
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 23

Algorithmic Strategies

– Classes of algorithms
– Brute force
– Divide and conquer
– Greedy algorithms
– Dynamic programming
– Combinatorial search and backtracking
– Branch and bound

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Brute Force

• Brute force is a straightforward approach to solve a problem
based on a simple formulation of problem

• Often without any deep analysis of the problem

• Perhaps the easiest approach to apply and is useful for
solving small-size instances of a problem

• May result in naïve solutions with poor performance

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Brute Force

• Some examples of brute force algorithms are:

– Computing an (a > 0, n a non-negative integer) by repetitive
multiplication: a x a x … x a
• For a more efficient approach, see

https://en.wikipedia.org/wiki/Exponentiation_by_squaring

– Computing n! by repetitive multiplication: n x n-1 x n-2, ...
• For more efficient approaches, see

http://www.luschny.de/math/factorial/FastFactorialFunctions.htm

– Sequential (linear) search

– Selection sort, Bubble sort

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Brute Force

• Maximum sub-array problem / Grenander’s Problem

– Given a sequence of integers i1, i2, …, in, find the sub-sequence with
the maximum sum

• If all numbers are negative the result is 0

– Examples:

-2, 11, -4, 13, -4, 2 has the solution 20

1, -3, 4, -2, -1, 6 has the solution 7

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Brute Force

• Maximum subarray problem: brute force solution O(n3)

int grenanderBF(int a[], int n) {
int maxSum = 0;
for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {
int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
if (thisSum > maxSum) {

maxSum = thisSum;
}

}
}
return maxSum;

}

j

0 n-1

i

i

k

j

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Brute Force

• Maximum sub-array problem

– Divide and Conquer algorithm O(n log n)

– Kadane’s algorithms O(n) … dynamic programming

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Divide and Conquer

• Divide-and conquer (D&Q)

– Given an instance of the problem

– Divide this into smaller sub-instances (often two)

– Independently solve each of the sub-instances

– Combine the sub-instance solutions to yield a solution for the original
instance

• With the D&Q method, the size of the problem instance is
reduced by a factor (e.g. half the input size)

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Divide and Conquer

• Often yield a recursive formulation

• Examples of D&Q algorithms

– Quicksort algorithm

– Mergesort algorithm

– Fast Fourier Transform

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Divide and Conquer

Mergesort

UNSORTEDSEQUENCE

UNSORTED SEQUENCE

UNSO RTED SEQU ENCE

UN SO RT ED SE QU EN CE

NU OS RT DE ES QU EN CE

NOSU DERT EQSU CEEN

DENORSTU CEEENQSU

CDEEEENNOQRSSTUU

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Divide and Conquer

void mergesort(Item a[], int l, int r) {
if (r-l <= 1) {

return;
} else {

int m = (r + l) / 2;
mergesort(a, l, m);
mergesort(a, m+1, r);
merge(a, l, m, r);

}
}

void mergesort(Item a[], int size) {
mergesort(a, 0, size-1);

}

Already
sorted?

Divide the list into
two equal parts

Sort the two
halves
recursively

Merge the sorted halves
into a sorted whole

23

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Divide and Conquer

int grenanderDQ(int a[], int l, int h) {
if (l > h) return 0; sum = 0;
if (l = h) return max(0, a[l]); int maxRight = 0;
int m = (l + h) / 2; for (int i = m + 1; i <= h; i++) {
int sum = 0; sum += a[i];
int maxLeft = 0; maxRight = max(maxRight, sum);
for (int i = m; i >= l; i--) { }

sum += a[i]; int maxL = grenanderDQ(a, l, m);
maxLeft = max(maxLeft, sum); int maxR = grenanderDQ(a, m+1, h);

} int maxC = maxLeft + maxRight;
return max(maxC, max(maxL, maxR));

}

Divide the
problem

Solve the sub-
problem

Solve the sub-problem

Solve the sub-
problems

Combine the
solutions

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Divide and Conquer

// Generic Divide and Conquer Algorithm

divideAndConquer(Problem p) {

if (p is simple or small enough) {
return simpleAlgorithm(p);

