The goal of height-balancing is to ensure that the tree is as

complete as possible and that, consequently, it has minimal
height for the number of nodes in the tree

* As a result, the number of probes It takes to search the tree
(and the time It takes) is minimized.



Red-Black Trees

* A perfect or a complete tree with n nodes has height Olog-n]

— So the time it takes to search a perfect or a complete tree with n nodes
is O(logon)

* A skinny tree could have height O(n]
— 5o the time it takes to search a skinny tree can be O[n]

* Red-Black trees are similar to AVL trees in that they allow us to
construct trees which have a guaranteed search time O[log.n])



Red-Black Trees

* A red-black tree is a binary tree whose nodes can be
coloured either red or black to satisfy the following
conditions:

1.

Black condition: Each root-to-frontier path contains exactly the
same number of black nodes

Red condition: £ach red node that is not the root has a black
parent

Each external node is black



Red-Black Trees

e A red-black search tree is a red-black tree that is also a
binary search tree

* For all n>= 1, every red-black tree of size n has height
O(logon)

— Thus, red-black trees provide a guaranteed worst-case search time
of Oflogon)



Red-Black Trees

. Red-black tree (condition 3)



Red-Black Trees

/ Undetermined colour (both red and black satisfy conditions 1 & 2)

Red-black tree (condition 3)



Red-Black Trees

If root was red, then right child would have to be black
(because if it was red, by Condition 2 it would have to have a
black parent) but then Condition 1, the black condition, would
be violated ... so the root can’t be red in this case.
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Red-Black Trees

To satisfy black condition, either

- @
/ (1) node a is black and nodes b and
c are red, or
b
/ (2) nodes a, b, and c are red.
In both cases, a red condition is
¢ Q violated.

Therefore, this is not a red-black
tree (i.e. it cannot be coloured in a way
that satisfies all three conditions)




Red-Black Trees

* Foralln>= 1, every red-black tree of size n has height
O(logon)

* Thus, red-black trees provide a guaranteed worst-case
search time of Oflogsn])



Red-Black Trees

* |nsertions and deletions can cause red and black conditions
to be violated

e Trees then have to be restructured

* Restructuring called a promotion [or rotation)

— Single promotion
— 2 promotion



Red-Black Trees

* Single promotion
 Also referred to as

— single (left) rotation

— single [right]) rotation

* Promotes a node one level



Red-Black Trees

Promote
(Left Rotation)
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P omote
(RghtR tation)
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Red-Black Trees

* A single promotion (Left Rotation or Right Rotation)
preserves the binary-search condition

e Same manner as an AVL rotation



Red-Black Trees

u Q Promote v
/ \ (Left Rotation)

1 ) Pr.omote u |
(Right Rotation)

keys(1) < key(v) < key(u)
key(v) < keys(2) < key(u)
key(u) < keys(3)
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keys(1) < key(v)
key(v) < keys(2) < key(u)
key(v) < key(u) < keys(3)




Red-Black Trees

2-Promotion

Zig-zag promaotion

Composed of two single promotions

And hence preserves the binary-search condition
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Red-Black Trees

Insertions

— A red-black tree can be searched in logarithmic time, worst case

— Insertions may violate the red-black conditions necessitating
restructuring

— This restructuring can also be effected in logarithmic time

— Thus, an insertion [or a deletion] can be effected in logarithmic time



Red-Black Trees

Just as with AVL trees, we perform the insertion by

— first searching the tree until an external node is reached (if the key is
not already in the tree]

— then inserting the new (internal) node

We then have to recolour and restructure, if necessary



Red-Black Trees

/

_ :

insertion at v

e

If new node is red, is the tree red-black?
If the new node is black, is the tree red-black?



Red-Black Trees

Recolouring:

— (Colour new node red
— This preserves the black condition

— but may violate the red condition

Red condition can be violated only if the parent of an internal
node Is also red

Must transform this ‘almost red-black tree’ into a red-black
tree



Red-Black Trees

insertion at v

w7




Red-Black Trees

* Recolouring and restructuring algorithm

— The node uis ared node ina BST, T
— u is the only candidate violating node

— Apart from u, the tree T is red-black



Red-Black Trees

e (Case 1:;

— uis the root
— T is red-black

insertion at v
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Red-Black Trees

e (Case2;

— uis not the root v ‘
— Its parent v is the root
— (Colour v black / \

* Since v is the parent and the root,

@
It is on the path to all external nodes
and therefore the black condition is satisfied




Red-Black Trees

“/0\

A

e

Is there anything unexpected about this figure?



Red-Black Trees

Ny, o / g
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Is there anything unexpected about this figure?




Red-Black Trees

e (Case 3;

— uis not the root, W

— Its parent v is not the root, / \

— v is the left child of its parent w

— (xis the right child of w, v ‘ X ‘
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Red-Black Trees

e (Case 3.1:;

— X is red

~H Colour v and x black and w red H

— Now repeat the restructuring with u ;= w

[since the recolouring of w to red may cause a red violation]



Red-Black Trees

Note:

w must be black,

v must be red,

W u must be red.
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@ < @

A —




Red-Black Trees

* u must be red because we colour new nodes that way by
convention (to preserve the black condition)

e v must be red because otherwise it would be black and then
we wouldn’t have violated the red condition and we wouldn’t

be restructuring anything!

* w must be black because every red node (that isn't the root]
has a black parent (and x Is red so w must be black]



Red-Black Trees
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Red-Black Trees

e (Case 3.2;

— X Is black

— uis the left child of v
— Promote v

— Colour v black

— Colour w red



Red-Black Trees

W‘
/ \ Restructure and recolour
@ < @

/ —
Promote v;

colour v black;
colour w red
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Red-Black Trees

e (Case 3.3

— xis red
— uis the right child of v
— (Colour v and x black

— Colour w red

— Repeat the restructuring with u := w

[since the recolouring of w to red may cause a red violation)
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Red-Black Trees

e (Case 3.4:;

— X Is black

— uis the right child of v
- Zig-zag promote u

— Colour u black

— Colour w red



Red-Black Trees
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Restructure and recolour

2ig-zag promote u;
colour u black;
colour w red
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Red-Black Trees

e (Case 4:

— uis not the root,

— Its parent v is not the root,

— v is the right child of its parent w

— [xis the left child of w, i.e. x is v's sibling]

* This case is symmetric to case 3.



