
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 20

Graphs
– Types of graph
– Adjacency matrix representation
– Adjacency list representation
– Breadth-First Search traversal
– Depth-First Search traversal
– Topological Sorting
– Minimum Spanning Tree

• Prim’s Algorithm
• Kruskal’s algorithm

– Shortest Path Algorithms
• Dijkstra’s algorithm
• Floyd’s algorithm

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Depth-First Search

• This implementation of DFS uses the idea of a traversal time for each
vertex

• The clock ticks each time we enter or exit any vertex

• We keep track of the entry and exit time for each vertex

• These entry and exit times are useful in many applications of DFS (e.g.
topological sort; see later)

– process_vertex_early() … take action on entry
– process_vertex_late() … take action on exit

• DFS uses a stack but we can avoid using an explicit stack if we use
recursion

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Depth-First Search

• DFS partitions edges of an undirected graph into exactly two
classes

– Tree edges

– Back edges

• Tree edges discover new vertices
– Encoded in the parent relation

• Back edges link a vertex to an ancestor of the vertex being
expanded

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Depth-First Search

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Depth-First Search

/* Depth-First Search */

dfs(graph *g, int v){

edgenode *p; /* temporary pointer */
int y; /* successor vertex */

if (finished) return; /* allow for search termination */

discovered[v] = TRUE;
time = time + 1;
entry_time[v] = time;

process_vertex_early(v);

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Depth-First Search

p = g->edges[v];
while (p != NULL) {

y = p->y;
if (discovered[y] == FALSE) {

parent[y] = v;
process_edge(v,y); // not discovered: tree edge
dfs(g,y);

}
else if ((!processed[y]) // discovered but not processed: back edge

// e.g. (5,1) (5,2)
|| (g->directed)) // discovered, possibly processed, but directed edge

// also a back edge,
process_edge(v,y);

if (finished) return;
p = p->next;

}

process_vertex_late(v);
time = time + 1;
exit_time[v] = time;

processed[v] = TRUE;
}

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Depth-First Search

• Depth-First Search uses essentially the same idea as backtracking

– Exhaustively searching all possibilities by advancing if it is possible

– And backing up as soon as there is no unexplored possibility for further
advancement

– Both are most easily understood as recursive algorithms

• DFS organizes vertices by entry/exit times

• DFS classifies edges as either tree edges or back edges

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Depth-First Search

• Applications of Depth-First Search

– Finding Cycles

• If there are no back edges,
then all edges are tree edges
and no cycles exist

• Finding a back edge identifies a cycle

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Depth-First Search

• Applications of Depth-First Search

– Finding Articulation Vertices (also known as a cut node):
weakest points in a graph/network

– v is an articulation vertex if
• v Is root of the DFS traversal tree and has 2 or more children, or

• v has a child s such that there is no back edge from s or any descendent
of s to a proper ancestor of v

v

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Depth-First Search

• Applications of Depth-First Search

– Finding Articulation Vertices (also known as a cut node):
weakest points in a graph/network

– v is an articulation vertex if
• v Is root of the DFS traversal tree has 2 or more children, or

• v has a child s such that there is no back edge from s or any descendent
of s to a proper ancestor of v

v

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Depth-First Search

• Applications of Depth-First Search

– Finding Articulation Vertices (also known as a cut node):
weakest points in a graph/network

– v is an articulation vertex if
• v is the root of the DFS traversal tree & has 2 or more children, or

• v has any child s such that there is no back edge from s or any
descendent of s to a proper ancestor of v

• No back edge from 5, 8, 10, 9, 7, 6 to 1, 2; so v is an articulation vertex

1

2

3

4
5

6

8

7
9

10

1

2

3

4

5

7

9

8

10

6

v

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Depth-First Search

• Depth-First Search on Directed Graphs

– When traversing undirected graphs,
every edge is either in the depth-first
search tree or it is a back edge to
an ancestor in the tree

– For directed graphs, there are 4 depth-first search labellings

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Depth-First Search

int edge_classification(int x, int y){

/* if x is the parent of y, it’s a tree edge */
if (parent[y] == x) return(TREE);

/* if y is discovered but not processed, this means we’ve */
/* already encountered on the traversal so it’s a back edge */
if (discovered[y] && !processed[y]) return(BACK);

/* if y has been processed, and its entry time is greater than x’s */
/* then it’s a forward edge */
if (processed[y] && (entry_time[y]>entry_time[x])) return(FORWARD);

/* if y has been processed, and its entry time is less than x’s */
/* then it’s a cross edge */
if (processed[y] && (entry_time[y]<entry_time[x])) return(CROSS);

/* otherwise we have an invalid condition and it’s unclassified. */
printf("Warning: unclassified edge (%d,%d)\n",x,y);

}

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Topological Sorting

• The most important operation on directed acyclic graphs (DAGs)

• It orders the vertices on a line such that all directed edges go from left to
right

– Not possible if the graph contains a directed cycle

– It provides a ordering to process each vertex before any of its successors

– E.g. edges represent precedence constraints, such that the edge (x, y) means
job x must be done before job y

– Any topological sort defines a valid schedule

• Each DAG has at least one topological sort

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Topological Sorting

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Topological Sorting

• Topological sorting can be performed using DFS

• A directed graph is a DAG iff there are no back edges

• Labelling the vertices in the reverse order in which they are
processed (completed) finds the topological sort of a DAG

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Topological Sorting

• Why? Consider what happens to each directed edge (x, y)
as we encounter it exploring vertex x

– If y is currently undiscovered, then we start a DFS of y before we can
continue with x. Thus y is marked processed/completed before x is,
and x appears before y in the topological order

– If y is discovered but not processed/completed, then (x, y) is a back
edge, which is forbidden in a DAG

– If y is processed/completed, then it will have been so labeled before
x. Therefore, x appears before y in the topological order

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Topological Sorting

process_vertex_late(int v){
push(&sorted,v); // explicit stack for the sorted vertices

}

process_edge(int x, int y){

int class; /* edge class */

class = edge_classification(x,y);

if (class == BACK)
printf("Warning: directed cycle found, not a DAG\n");

}

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Topological Sorting

/* Perform topological sort by doing a DFS on the graph, */
/* pushing each vertex on a stack as soon as we have evaluated */
/* all outgoing edges. */
/* The top vertex on the stack always as no incoming edges from any */
/* vertex on the stack. */
/* After the DFS, repeatedly popping the vertices from the stack */
/* yields a topological ordering */

topsort(graph *g) {

int i;

init_stack(&sorted);

for (i=1; i<=g->nvertices; i++)
if (discovered[i] == FALSE)

dfs(g,i); // push(&sorted,i) when processed

print_stack(&sorted); /* report topological order */
}

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Topological Sorting

DFS(g,A)-> DFS(g,B) -> DFS(g,C) -> DFS(g,E) -> DFS(g,D) -> Push(D)
Push(E)

-> DFS(g,F) Push(F)
Push(C)

Push(B)
Push(A)

DFS(g,G)-> Push(G)

Order of discovery: A, B, C, E, D, F, G
Order of processing: D, E, F, C, B, A, G
Stack: G

A
B
C
F
E
D

Topological Sort: G, A, B, C, F, E, D