} else {

divide p in smaller instances p1, p2, ..., pn
Solution solutions[n];

for (int i = 0; i < n; i++) {
solutions[i] = divideAndConquer(pi);

}
return combine(solutions);

}

}

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

Greedy Algorithms

• Try to find solutions to problems step-by-step

– A partial solution is incrementally expanded towards a complete solution

– In each step, there are several ways to expand the partial solution:

– The best alternative for the moment is chosen, the others are discarded

• At each step the choice must be locally optimal – this is the
central point of this technique

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Greedy Algorithms

• Examples of problems that can be solved using a greedy
algorithm:

– Finding the minimum spanning tree of a graph (Prim’s algorithm)

– Finding the shortest distance in a graph (Dijkstra’s algorithm)

– Using Huffman trees for optimal encoding of information

– The Knapsack problem

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Greedy Algorithms

1l, $1

3l, $30
7l, $60

10l

8, 61

0, 0

7, 60 3, 30 1, 1

10, 90 6, 60

9, 90

10, 91

x3

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Dynamic Programming

• Dynamic programming is similar to D&Q

– Divides the original problem into smaller sub-problems

• Sometimes it is hard to know beforehand which sub-
problems are needed to be solved in order to solve the
original problem

• Dynamic programming solves a large number of sub-
problems

• … and uses some of the sub-solutions to form a solution to
the original problem

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Dynamic Programming

• In an optimal sequence of choices, actions or decisions each
sub-sequence must also be optimal:

– An optimal solution to a problem is a combination of optimal solutions
to some of its sub-problems

– Not all optimization problems adhere to this principle

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Dynamic Programming

• One disadvantage of using D&Q is that the process of
recursively solving separate sub-instances can result in the
same computations being performed repeatedly

• The idea behind dynamic programming is to avoid calculating
the same quantity twice, usually by maintaining a table of
sub-instance results

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Dynamic Programming

• The same sub-problems may reappear

• To avoid solving the same sub-problem more than once, sub-
results are saved in a data structure that is updated
dynamically

• Sometimes the result structure (or parts of it) may be
computed beforehand

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Dynamic Programming

/* fibonacci by recursion O(1.618^n) time complexity */

long fib_r(int n) {
if (n == 0)

return(0);
else

if (n == 1)
return(1);

else
return(fib_r(n-1) + fib_r(n-2));

}

fib_r(4) ® fib(3) + fib(2)
® fib(2) + fib(1) + fib(2)
® fib(1) + fib(0) + fib(1) + fib(2)
® fib(1) + fib(0) + fib(1) + fib(1) + fib(0)

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Dynamic Programming

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Dynamic Programming

#define MAXN 45 /* largest interesting n */
#define UNKNOWN -1 /* contents denote an empty cell */
long f[MAXN+1]; /* array for caching computed fib values */

/* fibonacci by caching: O(n) storage & O(n) time */

long fib_c(int n) {
if (f[n] == UNKNOWN)

f[n] = fib_c(n-1) + fib_c(n-2);
return(f[n]);

}

long fib_c_driver(int n) {
int i; /* counter */

f[0] = 0;
f[1] = 1;
for (i=2; i<=n; i++)

f[i] = UNKNOWN;
return(fib_c(n));

}

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Dynamic Programming

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Dynamic Programming

/* fibonacci by dynamic programming: cache & no recursion */
/* NB: need correct order of evaluation in the recurrence relation */
/* O(n) storage & O(n) time */

long fib_dp(int n) {
int i; /* counter */
long f[MAXN+1]; /* array to cache computed fib values */

f[0] = 0;
f[1] = 1;

for (i=2; i<=n; i++)
f[i] = f[i-1]+f[i-2];

return(f[n]);
}

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Dynamic Programming

/* fibonacci by dynamic programming: minimal cache & no recursion */
/* O(1) storage & O(n) time */

long fib_ultimate(int n) {

int i; /* counter */
long back2=0, back1=1; /* last two values of f[n] */
long next; /* placeholder for sum */

if (n == 0) return (0);

for (i=2; i<n; i++) {
next = back1+back2;
back2 = back1;
back1 = next;

