04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vernon.eu

Lecture 16

Trees

— Optimal Code Trees
— Huffman’s Algorithm

Optimal Code Trees

First application: coding and data compression

\We will define optimal variable-length binary codes and code
trees

\We will study Huffman’s algorithm which constructs them

Huffman’s algorithm is an example of a Greedy Algorithm,
an important class of simple optimization algorithms

Text, Codes, and Compression

Computer systems represent data as bit strings
Encoding: transformation of data into bit strings
Decoding: transformation of bit strings into data

The code defines the transformation

Text, Codes, and Compression

For example: ASCI|, the international coding standard, uses a /-bit code
HEX Code - Character

20 - <space>

41 - A

42 - B

61 -a

Text, Codes, and Compression

* Such encodings are called

— fixed-length or
— block codes

* They are attractive because the encoding and decoding Is
extremely simple

— For coding, we can use a block of integers or codewords indexed by
characters

— For decoding, we can use a block of characters indexed by
codewords

Text, Codes, and Compression

* For example: the sentence
The cat sat on the mat

Is encoded in ASCII as

1010100 110100 011001 0101 ...

* Note that the spaces are there simply to improve readability
.. they don't appear in the encoded version.

Text, Codes, and Compression

* The following bit string is an ASCIlI encoded message:

10001001100101110001111011111100100110100
171101110110011101000001101001111001101000
0011001011100001111001111110071

Text, Codes, and Compression

* And we can decode it by chopping it into smaller strings
each of 7/ bits in length and by replacing the bit strings with
their corresponding characters:

1000100(D)1100101(e)1100011(c)1101111({0)110010
0(d)1101001(i)1101110(n)1 10011 1{g)0100000()1 101
001(i)1110011(s)0100000()1100101(e)1100001(a)11

10011(s)1111001(y]

Text, Codes, and Compression

Every code can be thought of in terns of
a finite alphabet of source symbols
a finite alphabet of code symbols

Each code maps every finite sequence or string of source
symbols into a string of code symbols

Text, Codes, and Compression

Let A be the source alphabet
Let B be the code alphabet

A code f is an injective map
f: SA —> SB

where S, is the set of all strings of symbols from A

where Sg Is the set of all strings of symbols from B

Text, Codes, and Compression

* |njectivity ensures that each encoded string can be decoded
uniguely (we do not want two source strings that are
encoded as the same string]

A

Injective Mapping: each element in the range is related to at most one
element in the domain

Text, Codes, and Compression

* We are primarily interested in the code alphabet {0, 1} since
we want to code source symbols strings as bit strings

Text, Codes, and Compression

* There is a problem with block codes:
n symbols produce nb bits with a block code of length b

* For example,

— if n = 100,000 (the number of characters in a typical 200-page
book]

— b =7 (e.g. 7-bit ASCII code]

— then the characters are encoded as /700,000 bits

Text, Codes, and Compression

While we cannot encode the ASCII characters with fewer than 7/
bits

\We can encode the characters with a different number of bits,
depending on their frequency of occurrence

Use fewer bits for the more frequent characters
Use more bits for the less frequent characters

Such a code is called a variable-length code

Text, Codes, and Compression

* First problem with variable length codes:
— when scanning an encoded text from left to right (decoding it)

— How do we know when one codeword finishes and another starts?

* We require each codeword not be a prefix of any other
codeword

* 50, for the binary code alphabet, we should base the codes
on binary code trees

Text, Codes, and Compression

Binary code trees:

binary tree whose external nodes are labelled uniquely with
the source alphabet symbols

Left branches are labelled O

Right branches are labelled 1

Text, Codes, and Compression

A binary code tree and its prefix code

Text, Codes, and Compression

* The codeword corresponding to a symboaol is the bit string

given by the path from the root to the external node labeled
with the symbol

* Note that, as required, no codeword is a prefix for any other
codeword

— This follows directly from the fact that source symbols are only on
external nodes

— and there is only one (unique) path to that symbol

Text, Codes, and Compression

* (Codes that satisfy the prefix property are called prefix codes

* Prefix codes are important because

— we can uniquely decode an encoded text with a left-to-right scan of
the encoded text

— by considering only the current bit in the encoded text

— decoder uses the code tree for this purpose

Text, Codes, and Compression

Read the encoded message bit by bit
Start at the root

If the bit is a 0, move left

If the bit is a 1, move right

If the node Is external, output the corresponding symbol and
begin again at the root

Text, Codes, and Compression

* Encoded message:

0011100

* Decoded message:

AABCA a0 \<

Optimal Variable-Length Codes

\What makes a good variable length code?

