
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 18

Graphs
– Types of graph
– Adjacency matrix representation
– Adjacency list representation
– Breadth-First Search traversal
– Depth-First Search traversal
– Topological Sorting
– Minimum Spanning Tree

• Prim’s Algorithm
• Kruskal’s algorithm

– Shortest Path Algorithms
• Dijkstra’s algorithm
• Floyd’s algorithm

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Graphs

• Important way of modelling and representing the
organization of many systems and problems

– Road networks

– Electronic circuits

– Telecommunication networks

– Human interaction

– Social networks

– Eco-system networks

– Robot navigation paths

– Any relationship …

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Graphs

• A graph G = (V, E) consists of

– A set of vertices V

– A set E of vertex pairs or edges

• Vertex: node in a graph

• Edge (arc): a pair of vertices representing a connection between two
nodes in a graph

• Undirected graph: a graph in which the edges have no direction

• Directed graph (digraph): a graph in which each edge is directed from
one vertex to another (or the same) vertex

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Graphs

• The key to solving many algorithmic problems is to think of
them in terms of graphs

• The key to using graphs algorithms effectively in applications
is to model your problem correctly to take advantage of
existing graph algorithms

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Graphs

Undirected graph G

V = {A, B, C, D}
E = {(A, B), (A, D), (B, C), (B, D)}

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Graphs

Directed graph G

V = {1, 3, 5, 7, 9, 11}
E = {(1, 3), (3, 1), (5, 7), (5, 9), (9, 9), (9, 11), (11, 1)}

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Graphs

Directed graph G

V = {A, B, C, D, E, F, G, H, I, J}
E = {(G, D), (G, I), (D, B), (D, F), (I, H), (I, J), (B, A), (B, C), (F, E)}

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Graphs

• Adjacent vertices
– Two vertices in a graph that are connected by an edge

• Path
– A sequence of vertices that connects two nodes in a graph

• Complete graph
– A graph in which every vertex is directly connected to every other

vertex

• Weighted graph
– A graph in which each edge carries a value

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Graphs

A complete directed graph G

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Graphs

A complete undirected graph G

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Graphs

A weighted graph G

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Graphs

A graph G is undirected if edge (x, y) is an element of E implies
(y, x) is an element of E

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Graphs

For unweighted graphs, the shortest path must have the fewest number of edges and can
be found using breadth-first search (see later).

Shortest paths in weighted graphs requires more sophisticated algorithms (see later)

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Graphs

Certain types of edges complicate the task of working with graphs.

A self-loop is an edge (x, x) involving only one vertex.
An edge (x, y) is a multi-edge if it occurs more than once in the graph

Graphs that do not have these types of edges are called simple

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Graphs

n
2

= n!
(n-2)! 2!

There are possible vertex pairs in a simple undirected graph with n vertices.

Graphs where a large fraction of the vertex pairs define edges are called dense

Typically dense graphs has a quadratic number of edges, sparse graphs are linear in size

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Graphs

An acyclic graph does not contain any cycles
Trees are connected, acyclic undirected graphs

Directed acyclic graphs are called DAGs. They arise in scheduling problems where a
directed edge (x, y) indicates that activity x must occur before activity y
A topological sort orders the vertices of a DAG w.r.t. these precedence constraints

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Graphs

A graph is embedded if the vertices and edges are assigned geometric positions

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Graphs

Certain graphs are not explicitly constructed and then traversed, but built as we use
them (e.g. in a backtrack search; see later)

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Graphs

Each vertex is assigned a unique name in a labelled graph to distinguish it from other vertices.
In unlabelled graphs, no such distinctions are made.

Sub-graph isomorphism testing: determine whether the topological structure of two (sub-)
graphs are identical if we ignore any labels (typically solved using backtracking, by trying to
assign each vertex in each graph a label such that the structures are identical)

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Graphs

• Assuming a graph G = (V, E) with n vertices and m edges,
there are two basic choices for data structures

– Adjacency Matrix: an n� n matrix M, where element M[i, j] = 1 if (i, j)
is an edge of G, and 0 if it isn’t (or, alternatively M[i, j] = w, the weight
of the edge)

– Adjacency List: a linked list that stores the neighbours that are
adjacent to each vertex

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Graphs

Adjacency Matrix for Flight Connections

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Graphs

Adjacency List for Flight Connections

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Graphs

While Adjacency Matrices are simpler, Adjacency Lists are
the right data structure for most applications of graphs

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Worst-case and average-case complexity

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Worst-case and average-case complexity

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Graphs

/* Adjacency list representation of a graph of degree MAXV */
/* */
/* Directed edge (x, y) is represented by edgenode y in x’s */
/* adjacency list. Vertices are numbered 1 .. MAXV */

#define MAXV 1000 /* maximum number of vertices */

typedef struct {
int y; /* adjacent vertex number */
int weight; /* edge weight, if any */
struct edgenode *next; /* next edge in list */

} edgenode;

typedef struct {
edgenode *edges[MAXV+1]; /* adjacency info: list of edges */
int degree[MAXV+1]; /* number of edges for each vertex */
int nvertices; /* number of vertices in graph */
int nedges; /* number of edges in graph */
bool directed; /* is the graph directed? */

} graph;

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

.

