
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 19

Graphs
– Types of graph
– Adjacency matrix representation
– Adjacency list representation
– Breadth-First Search (BFS) traversal
– Application of BFS
– Depth-First Search (DFS) traversal
– Topological Sorting
– Minimum Spanning Tree

• Prim’s Algorithm
• Kruskal’s algorithm

– Shortest Path Algorithms
• Dijkstra’s algorithm
• Floyd’s algorithm

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Traversing a Graph

• Visit every vertex and edge in a systematic way

• Key idea: mark each vertex when we first visit it &
keep track of what we have not yet completely
explored

• Each vertex will exist in one of three states
1. Undiscovered – the vertex is in its initial untouched state

2. Discovered – the vertex has been found, but we have not
yet processed all its edges

3. Processed – the vertex after we have visited all its edges

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Traversing a Graph

• Keep a record of all the vertices discovered but not yet completely
processed

• Begin with a starting vertex

• Explore each vertex

– Evaluate each edge leaving it
– If the edge goes to an undiscovered vertex

• Mark it discovered
• Add it to the list of work to do

– If the edge goes to a processed vertex, ignore it
– If the edge goes to a discovered unprocessed vertex, ignore it

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Traversing a Graph

• There are two primary graph traversal algorithms

– Breadth-first search (BFS)

– Depth-first search (DFS)

• The difference is the order in which they explore vertices

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Traversing a Graph

• The order depends completely on the container data structure used to
store the discovered but not processed vertices

– BFS uses a queue

• By storing the vertices in a FIFO queue, we explore the oldest unexplored vertices first

• Thus explorations radiate out slowly from the starting vertex

– DFS uses a stack

• By storing the vertices in a LIFO stack, we explore the vertices by diving down a path,
visiting a new neighbour if one is available, and backing up only when we are
surrounded by (i.e. connected by edges to) previously discovered vertices

• Thus explorations quickly wander away from out starting vertex

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Traversing a Graph

Breadth-first search (BFS)

Start at node 1

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Traversing a Graph

Breadth-first search (BFS)

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Traversing a Graph

Depth-first search (DFS)

Start at node 1

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Traversing a Graph

Depth-first search (DFS)

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Breadth-First Search

• Assign a direction to each edge, from discoverer vertex u to discovered
vertex v

• Since each node has exactly one parent, except for the root (i.e. start
vertex), this defines a tree on the vertices of the graph

• This tree defines the shortest path from the root to every other node in
the tree

• This makes the BFS very useful for in shortest path problems
(in unweighted graphs)

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Breadth-First Search

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Breadth-First Search

/* Breadth-First Search */

bool processed[MAXV+1]; /* which vertices have been processed */
bool discovered[MAXV+1]; /* which vertices have been found */
int parent[MAXV+1]; /* discovery relation */

/* Each vertex is initialized as undiscovered: */

initialize_search(graph *g){

int i; /* counter */

for (i=1; i<=g->nvertices; i++) {
processed[i] = discovered[i] = false;
parent[i] = -1;

}
}

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

.

.

.

.

.

.

2

2

2

2

0

0

edgesdegree

1
0

3
0false

false

false

false

false

false

discovered

false

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

44
nedgesnvertices

false

directed

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Breadth-First Search

/* Once a vertex is discovered, it is placed on a queue. */
/* Since we process these vertices in first-in, first-out order, */
/* the oldest vertices are expanded first, which are exactly those */
/* closest to the root */

bfs(graph *g, int start)
{

queue q; /* queue of vertices to visit */
int v; /* current vertex */
int y; /* successor vertex */
edgenode *p; /* temporary pointer */

init_queue(&q);
enqueue(&q,start);
discovered[start] = true;

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

false

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

1

q

yv

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = TRUE;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == FALSE) || g->directed)

process_edge(v,y);
if (discovered[y] == FALSE) {

enqueue(&q,y);
discovered[y] = TRUE;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

false

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

1
yv

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = TRUE;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == FALSE) || g->directed)

process_edge(v,y);
if (discovered[y] == FALSE) {

enqueue(&q,y);
discovered[y] = TRUE;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = TRUE;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == FALSE) || g->directed)

process_edge(v,y);
if (discovered[y] == FALSE) {

enqueue(&q,y);
discovered[y] = TRUE;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

1
yv

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = TRUE;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == FALSE) || g->directed)

process_edge(v,y);
if (discovered[y] == FALSE) {

enqueue(&q,y);
discovered[y] = TRUE;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

1
yv

p

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = TRUE;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == FALSE) || g->directed)

process_edge(v,y);
if (discovered[y] == FALSE) {

enqueue(&q,y);
discovered[y] = TRUE;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

q

31
yv

p

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

false

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

-1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

31
yv

p

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = TRUE;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == FALSE) || g->directed)

process_edge(v,y);
if (discovered[y] == FALSE) {

enqueue(&q,y);
discovered[y] = TRUE;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3

q

21
yv

p

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

false

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

-1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p

Data Structures and Algorithms for Engineers 44 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 45 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p == NULL

Data Structures and Algorithms for Engineers 46 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 47 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 48 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

3 2

q

21
yv

p == NULL

Data Structures and Algorithms for Engineers 49 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

false

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

2

q

23
yv

p == NULL

Data Structures and Algorithms for Engineers 50 Carnegie Mellon University Africa

Breadth-First Search

while (empty_queue(&q) == FALSE) {
v = dequeue(&q);
process_vertex_early(v);
processed[v] = true;
p = g->edges[v];

while (p != NULL) {
y = p->y;
if ((processed[y] == false) || g->directed)

process_edge(v,y);
if (discovered[y] == false) {

enqueue(&q,y);
discovered[y] = true;
parent[y] = v;