Let A =aqa,, ..., a,, n>=1, be the alphabet of source symbols
Let P =p,, ..., p,, n>=1, be their probability of occurrence

\\We obtain these probabilities by analysing are
representative sample of the type of text we wish to encode

Optimal Variable-Length Codes

Any binary tree with n external nodes labelled with the n
symbols defines a prefix code

Any prefix code for the n symbols defines a binary tree with
at least n external nodes

such a binary tree with exactly n external nodes is a reduced
prefix code (tree)

Good prefix codes are always reduced (and we can always
transform an non-reduced prefix code into a reduced one]

a 000
b 111
c 110

Non-Reduced Prefix Code [Tree]

Optimal Variable-Length Codes

Comparison of prefix codes - compare the number of bits in
the encoded text

Let A=aqa,, ...,a,, n>=1, be the alphabet of source symbols
Let P =p,, ..., p, be their probability of occurrence
Let W=w,, ...,w, be a prefix code for A = a,, ..., aq,

Let L=1,, ...,[,be the lengths of W=w,, ..., w,

Optimal Variable-Length Codes

Given a source text T with f;, ..., f, occurrences of a,, ..., a
respectively

n

The total number of bits when T is encoded is

2 fi

The total number of source symbols is

Zn/'= 1 f;

The average length of the W-encoding is

Alength(T, W) = Zni= il / Zni= i

Optimal Variable-Length Codes

* For long enough texts, the probability p; of a given symbol
occurring Is approximately

pi=fi/ Z:ni=1ﬁ

* 5o the expected length of the W-encoding is

Elength(W, P) = Z i=1Pil;

Optimal Variable-Length Codes

To compare two different codes W, and W, we can
compare either

— Alength(7, W,) and Alength(T, W,) or
— Elength(W,, P) and Elength(W, , P)

We say W, is no worse than W, if
Elength(W,, P) <= Elength(W, , P)
We say W, is optimal if

Elength(W,, P) <= Elength(W, , P)
for all possible prefix codes W, of A

Optimal Variable-Length Codes

* Huffman’s Algorithm

* We wish to solve the following problem:
* GivennsymbolsA=aqay,...,a,, n>=1

and the probability of their occurrence
P=p,, ..., p, ., respectively,

construct an optimal prefix code for A and P

Optimal Variable-Length Codes

* This problem is an example of a global optimization
problem

* Brute force (or exhaustive search] techniques are too
expensive to compute:

— Given A and P

— Compute the set of all reduced prefix codes

— Choose the minimal expected length prefix code

Optimal Variable-Length Codes

* This algorithm takes O(n") time, where n is the size of
the alphabet

* \Why? because any binary tree of size n-1 (i.e. with n

external nodes] is a valid reduced prefix tree and there
are n! ways of labelling the external nodes

* Since n! is approximately n" we see that there are
approximately O(n") steps to go through when
constructing all the trees to check

Optimal Variable-Length Codes

* Huffman’s Algorithm is only O(n?)

* This is significant: if n = 128 (number of symbols in a /-
bit ASCII code]

— O(n") = 128728 = 528 x 10269

— O(n?) = 1282 = 1.6384 x 104

— There are 31536000 seconds in a year and if we could
compute 1000 000 00O steps a second then the brute force
technigue would still take 1.67 x 10293 years

Optimal Variable-Length Codes

* The age of the universe is estimated to be 13 billion
years, i.e., 1.3x10'° years

* Along way off 1.67 x 10=°° years!

Optimal Variable-Length Codes

* Huffman’s Algorithm uses a technique called Greedy

* |t uses local optimization to achieve a globally optimum
solution

— Build the code incrementally

— Reduce the code by one symbol at each step

— Merge the two symbols that have the smallest probabilities into
one new symbol

Optimal Variable-Length Codes

* Before we begin, note that we'd like a tree with the
symbols which have the lowest probability to be on the
longest path

 Why?