}
return(back1+back2);

}

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Dynamic Programming

int grenanderDP(int a[], int n) {

int table[n+1];

table[0] = 0;

for (int k = 1; k <= n; k++)

table[k] = table[k-1] + a[k-1];

int maxSoFar = 0;

for (int i = 1; i <= n; i++)

for (int j = i; j <= n; j++) {

thisSum = table[j] - table[i-1];

if (thisSum > maxSoFar)

maxSoFar = thisSum;

}

return maxSoFar;

}

Data Structures and Algorithms for Engineers 28 Carnegie Mellon University Africa

Dynamic Programming

• There are three steps involved in solving a problem by
dynamic programming:

1. Formulate the answer as a recurrence relation or recursive
algorithm

2. Show that the number of different parameter values taken on by
your recurrence is bounded by a (hopefully small) polynomial

3. Specify an order of evaluation for the recurrence so the partial
results you need are always available when you need them

Data Structures and Algorithms for Engineers 29 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• We can find optimal solutions to many problems using
exhaustive search technique

– However, the complexity can be huge so we need to be careful

– If the complexity is O(2n) it will be feasible to consider problems
where n < 40

– If the complexity is O(n!) it will be feasible to consider problems
where n < 20

Data Structures and Algorithms for Engineers 30 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• Solving problems through the systematic search for
solutions in a (large) state space

• The general idea is to incrementally extend partial solutions
until a complete solution is obtained

S

G??
??

How do we
represent
locations?

Movement as the
transition from one
location to another

How to handle
alternatives?

How do we
know that we
have arrived?

What guides us in the
direction of our destination?

Data Structures and Algorithms for Engineers 31 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• Search is the systematic process of

– choosing one of many possible alternatives,

– saving the rest in case the alternative selected first does not lead to
the goal

• Search can be viewed as the construction and traversal of
search trees

Data Structures and Algorithms for Engineers 32 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• Characterization of the state space

– The initial state (e.g., a location)

– A set of operators which take us from one state to another state
(e.g., drive straight, turn left, …)

– A goal-test which decides when the goal is reached (e.g., comparing
locations)

• Explicit states (e.g., a specific address)

• Abstractly described states (e.g., any post office)

Data Structures and Algorithms for Engineers 33 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• Characterization of the state space

– A description of a solution (e.g., the address, the path between
locations or the moves used)

• The search path (e.g., the shortest path between your home and your
office)

• Just the final state (e.g., the post office)

Data Structures and Algorithms for Engineers 34 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• Characterization of the state space

– A cost function (e.g., time, money, distance or number of moves):
true cost for going from start to where we are now +
estimated cost for going from we are now to the nearest goal

• Search cost, the cost for concluding that a certain operator should be
used (e.g., the time it takes to ask someone for directions or thinking
about a move) +

• Path cost, the cost for using a operator (e.g., the energy it takes to walk
or time)

Data Structures and Algorithms for Engineers 35 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• Reminder of the potential size of state spaces

• Propositional satisfiability problem (SAT):

– Decide if there is an assignment to the variables of a propositional formula that
satisfies it:

– 100 variables → 2100 ~ 1030 combinations
1000 evaluations/second →
31,709,791,983,764,586,504 years required to evaluate all combinations

))()()()((3121434342 xxxxxxxxxxf +++++=

Data Structures and Algorithms for Engineers 36 Carnegie Mellon University Africa

Combinatorial Search / State Space Search

• Reminder of the potential size of state spaces

• Traveling salesman problem (TSP)

– Given a number of cities along with the cost of travel between each pair of them, find
the cheapest way of visiting all the cities exactly once and returning to the starting
point