.

.

.

.

.

y

nedgesnverticesdirected

edgesdegree

weight next

0

1

2

3

4

5

6

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Graphs

/* Initialize graph from data in a file */

initialize_graph(graph *g, bool directed){

int i; /* counter */

g -> nvertices = 0;
g -> nedges = 0;
g -> directed = directed;

for (i=1; i<=MAXV; i++)
g->degree[i] = 0;

for (i=1; i<=MAXV; i++)
g->edges[i] = NULL;

}

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

.

.

.

.

.

.

0

0

0

0

0

0

0

0
nedgesnvertices

false

directed

edgesdegree

0

1

2

3

4

5

6

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Graphs

/* build graph from data */

read_graph(graph *g, bool directed) {

int i; /* counter */
int m; /* number of edges */
int x, y; /* vertices in edge (x,y) */

initialize_graph(g, directed);

scanf("%d %d",&(g->nvertices),&m);

for (i=1; i<=m; i++) {
scanf("%d %d",&x,&y);
insert_edge(g,x,y,directed);

}
}

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

edgenode *p; /* temporary pointer */

p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

p->weight = 0;
p->y = y;
p->next = g->edges[x];

g->edges[x] = p; /* insert at head of list */

g->degree[x] ++;

if (directed == false) /* NB: if undirected add */
insert_edge(g,y,x,true); /* the reverse edge recursively */

else /* but directed TRUE so we do it */
g->nedges ++; /* only once */

}

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

.

.

.

.

.

.

0

0

0

0

0

0

0

3
nedgesnvertices

false

directed

edgesdegree

p

insert_edge(g, 1, 2, false)

2
0

0

1

2

3

4

5

6

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

edgenode *p; /* temporary pointer */

p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

p->weight = 0;
p->y = y;
p->next = g->edges[x];

g->edges[x] = p; /* insert at head of list */

g->degree[x] ++;

if (directed == false) /* NB: if undirected add */
insert_edge(g,y,x,true); /* the reverse edge recursively */

else /* but directed TRUE so we do it */
g->nedges ++; /* only once */

}

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

.

.

.

.

.

.

2
0

0

1

0

0

0

0

0

3
nedgesnvertices

false

directed

edgesdegree

p

insert_edge(g, 1, 2, false)

0

1

2

3

4

5

6

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

edgenode *p; /* temporary pointer */

p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

p->weight = 0;
p->y = y;
p->next = g->edges[x];

g->edges[x] = p; /* insert at head of list */

g->degree[x] ++;

if (directed == false) /* NB: if undirected add */
insert_edge(g,y,x,true); /* the reverse edge recursively */

else /* but directed true so we do it */
g->nedges ++; /* only once */

}

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

.

.

.

.

.

.

0

1

1

0

0

0

0

3
nedgesnvertices

false

directed

edgesdegree

insert_edge(g, 2, 1, true)

1
0

2
0

0

1

2

3

4

5

6

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

Graphs

/* Initialize graph from data in a file */

insert_edge(graph *g, int x, int y, bool directed) {

edgenode *p; /* temporary pointer */

p = malloc(sizeof(edgenode)); /* allocate edgenode storage */

p->weight = 0;
p->y = y;
p->next = g->edges[x];

g->edges[x] = p; /* insert at head of list */

g->degree[x] ++;

if (directed == false) /* NB: if undirected add */
insert_edge(g,y,x,true); /* the reverse edge recursively */

else /* but directed true so we do it */
g->nedges ++; /* only once */

}

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

.

.

.

.

.

.

1

1

1

0

0

0

0

3
nedgesnvertices

false

directed

edgesdegree

insert_edge(g, 2, 1, true)

1
0

2
0

0

1

2

3

4

5

6

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

.

.

.

.

.

.

2

2

1

1

0

0

0

3
nedgesnvertices

false

directed

edgesdegree

insert_edge(g, 1, 3, false)

1
0

3
0

0

1

2

3

4

5

6

2
0

1
0

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Graphs

/* Print a graph */

print_graph(graph *g) {

int i; /* counter */
edgenode *p; /* temporary pointer */

for (i=1; i<=g->nvertices; i++) {
printf("%d: ",i);
p = g->edges[i];
while (p != NULL) {

printf(" %d",p->y);
p = p->next;

}
printf("\n");

}
}

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

Graphs

Consider using a well-established graph library for
implementing graph-based applications

– LEDA Library of Efficient Data types and Algorithms

www.algorithmic-solutions.com

– Boost Graph Library

www.boost.org
www.boost.org/libs/graph/doc

