04-630

Data Structures and Algorithms for Engineers

David Vernon Carnegie Mellon University Africa

> vernon@cmu.edu www.vernon.eu

Lecture 15

Trees

- Types of trees
- Binary Tree ADT
- Binary Search Tree
- Height Balanced Trees
 - AVL Trees
 - Red-Black Trees
- Optimal Code Trees
- Huffman's Algorithm

- The goal of height-balancing is to ensure that the tree is as complete as possible and that, consequently, it has minimal height for the number of nodes in the tree
- As a result, the number of probes it takes to search the tree (and the time it takes) is minimized.

- A perfect or a complete tree with n nodes has height O(log₂n)
 - So the time it takes to search a perfect or a complete tree with n nodes is O(log₂n)
- A skinny tree could have height O(n)
 - So the time it takes to search a skinny tree can be O(n)
- Red-Black trees are similar to AVL trees in that they allow us to construct trees which have a guaranteed search time O(log₂n)

- A red-black tree is a binary tree whose nodes can be coloured either red or black to satisfy the following conditions:
 - **1. Black condition**: Each root-to-frontier path contains exactly the same number of black nodes
 - 2. Red condition: *Each red node* that is not the root *has a black parent*
 - 3. Each external node is **black**

- A red-black search tree is a red-black tree that is also a binary search tree
- For all n>= 1, every red-black tree of size n has height O(log₂n)
 - Thus, red-black trees provide a guaranteed worst-case search time of O(log₂n)

Red-black tree (condition 3)

If root was red, then right child would have to be black (because if it was red, by Condition 2 it would have to have a black parent) but then Condition 1, the black condition, would be violated ... so the root can't be red in this case.

To satisfy black condition, either

(1) node a is black and nodes b and c are red, or

(2) nodes a, b, and c are red.

In both cases, a red condition is violated.

Therefore, this is not a red-black tree (i.e. it cannot be coloured in a way that satisfies all three conditions)

- For all n >= 1, every red-black tree of size n has height O(log₂n)
- Thus, red-black trees provide a guaranteed worst-case search time of O(log₂n)

- Insertions and deletions can cause red and black conditions to be violated
- Trees then have to be restructured
- Restructuring called a promotion (or rotation)
 - Single promotion
 - 2 promotion

- Single promotion
- Also referred to as
 - single (left) rotation
 - single (right) rotation
- Promotes a node one level

- A single promotion (Left Rotation or Right Rotation) preserves the binary-search condition
- Same manner as an AVL rotation

Data Structures and Algorithms for Engineers

- 2-Promotion
- Zig-zag promotion
- Composed of two single promotions
- And hence preserves the binary-search condition

Insertions

- A red-black tree can be searched in logarithmic time, worst case
- Insertions may violate the red-black conditions necessitating restructuring
- This restructuring can also be effected in logarithmic time
- Thus, an insertion (or a deletion) can be effected in logarithmic time

- Just as with AVL trees, we perform the insertion by
 - first searching the tree until an external node is reached (if the key is not already in the tree)
 - then inserting the new (internal) node
- We then have to recolour and restructure, if necessary

If the new node is black, is the tree red-black?

- Recolouring:
 - Colour new node red
 - This preserves the black condition
 - but may violate the red condition
- Red condition can be violated only if the parent of an internal node is also red
- Must transform this 'almost red-black tree' into a red-black tree

- Recolouring and restructuring algorithm
 - The node u is a red node in a BST, T
 - u is the only candidate violating node
 - Apart from u, the tree T is red-black

- Case 1:
 - u is the root
 - T is red-black

- Case 2:
 - u is not the root
 - its parent v is the root
 - Colour v black
 - Since v is the parent and the root, it is on the path to all external nodes and therefore the black condition is satisfied

Is there anything unexpected about this figure?

Is there anything unexpected about this figure?

- Case 3:
 - u is not the root,
 - its parent v is not the root,
 - v is the left child of its parent w
 - (x is the right child of w,
 i.e. x is v's sibling)

- Case 3.1:
 - x is red

– Colour v and x black and w red

– Now repeat the restructuring with u := w

(since the recolouring of w to red may cause a red violation)

Note: w must be black, v must be red, u must be red. Why?

Recolour

- u must be red because we colour new nodes that way by convention (to preserve the black condition)
- v must be red because otherwise it would be black and then we wouldn't have violated the red condition and we wouldn't be restructuring anything!
- w must be black because every red node (that isn't the root) has a black parent (and x is red so w must be black)

- Case 3.2:
 - x is black
 - u is the left child of v
 - Promote v
 - Colour v black
 - Colour w red

Restructure and recolour

Promote v; colour v black; colour w red

- Case 3.3:
 - x is red
 - u is the right child of v
 - Colour v and x black
 - Colour w red
 - Repeat the restructuring with u := w

(since the recolouring of w to red may cause a red violation)

- Case 3.4:
 - x is black
 - u is the right child of v
 - Zig-zag promote u
 - Colour u black
 - Colour w red

Restructure and recolour

Zig-zag promote u; colour u black; colour w red

- Case 4:
 - u is not the root,
 - its parent v is not the root,
 - v is the **right** child of its parent w
 - (x is the **left** child of w, i.e. x is v's sibling)
- This case is symmetric to case 3.