– There are 2 identical tours for each permutation of n cities → the number of tours are
n!/(2n) = (n-1)!/2 ...
• divide by n if we don’t care where we start
• divide by 2 if we don’t care which direction we take the tour

– A 50-city TSP therefore has about 3*1062 potential solutions

Data Structures and Algorithms for Engineers 37 Carnegie Mellon University Africa

Backtracking

• A systematic method to iterate through all the possible
configurations of a search space

– All possible arrangements of object: permutations
– All possible ways of building a collection of objects: subsets
– Generation of all possible spanning trees of a graph
– Generation of all possible paths between two vertices
– …

• Exhaustive search … check each solution generated to see if is the
required solution (satisfies some optimality criterion)

• General technique

– Must be customized for each individual application

Data Structures and Algorithms for Engineers 38 Carnegie Mellon University Africa

Backtracking

• Based on the construction of a state space tree

– nodes represent states,

– root represents the initial state

– one or more leaves are goal states

– each edge represents the application of an operator

• The solution is found by expanding the tree until a goal state
is found

Data Structures and Algorithms for Engineers 39 Carnegie Mellon University Africa

Backtracking

• Examples of problems that can be solved using backtracking:

– Puzzles (e.g., eight queens puzzle, crosswords, Sudoku)

– Combinatorial optimization problems (e.g., parsing and layout
problems)

– Logic programming languages such as Icon, Planner and Prolog,
which use backtracking internally to generate answers

Data Structures and Algorithms for Engineers 40 Carnegie Mellon University Africa

Backtracking

• Generate each possible configuration exactly once

• Avoiding repetitions and not missing configurations means we must define a
systematic generation order

• Let the solution be a vector

a = (a1, a2, … an)

where each element is selected from a finite ordered set Si

– For example, a might represent a permutation and ai might be the ith element of
the permutation

– For example, a might be a subset S, and ai would be true if and only if the ith

element of the universal set is in S

– For example, a might be a sequence of moves in a game or a path in a graph,
where ai contains the ith event in the sequence

Data Structures and Algorithms for Engineers 41 Carnegie Mellon University Africa

Backtracking

– At each step, start from a partial solution

a = (a1, a2, … an)

– Try to extend it by adding another element at the end

– After extending, test whether what we have so far is a solution

– If it is, use it (e.g. check to see if it’s the best solution so far)

– If it isn’t, check to see whether it can be extended to form a complete
solution

– If it can, continue with recursion

– If it can’t, delete the last element from a and try another possibility
from that position if it exists

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa

Backtracking

• Backtracking constructs a tree of partial solutions

– Each vertex represents one partial solution

– There is an edge from one node x to node y if node y was created by
advancing from x

– Constructing the solutions can be viewed as doing a dept-first
traversal of the backtrack tree

• Backtracking ensures correctness by enumerating all
possibilities

• Backtracking ensures efficiency by never visiting a state
more than once

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa

https://www.youtube.com/watch?v=urRVZ4SW7WU

Data Structures and Algorithms for Engineers 44 Carnegie Mellon University Africa

https://www.mensjournal.com/adventure/alex-honnold-on-his-free-solo-ascent-of-yosemites-el-capitan-w486186/

Data Structures and Algorithms for Engineers 45 Carnegie Mellon University Africa

https://theknow.denverpost.com/2018/09/27/alex-honnold-climbing-tips/196513/

Data Structures and Algorithms for Engineers 46 Carnegie Mellon University Africa

Backtracking

• Backtracking as a depth-first traversal

Data Structures and Algorithms for Engineers 47 Carnegie Mellon University Africa

Backtracking

bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input) {

int c[MAXCANDIDATES]; /* candidates for next position */
int ncandidates; /* next position candidate count */
int i; /* counter */

if (is_a_solution(a,k,input))
process_solution(a,k,input);

else {
k = k+1; // k==1 => we need to choose a1, ...
construct_candidates(a,k,input,c,&ncandidates);
for (i=0; i<ncandidates; i++) {

a[k] = c[i];
make_move(a,k,input);
backtrack(a,k,input);
unmake_move(a,k,input);
if (finished) return; /* terminate early */