* Because the length of the codeword is equal to the path
length and we want

— short codewords for high-probability symbols

— longer codewords for low-probability symbols

Text, Codes, and Compression

A binary code tree and its prefix code

Huffman’'s Algorithm

* We will treat Huffman’s Algorithm for just six letters, i.e,
n = B, and there are six symbols in the source alphabet

* These are, with their probabilities,

E-0.1250
T-0.0825
A -0.0805
0-0.0760
|- 0.0/29

N-0.0710

Huffman’'s Algorithm
Step 1:
* (Create a forest of code trees, one for each symboaol

* Each tree comprises a single external node ([empty tree)
labelled with its symbol and weight [probability]

0.1250 0.0925 0.0805 0.0760 0.0729 0.0710

Huffman’'s Algorithm

Step 2:
— Choose the two binary trees, B1 and B2, that have the smallest
weights

— Create a new root node with B1 and B2 as its children and with
weight equal to the sum of these two weights

0.1439 Q
RN

0.1250 0.0925 0.0805 0.0760

Huffman’'s Algorithm

Step 3:

— Repeat step 2!

0.1250

0.0925

Huffman’'s Algorithm

0.1565 Q
RN

0.1439 Q

RN

Huffman’'s Algorithm

0.2175 Q 0.1565 Q 0.1439 Q

SN N N

E T

Huffman’'s Algorithm

Huffman’'s Algorithm

Huffman’'s Algorithm

The final prefix code is:

A 100
E OO
| 110
N 111
0 101
T 01

Huffman’'s Algorithm

Three phases in the algorithm

1. Initialize the forest of code trees
2. Construct an optimal code tree

3. Compute the encoding map

Huffman’'s Algorithm

Phase 1: Initialize the forest of code trees

— How will we represent the forest of trees?

— Better question: how will we represent our tree ... have to store
both alphanumeric characters and probabilities?

— Need some kind of composite node

— Opt to represent this composite node as an INTERNAL node

Huffman’'s Algorithm

— Consequently, the initial tree is simply one internal node

— That s, It is a root [(with two external nodes]

Char 0.nnn

Huffman’'s Algorithm

S0, to create such a tree we simply invoke the following
operations:

— Initialize the tree ... treg(]

— Add a node ... addnode(char, weight, T}

Huffman’'s Algorithm

* \We must also keep track of our forest

* (Could represent it as a linked list of pointers to Binary
trees ...

—l —

\ A A

O O O C

N2

Huffman’'s Algorithm

Represented as:

T

Huffman’'s Algorithm

|s there an alternative?

(Question: why do we use dynamic data structures?

Answer:

— When we don't know in advance how many elements are in our
data set

— When the number of elements varies significantly

|s this the case here?

No!

Huffman’'s Algorithm

* 50, our alternatives are?
* An array, indexed by number, of type ...

* binary_tree, i.e., each element in the array can point to a
binary code tree

Huffman’'s Algorithm

O O O O

Huffman’'s Algorithm

* What will be the dimension of this array?

* n,the number of symbols in our source alphabet since

this is the number of trees we start out with in our forest
initially

Huffman’'s Algorithm

Phase 2: construct the optimal code tree

Huffman’'s Algorithm

Pseudo-code algorithm

Find the tree with the smallest weight - A, at
element 1

Find the tree with the next smallest weight - B, at
element

Construct a tree, with right sub-tree A, left sub-
tree B, with root having weight = sum of the
roots of A and B

Let array element 1 point to the new tree

Delete tree at element j

Huffman’'s Algorithm

let n be the number of trees initially

Repeat
Find the tree with the smallest weight - A, at
element 1

Find the tree with the next smallest weight - B, at
element

Construct a tree, with right sub-tree A, left sub-
tree B, with root having weight = sum of the
roots of A and B

Until only one tree left in the array

Let array element 1 point to the new tree
Delete tree at element j

Huffman’'s Algorithm

Phase 3: Compute the encoding map

— We need to write out a list of source symbols together with their
prefix code

— We need to write out the contents of each external node (or
each frontier internal node) together with the path to that node

— We need to traverse the binary code tree in some manner

But we want to print out the symbol and the prefix code:
.e. the symbol at the leaf node

and the path by which we got to that node

* How will we represent the path?

* As an array of binary values
(representing the left and right links on the path]

