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Lecture 20

Graphs
– Types of graph
– Adjacency matrix representation
– Adjacency list representation
– Breadth-First Search traversal
– Depth-First Search traversal
– Topological Sorting
– Minimum Spanning Tree 

• Prim’s Algorithm
• Kruskal’s algorithm

– Shortest Path Algorithms
• Dijkstra’s algorithm
• Floyd’s algorithm
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Depth-First Search

• This implementation of DFS uses the idea of a traversal time for each 
vertex

• The clock ticks each time we enter or exit any vertex

• We keep track of the entry and exit time for each vertex

• These entry and exit times are useful in many applications of DFS (e.g. 
topological sort; see later)

– process_vertex_early() … take action on entry
– process_vertex_late()  … take action on exit

• DFS uses a stack but we can avoid using an explicit stack if we use 
recursion 
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Depth-First Search

• DFS partitions edges of an undirected graph into exactly two 
classes

– Tree edges

– Back edges

• Tree edges discover new vertices 
– Encoded in the parent relation

• Back edges link a vertex to an ancestor of the vertex being 
expanded
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Depth-First Search
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Depth-First Search

/* Depth-First Search                                             */

dfs(graph *g, int v){

edgenode *p;               /* temporary pointer */
int y;                     /* successor vertex  */

if (finished) return;      /* allow for search termination */

discovered[v] = TRUE;
time = time + 1;
entry_time[v] = time;

process_vertex_early(v);
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Depth-First Search

p = g->edges[v];
while (p != NULL) {

y = p->y;
if (discovered[y] == FALSE) { 

parent[y] = v;
process_edge(v,y);     // not discovered: tree edge
dfs(g,y);

}
else if ((!processed[y])  // discovered but not processed: back edge

// e.g. (5,1) (5,2)
|| (g->directed)) // discovered, possibly processed, but directed edge

// also a back edge, 
process_edge(v,y);

if (finished) return;  
p = p->next;

}

process_vertex_late(v); 
time = time + 1;
exit_time[v] = time;

processed[v] = TRUE;
}
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Depth-First Search

• Depth-First Search uses essentially the same idea as backtracking

– Exhaustively searching all possibilities by advancing if it is possible

– And backing up as soon as there is no unexplored possibility for further 
advancement

– Both are most easily understood as recursive algorithms

• DFS organizes vertices by entry/exit times

• DFS classifies edges as either tree edges or back edges
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Depth-First Search

• Applications of Depth-First Search

– Finding Cycles 

• If there are no back edges, 
then all edges are tree edges 
and no cycles exist

• Finding a back edge identifies a cycle
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Depth-First Search

• Applications of Depth-First Search

– Finding Articulation Vertices ( also known as a cut node): 
weakest points in a graph/network

– v is an articulation vertex if
• v Is root of the DFS traversal tree and has 2 or more children, or

• v has a child s such that there is no back edge from s or any descendent 
of s to a proper ancestor of v

v
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Depth-First Search

• Applications of Depth-First Search

– Finding Articulation Vertices ( also known as a cut node): 
weakest points in a graph/network

– v is an articulation vertex if
• v Is root of the DFS traversal tree has 2 or more children, or

• v has a child s such that there is no back edge from s or any descendent 
of s to a proper ancestor of v

v
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Depth-First Search

• Applications of Depth-First Search

– Finding Articulation Vertices ( also known as a cut node): 
weakest points in a graph/network

– v is an articulation vertex if
• v is the root of the DFS traversal tree & has 2 or more children, or

• v has any child s such that there is no back edge from s or any 
descendent of s to a proper ancestor of v

• No back edge from 5, 8, 10, 9, 7, 6 to 1, 2; so v is an articulation vertex
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Depth-First Search

• Depth-First Search on Directed Graphs

– When traversing undirected graphs, 
every edge is either in the depth-first 
search tree or it is a back edge to 
an ancestor in the tree

– For directed graphs, there are 4 depth-first search labellings
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Depth-First Search

int edge_classification(int x, int y){

/* if x is the parent of y, it’s a tree edge                       */
if (parent[y] == x) return(TREE);

/* if y is discovered but not processed, this means we’ve          */
/* already encountered on the traversal so it’s a back edge        */ 
if (discovered[y] && !processed[y]) return(BACK);

/* if y has been processed, and its entry time is greater than x’s */
/* then it’s a forward edge                                        */
if (processed[y] && (entry_time[y]>entry_time[x])) return(FORWARD);

/* if y has been processed, and its entry time is less than x’s    */
/* then it’s a cross edge                                          */
if (processed[y] && (entry_time[y]<entry_time[x])) return(CROSS);

/* otherwise we have an invalid condition and it’s unclassified.   */
printf("Warning: unclassified edge (%d,%d)\n",x,y);

}
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Topological Sorting

• The most important operation on directed acyclic graphs (DAGs)

• It orders the vertices on a line such that all directed edges go from left to 
right

– Not possible if the graph contains a directed cycle

– It provides a ordering to process each vertex before any of its successors

– E.g.  edges represent precedence constraints, such that the edge (x, y) means 
job x must be done before job y

– Any topological sort defines a valid schedule

• Each DAG has at least one topological sort
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Topological Sorting
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Topological Sorting

• Topological sorting can be performed using DFS

• A directed graph is a DAG iff there are no back edges

• Labelling the vertices in the reverse order in which they are 
processed (completed) finds the topological sort of a DAG
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Topological Sorting

• Why? Consider what happens to each directed edge    (x, y) 
as we encounter it exploring vertex x

– If y is currently undiscovered, then we start a DFS of y before we can 
continue with x. Thus y is marked processed/completed before x is, 
and x appears before y in the topological order  

– If y is discovered but not processed/completed, then (x, y)  is a back 
edge, which is forbidden in a DAG

– If y is processed/completed, then it will have been so labeled before 
x. Therefore, x appears before y in the topological order  
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Topological Sorting

process_vertex_late(int v){
push(&sorted,v);    // explicit stack for the sorted vertices

}

process_edge(int x, int y){

int class;                 /* edge class */

class = edge_classification(x,y);

if (class == BACK)
printf("Warning: directed cycle found, not a DAG\n");

}
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Topological Sorting

/* Perform topological sort by doing a DFS on the graph,            */
/* pushing each vertex on a stack as soon as we have evaluated      */
/* all outgoing edges.                                              */
/* The top vertex on the stack always as no incoming edges from any */
/* vertex on the stack.                                             */
/* After the DFS, repeatedly popping the vertices from the stack    */
/* yields a topological ordering                                    */

topsort(graph *g) {

int i;

init_stack(&sorted);

for (i=1; i<=g->nvertices; i++)
if (discovered[i] == FALSE)

dfs(g,i);  // push(&sorted,i) when processed

print_stack(&sorted);       /* report topological order */
}



Data Structures and  Algorithms for Engineers 21 Carnegie Mellon University Africa

Topological Sorting

DFS(g,A)-> DFS(g,B) -> DFS(g,C) -> DFS(g,E) -> DFS(g,D) -> Push(D)
Push(E)

-> DFS(g,F)    Push(F)
Push(C)

Push(B)
Push(A)

DFS(g,G)-> Push(G)

Order of discovery:  A, B, C, E, D, F, G
Order of processing: D, E, F, C, B, A, G
Stack: G

A
B
C
F
E
D

Topological Sort:    G, A, B, C, F, E, D           