}
}

}

Data Structures and Algorithms for Engineers 48 Carnegie Mellon University Africa

Backtracking

• Note how recursion yields an elegant and easy
implementation of the backtracking algorithm

– The new candidates array c is allocated with each recursive
procedure call

– Consequently, the not-yet-considered extension candidates at each
position don’t interfere with each other

• The application-specific parts are dealt with in functions
1. is_a_solution(a,k,input)

2. construct_candidates(a,k,input,c,&ncandidates)

3. process_solution(a,k,input)

4. make_move(a,k,input)

5. unmake_move(a,k,input)

Data Structures and Algorithms for Engineers 49 Carnegie Mellon University Africa

Backtracking

is_a_solution(a,k,input)

– Boolean function

– Tests whether the first k elements of vector a form a complete
solution for the given problem

– The argument input allows us to pass general information to the
routine

– We could used it to specify n, the size of a target solution, e.g. when
constructing permutations or subsets of n elements

Data Structures and Algorithms for Engineers 50 Carnegie Mellon University Africa

Backtracking

construct_candidates(a,k,input,c,&ncandidates)

– Fills an array c with the complete set of possible candidates for the
kth position of a, given the contents of the first k-1 positions

– The number of candidates returned in this array is given by
ncandidates

– Again, input may be used to pass auxiliary information

Data Structures and Algorithms for Engineers 51 Carnegie Mellon University Africa

Backtracking

process_solution(a,k,input)

– Prints, counts, or otherwise processes a complete solution once it is
constructed

Data Structures and Algorithms for Engineers 52 Carnegie Mellon University Africa

Backtracking

make_move(a,k,input)

unmake_move(a,k,input)

– These functions enable us to modify a data structure in response to
the latest move

– or clean up this data structure if we decide to take back the move

– You could build such a data structure from scratch from the
solution a if required but it can be more efficient to do it this way if
the changes involved in a move can be easily undone

Data Structures and Algorithms for Engineers 53 Carnegie Mellon University Africa

Backtracking

• Many combinatorial optimization problems require the enumeration of all
subsets / permutations of some set (and testing each enumeration for
optimality / success)

• Being able to compute the number of subset / permutations is far
easier than enumerating them

– There are n! permutations of n elements

– There are 2n subsets of n elements

• Recall earlier comments on the exponential size of a state space

Data Structures and Algorithms for Engineers 54 Carnegie Mellon University Africa

Backtracking

• To construct all n! permutations

– Set up an integer array a of n cells

– The set of candidates for the ith element will be the set of elements
that have not appeared in the (i-1) elements of the partial solution,
corresponding to the first elements of the i-1 permutation

– In terms of our general backtrack algorithm

Sk = {1, …, n} - a
a is a solution whenever k = n

Data Structures and Algorithms for Engineers 55 Carnegie Mellon University Africa

Backtracking

/* Construct all permutations */

bool is_a_solution(int a[], int k, int n) {
return (k == n);

}

void construct_candidates(int a[], int k, int n, int c[], int *ncandidates) {
int i; /* counter */
bool in_perm[NMAX]; /* who is in the permutation? */

for (i=1; i<NMAX; i++) in_perm[i] = FALSE;

// we are finding candidates for a_k, a_k+1, ... a_n
// when k == 1, all candidates are valid because we haven't selected any yet
// when k == 2, all candidates except a_1 are valid
// when k == n, all candidates except a_1 .. a_n-1 are valid
for (i=1; i<k; i++) in_perm[a[i]] = TRUE;

*ncandidates = 0;
for (i=1; i<=n; i++)

if (in_perm[i] == FALSE) {
c[*ncandidates] = i;
*ncandidates = *ncandidates + 1;

}
}

NMAX must be the number of elements in the
permutation + 1 to allow for counting from 1,
rather than 0

