04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vernon.eu

Lecture 18

Graphs
— Types of graph
— Adjacency matrix representation
— Adjacency list representation

Graphs

* Important way of modelling and representing the
organization of many systems and problems

— Road networks

— Electronic circuits

— Telecommunication networks
— Human interaction

— Social networks

— Eco-system networks

— Robot navigation paths

— Any relationship ...

Graphs

A graph G = (V, E) consists of

— A set of verticesV

— A set E of vertex pairs or edges

Vertex: node in a graph

Edge (arc): a pair of vertices representing a connection between two
nodes in a graph

Undirected graph: a graph in which the edges have no direction

Directed graph (digraph): a graph in which each edge is directed from
one vertex to another (or the same) vertex

Graphs

The key to solving many algorithmic problems is to think of
them in terms of graphs

The key to using graphs algorithms effectively in applications
Is to model your problem correctly to take advantage of
existirng graph algorithms

Algorithm Design

Steven S. Skiena

@ Springer

Graphs

©

Undirected graph G

Vv={A, B, C, D}
E = {(A’ B)1 (A’ D)’ (B7 C)7 (B’ D)}

D

Directed graph G

Vv={1,3,57,9 11}
E={(1,3),(3,1),(5,7),(5,9),(9,9), (9, 11), (11, 1)}

Graphs

A
O LA
® OO

Directed graph G

V={A,B,C,D,E,FG,H,IJ
E={(G,D), (G, 1), (D, B), (D, F), (I, H), (I, J), (B, A), (B, C), (F, E)}

Graphs

Adjacent vertices
— Two vertices In a graph that are connected by an edge

Path

— A sequence of vertices that connects two nodes in a graph

Complete graph

— A graph in which every vertex is directly connected to every other
vertex

Weighted graph

— A graph in which each edge carries a value

Graphs

A complete directed graph G

Graphs

A complete undirected graph G

Graphs

o)

730 0

08.

[Washington J

\

Atlanta]

Y

[Houston]

A weighted graph G

009

A/O(')’g!—

Graphs

undirected directed

A graph G is undirected if edge (x, y) is an element of E implies
(v, x) is an element of E

Graphs

12

unweighted weighted

For unweighted graphs, the shortest path must have the fewest number of edges and can
be found using breadth-first search (see later).

Shortest paths in weighted graphs requires more sophisticated algorithms (see later)

Graphs

simple non—simple

Certain types of edges complicate the task of working with graphs.

A self-loopis an edge (x, x) involving only one vertex.
An edge (x, y) is a multi-edge if it occurs more than once in the graph

Graphs that do not have these types of edges are called simple

Graphs

k
sparse dense

There are [n] _ n! possible vertex pairs in a simple undirected graph with n vertices.
) (n-2)! 2!

Graphs where a large fraction of the vertex pairs define edges are called dense

Typically dense graphs has a quadratic number of edges, sparse graphs are linear in size

Graphs

cyclic acyclic

An acyclic graph does not contain any cycles
Trees are connected, acyclic undirected graphs

Directed acyclic graphs are called JAGs. They arise in scheduling problems where a
directed edge (x y/indicates that activity x must occur before activity y
A topological sort orders the vertices of a DAG w.r.t. these precedence constraints

Graphs

embedded topological

A graph is embedded if the vertices and edges are assigned geometric positions

Graphs

explicit implicit

Certain graphs are not explicitly constructed and then traversed, but built as we use
them (e.g. in a backtrack search; see later)

Graphs

G F
o o

unlabeled labeled

Each vertex is assigned a unique name in a labelled graph to distinguish it from other vertices.
In unlabelled graphs, no such distinctions are made.

Sub-graph isomorphism testing. determine whether the topological structure of two (sub-]
graphs are identical if we ignore any labels [typically solved using backtracking, by trying to
assign each vertex in each graph a label such that the structures are identical]

Graphs

* Assuming a graph G = (V, E) with n vertices and m edges,
there are two basic choices for data structures

hh A W N =

Adjacency Matrix: an n X n matrix M, where element M[i, j] = 1 if (i,))
is an edge of G, and O if it isn’t [or, alternatively M[i, j] = w, the weight
of the edge)

Adjacency List: a linked list that stores the neighbours that are
adjacent to each vertex