}
p = p->next;

}
process_vertex_late(v);

}
}

Data Structures and Algorithms for Engineers 51 Carnegie Mellon University Africa

8

2

2

2

2

0

0

4
nedgesnvertices

false

directed

edgesdegree

1
0

3
0true

true

true

false

false

false

discovered

true

false

true

false

false

false

processed

0

1

2

3

4

5

6

-1

1

1

-1

-1

-1

parent

2
0

4
0

1
0

4
0

3
0

2
0

2

q

23
yv

p

Data Structures and Algorithms for Engineers 52 Carnegie Mellon University Africa

Breadth-First Search

/* The exact behaviour of bfs depends on the functions */
/* process vertex early() */
/* process vertex late() */
/* process edge() */
/* These functions allow us to customize what the traversal does */
/* as it makes its official visit to each edge and each vertex. */
/* Here, e.g., we will do all of vertex processing on entry */
/* (to print each vertex and edge exactly once) */
/* so process vertex late() returns without action */

process_vertex_late(int v) {
}

process_vertex_early(int v){
printf("processed vertex %d\n",v);

}

process_edge(int x, int y) {
printf("processed edge (%d,%d)\n",x,y);

}

Data Structures and Algorithms for Engineers 53 Carnegie Mellon University Africa

Breadth-First Search

/* this version just counts the number of edges */

process_edge(int x, int y) {
nedges = nedges + 1;

}

Data Structures and Algorithms for Engineers 54 Carnegie Mellon University Africa

Breadth-First Search

• Finding Paths

– The parent array in bfs() is very useful for finding interesting
paths through a graph

– The vertex that discovered vertex i is defined as parent[i]

Data Structures and Algorithms for Engineers 55 Carnegie Mellon University Africa

Breadth-First Search

• Finding Paths

– Every vertex is discovered during the course of a traversal so every node
has a parent (except the root)

– The parent relation defines a tree of discovery with the initial search
node as the root of the tree

– Because vertices are discovered in order of increasing distance from the
root, this tree has a very important property

• The unique tree path from the root to each node uses the smallest number
of edges (and intermediate nodes) possible on any path from the root to that
vertex

• Thus BFS can be used to find shortest paths in an unweighted graph

Data Structures and Algorithms for Engineers 56 Carnegie Mellon University Africa

Breadth-First Search

• Finding Paths

– To reconstruct a path we follow the chain of ancestors from the
destination node x to the root

– Note we have to work backwards (we only know the parents)

– We find the path from to the root and

• Either store it and explicitly reverse it using a stack

• Or construct the path recursively (in which case the stack is implicit)

Data Structures and Algorithms for Engineers 57 Carnegie Mellon University Africa

Breadth-First Search

bool find_path(int start, int end, int parents[]) {

bool is_path;

if (end == -1) {
is_path = false; // some vertex on the path back from the end

// has no parent (not counting start)
}
else if ((start == end)) {

printf("\n%d",start);
is_path = true; // we have reached the start vertex

}
else {

is_path = find_path(start,parents[end],parents);
printf(" %d",end);

}
return(is_path);

}

Data Structures and Algorithms for Engineers 58 Carnegie Mellon University Africa

Breadth-First Search

find_path(1,4,parent)

-> find_path(1,5,parent) -> find_path(1,1,parent) -> printf(1)
printf(4) printf(5)

Data Structures and Algorithms for Engineers 59 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Identifying connected components

• A graph is connected if there is a path between any two vertices

• A connected component of an undirected graph is a maximal set
of vertices such that there is a path between every pair of vertices

• The components are separate “pieces” of the graph such that
there is no connection between the pieces

• Many complicated problems reduce to finding or counting
connected components

• How would you find and label all the components in a graph?

Data Structures and Algorithms for Engineers 60 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Two-Colouring Graphs

• The vertex-colouring problem seeks to assign a
label (or colour) to each vertex of a graph such
that no edge links any two vertices of the same
colour

• The goal is use as few colours as possible

• A graph is bipartite if it can be coloured
without conflicts using only two colours

Data Structures and Algorithms for Engineers 61 Carnegie Mellon University Africa

Breadth-First Search

Gene network

GENOME

PHENOMEDISEASOME

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

Data Structures and Algorithms for Engineers 62 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning

Data Structures and Algorithms for Engineers 63 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning

Data Structures and Algorithms for Engineers 64 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning
Represent the map of the environment as an occupancy grid

1 1

Data Structures and Algorithms for Engineers 65 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning
Represent the map of the environment as an occupancy grid

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

Data Structures and Algorithms for Engineers 66 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning
Convert this to a graph

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

Data Structures and Algorithms for Engineers 67 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning
Convert this to a graph

1 1

Data Structures and Algorithms for Engineers 68 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning
Do a BFS from the robot start position ...
To find the shortest path to all other vertices

1 1

Data Structures and Algorithms for Engineers 69 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning
Mark the path from the robot start position to the goal position on the
occupancy grid

2

2

2

2

0

1

0

2

0

1

0

2

0

0

0

2

Data Structures and Algorithms for Engineers 70 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning
Mark the path from the robot start position to the goal position on the
occupancy grid

2

2

2

2

0

1

0

2

0

1

0

2

0

0

0

2

Data Structures and Algorithms for Engineers 71 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning

Data Structures and Algorithms for Engineers 72 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning

Data Structures and Algorithms for Engineers 73 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning

Data Structures and Algorithms for Engineers 74 Carnegie Mellon University Africa

Breadth-First Search

• Applications of Breadth-First Search

– Robot path-planning