Data Structures and Algorithms for Engineers 56 Carnegie Mellon University Africa

Backtracking

void process_solution(int a[], int k, data input) {

int i; /* counter */

for (i=1; i<=k; i++) printf(" %d",a[i]);

printf("\n");

}

void generate_permutations(int n){

int a[NMAX];

backtrack(a,0,n);

}

Data Structures and Algorithms for Engineers 57 Carnegie Mellon University Africa

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
k: 1
i: 0

backtrack(a,1,3)
k: 2
i: 0

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3)
-> process_solution(a,3,3): 1 2 3

k: 2
i: 1

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3)
-> process_solution(a,3,3): 1 3 2

1a

1 2a

1 2 3a

Backtracking

1 2 3c

F F F F F F Fin_perm

2 3c

T F F F F F Fin_perm

3c

T T F F F F Fin_perm

2 3c

T F F F F F Fin_perm 1 3a

2c

T F T F F F Fin_perm 1 3 2a

When studying this walkthrough, remember that the variable i iterates through all the candidate digits (at each
level of recursion) and the variable k identifies the position in the permutation that is currently being filled.

Data Structures and Algorithms for Engineers 58 Carnegie Mellon University Africa

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
k: 1
i: 1

backtrack(a,1,3)
k: 2
i: 0

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3)
-> process_solution(a,3,3): 2 1 3

k: 2
i: 1

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3)
-> process_solution(a,3,3): 2 3 1

2a

2 1a

2 1 3a

Backtracking

1 2 3c

F F F F F F Fin_perm

1 3c

F T F F F F Fin_perm

3c

T T F F F F Fin_perm

1 3c

T F F F F F Fin_perm 2 3a

1c

F T T F F F Fin_perm 2 3 1a

When studying this walkthrough, remember that the variable i iterates through all the candidate digits (at each
level of recursion) and the variable k identifies the position in the permutation that is currently being filled.

Data Structures and Algorithms for Engineers 59 Carnegie Mellon University Africa

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
k: 1
i: 2

backtrack(a,1,3)
k: 2
i: 0

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3)
-> process_solution(a,3,3): 3 1 2

k: 2
i: 1

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3)
-> process_solution(a,3,3): 3 2 1

3a

3 1a

3 1 2a

Backtracking

1 2 3c

F F F F F F Fin_perm

1 2c

F F T F F F Fin_perm

2c

T F T F F F Fin_perm

1 2c

F F T F F F Fin_perm 3 2a

1c

F T T F F F Fin_perm 3 2 1a

When studying this walkthrough, remember that the variable i iterates through all the candidate digits (at each
level of recursion) and the variable k identifies the position in the permutation that is currently being filled.

Data Structures and Algorithms for Engineers 60 Carnegie Mellon University Africa

Backtracking

• To construct all 2n subsets

– Set up an Boolean array a of n cells

– Element ai signifies whether the ith element of the set is in the subset

– In terms of our general backtrack algorithm

Sk = (true, false)
a is a solution whenever k = n

Data Structures and Algorithms for Engineers 61 Carnegie Mellon University Africa

Backtracking

bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input) {

int c[MAXCANDIDATES]; /* candidates for next position */
int ncandidates; /* next position candidate count */
int i; /* counter */

if (is_a_solution(a,k,input))
process_solution(a,k,input);

else {
k = k+1; // k==1 => we need to choose a1, ...
construct_candidates(a,k,input,c,&ncandidates);
for (i=0; i<ncandidates; i++) {

a[k] = c[i];
backtrack(a,k,input);
if (finished) return; /* terminate early */

}
}

}

Data Structures and Algorithms for Engineers 62 Carnegie Mellon University Africa

Backtracking

/* Construct all subsets */

bool is_a_solution(int a[], int k, int n) {

return (k == n); /* is k == n? */

}

void construct_candidates(int a[], int k, int n, int c[], int *ncandidates) {

c[0] = TRUE;

c[1] = FALSE;

*ncandidates = 2;