2 3 4 5 7N PN
o100 1| (1) 2) et El
1 0 1 1 1 /\/— o S e E 2 e B e K |
01 0 1 0 | > 3 24 |
01 1 0 1 / i ¢ 22— 0B
1101 0| (5——4) s {1
N N

graph

.num VerticesE

wvertices

(0]
(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
&)

"Atlanta "

"Austin

"Chicago

"Dallas

"Denver

"Houston

"Washington"

edges

(0] 0 0 0 0 o 8o0| 600 | e . .
(1] 0 0 0| 200 of 160 . . .
(2] 0 0 0 0| 1000 0 . . .
(3] o 200| 900 0| 780 0 . . .
(4] | 1400 0| 1000 0 0 0 . - .
(5] | 800 0 0 0 0 0 . . .
(6] | 600 0 0| 1300 0 0 . . .
(71| o
8| e
Q]| e

o) 01 [B @ [. 7 B [

Adjacency Matrix for Flight Connections

(Array positions marked '®' are undefined)

(0]
(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

Graphs

Reference
edge nodes adjal:ed:::efttex Weight «::en:ge .

graph - A —
"Atlanta —|5] 800 |"—’ 600 Z
“Austin o3| 200 | of—>[s| 160 IA
"Chicago o-—> | 4 | 1000 z
"Dallas o[1| 200 | ot—>|2] 900 ~{4| 780 IA
"Denver o1 [o[1400 | ot— 1000|Z
"Houston 1> |0| 800 IZ
"Washington® | *1T—> |0 | 600 Io— 1300”

Adjacency List for Flight Connections

Graphs

\While Adjacency Matrices are simpler, Adjacency Lists are
the right data structure for most applications of graphs

Comparison Winner
Faster to test if (x,y) is in graph? adjacency matrices
Faster to find the degree of a vertex? adjacency lists
Less memory on small graphs? adjacency lists (m + n) vs. (n?)
Less memory on big graphs? adjacency matrices (a small win)
Edge insertion or deletion? adjacency matrices O(1) vs. O(d)
Faster to traverse the graph? adjacency lists ©(m + n) vs. O(n?)
Better for most problems? adjacency lists

Worst-case and average-case complexity

f(n) =540O(g(n))jmeans c - g(n) is an upper bound on f(n). Thus there exists

some COTSCH such that f(n) is always < c¢- g(n), for large enough n (i.e.
n > ng for some constant ng).

f(n) = Q(g(n))means c - g(n) is a lower bound on f(n). Thus there exists
some constant ¢ such that f(n) is always > c¢- g(n), for all n > ny.

f(n) =91 ©(g(n))means c; - g(n) is an upper bound on f(n) and c2 - g(n) is
a lowerpounaon f(n), for all n > ng. Thus there exist constants ¢; and c»
such that f(n) <c;-g(n) and f(n) > c3-g(n). This means that g(n) provides
a nice, tight bound on f(n).

\Worst-case and average-case complexity

c*g(n)

f(n)

(@)

f(n)

ép e
|
I

(b)

cl*g(n)

f(n)

c2*g(n)

©

Nlustrating the big (a) O, (b) 2, and (c) © notations

Graphs

/* Adjacency list representation of a graph of degree MAXV

/*

/* Directed edge (x, y) is represented by edgenode y in x’s
/* adjacency list. Vertices are numbered 1 .. MAXV

#define MAXV 1000 /* maximum number of vertices */

typedef struct {

int y;

int weight;

struct edgenode *next;
} edgenode;

typedef struct {
edgenode *edges[MAXV+1];
int degree[MAXV+1];
int nvertices;
int nedges;
bool directed;
} graph;

/*
/*
/*

/*
/*
/*
/*
/*

adjacent vertex number
edge weight, if any
next edge in 1list

adjacency info: list of edges
number of edges for each vertex
number of vertices in graph
number of edges in graph

is the graph directed?

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/

degree edges y

weight next

directed nvertices nedges

Graphs

/* Initialize graph from data in a file
initialize graph(graph *g, bool directed) {
int i; /* counter */
g -> nvertices = 0;

g -> nedges = 0;

g —-> directed directed;

for (i=1; i<=MAXV; i++)
g->degree[i] = O0;

for (i=1; i<=MAXV; i++)
g->edges[i] = NULL;

*/

degree edges

0

1 0
2 0
3 0
4 0
5 0
6 0

false 0 0

directed nvertices nedges

Graphs

/* build graph from data */

read graph(graph *g, bool directed) ({
int i; /* counter */
int m; /* number of edges */
int x, y; /* vertices in edge (x,y) */
initialize graph(g, directed);
scanf ("%d %d", &(g->nvertices) ,h &m) ;
for (i=1l; i<=m; i++) {

scanf ("%d %d", &x, &y) ;
insert edge(g,x,y,directed);

Graphs

/* Initialize graph from data in a file

insert edge(graph *g, int x, int y,

edgenode *p;
p = malloc(sizeof (edgenode)) ;
p->weight = 0;
P->y = Y/
p->next = g->edges|[x];
g->edges[x] = p;
g->degree[x] ++;
if (directed == false)
insert edge(g,y,x,true);

else
g->nedges ++;

/*
/*

/*

/*
/*
/*
/*

bool directed) {
temporary pointer */

allocate edgenode storage */

insert at head of list

NB: if undirected add
the reverse edge recursively

but directed TRUE so we do it
only once

*/

*/
*/
*/
*/

*/

insert edge(g, 1, 2, false)

degree edges

P
3 0
4 0
5 0
6 0
false 3 0

directed nvertices nedges

Graphs

/* Initialize graph from data in a file

insert edge(graph *g, int x, int y,

edgenode *p;
p = malloc(sizeof (edgenode)) ;
p->weight = 0;
P->y = Y/
p->next = g->edges[x];
g->edges[x] = p;
g->degree[x] ++;
if (directed == false)
insert edge(g,y,x, true);

else
g->nedges ++;

/*
/*

/*

/*
/*
/*
/*

bool directed) {
temporary pointer */

allocate edgenode storage */

insert at head of list

NB: if undirected add

the reverse edge recursively
but directed TRUE so we do it
only once

*/

*/
*/
*/
*/

*/

insert edge(g, 1, 2, false)

degree edges

0

1 1
2 0
3 0
4 0
5 0
6 0

false 3 0

directed nvertices nedges

Graphs

/* Initialize graph from data in a file

insert edge(graph *g, int x, int y,

edgenode *p;

p = malloc(sizeof (edgenode)) ;
p->weight = 0;

P->Yy = Y/

p->next = g->edges[x];

g->edges[x] = p;

g->degree[x] ++;

if (directed == false)
insert edge(g,y,x,true);
else

g->nedges ++;

/*
/*

/*

/*
/*
/*
/*

bool directed) {
temporary pointer */

allocate edgenode storage */

insert at head of list

NB: if undirected add
the reverse edge recursively

but directed true so we do it
only once

*/

*/
*/
*/
*/

*/

insert edge(g, 2, 1, true)

edges

NIN

degree

0

1 1

2 1

3 0

4 0

5 0

6 0
false 3
directed nvertices

nedges

Graphs

/* Initialize graph from data in a file

insert edge(graph *g, int x, int y,

edgenode *p;

p = malloc(sizeof (edgenode)) ;
p->weight = 0;

P->Yy = Y/

p->next = g->edges[x];

g->edges[x] = p;

g->degree[x] ++;

if (directed == false)
insert edge(g,y,x,true);
else

g->nedges ++;

/*
/*

/*

/*
/*
/*
/*

bool directed) {
temporary pointer */

allocate edgenode storage */

insert at head of list

NB: if undirected add
the reverse edge recursively

but directed true so we do it
only once

*/

*/
*/
*/
*/

*/

insert edge(g, 2, 1, true)

edges

NIN

degree

0

1 1

2 1

3 0

4 0

5 0

6 0
false 3
directed nvertices

nedges

insert edge(g, 1, 3, false)

degree

edges

2|

NN

false

directed

3

nvertices

nedges

/* Print a graph
print graph(graph *g) {

int i;
edgenode *p;

for (i=1; i<=g->nvertices;

printf ("%d: ",1i);

p = g->edges|[i];

while (p '= NULL) {
printf (" %d4d",p->y);
p = p->next;

}

printf ("\n") ;

Graphs

i++)

{

/* counter */
/* temporary pointer */

*/

Graphs

Consider using a well-established graph library for

Implementing graph-based applications

— LEDA Library of Efficient Data types and Algorithms
www.algorithmic-solutions.com

— Boost Graph Library

www.boost.org
www.boost.org/ libs/graph/doc