}

Data Structures and Algorithms for Engineers 63 Carnegie Mellon University Africa

Backtracking

/* Construct all subsets */

void process_solution(int a[], int k) {

int i; /* counter */

printf("{");

for (i=1; i<=k; i++)

if (a[i] == TRUE) printf(" %d",i);

printf(" }\n”);

}

void generate_subsets(int n) {

int a[NMAX];

backtrack(a,0,n); /* solution vector */

}

Data Structures and Algorithms for Engineers 64 Carnegie Mellon University Africa

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
k: 1
i: 0

backtrack(a,1,3)
k: 2
i: 0

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3) -> process_solution(a,3,3): {1 2 3}

k: 3
i: 1
backtrack(a,3,3) -> process_solution(a,3,3): {1 2}

k: 2
i: 1

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3) -> process_solution(a,3,3): {1 3}

k: 3
i: 1
backtrack(a,3,3) -> process_solution(a,3,3): {1}

1

1 0

a

c

1 0c

1 1a

1 0c

1 1 1a

1 0c

1 1 0a

1 0c

1 0a

Backtracking

1 0c

1 0 1a

1 0c

1 0 0a

Data Structures and Algorithms for Engineers 65 Carnegie Mellon University Africa

#define TRUE 1
#define FALSE 0

backtrack(a,0,3)
k: 1
i: 1

backtrack(a,1,3)
k: 2
i: 0

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3) -> process_solution(a,3,3): {2 3}

k: 3
i: 1
backtrack(a,3,3) -> process_solution(a,3,3): {2}

k: 2
i: 1

backtrack(a,2,3)
k: 3
i: 0
backtrack(a,3,3) -> process_solution(a,3,3): {3}

k: 3
i: 1
backtrack(a,3,3) -> process_solution(a,3,3): {}

0

1 0

a

c

1 0c

0 1a

1 0c

0 1 1a

1 0c

0 1 0a

1 0c

0 0a

Backtracking

1 0c

0 0 1a

1 0c

0 0 0a

Data Structures and Algorithms for Engineers 66 Carnegie Mellon University Africa

Backtracking

• To construct all paths in a graph

– More complicated than listing permutations or subsets

– No explicit formula that counts the number of solutions as a function
of the number of edges or vertices (it depends on the structure of
the graph)

Data Structures and Algorithms for Engineers 67 Carnegie Mellon University Africa

Backtracking

/* Construct all paths in a graph */

void construct_candidates(int a[], int k, int n, int c[], int *ncandidates) {

int i; /* counters */

bool in_sol[NMAX]; /* what’s already in the solution? */

edgenode *p; /* temporary pointer */

int last; /* last vertex on current path */

for (i=1; i<NMAX; i++) in_sol[i] = false;

for (i=1; i<k; i++) in_sol[a[i]] = true;

if (k==1) { /* always start from vertex 1 */

c[0] = 1;

*ncandidates = 1;

}

Data Structures and Algorithms for Engineers 68 Carnegie Mellon University Africa

Backtracking

else {
*ncandidates = 0;
last = a[k-1]; // last vertex included in solution
p = g.edges[last];
while (p != NULL) { // for each edge, the connected vertex is a candidate

if (!in_sol[p->y]) {
c[*ncandidates] = p->y;
*ncandidates = *ncandidates + 1;

}
p = p->next;

}
}

}

bool is_a_solution(int a[], int k, int t){

/* We report a successful path whenever a[k] = t */

return (a[k] == t);
}

void process_solution(int a[], int k) {
solution_count ++; /* count all s to t paths */

}

Data Structures and Algorithms for Engineers 69 Carnegie Mellon University Africa

Backtracking

• Pruning

– Backtracking ensures correctness by enumerating all possibilities

– Enumerating all n! permutations of n vertices of a graph and selecting
the best one certainly yields the correct algorithm to find the optimal
travelling salesman tour

• For each permutation, check to see if the tour exists in the graph (do the
edges exist?)

• If so, add all the weights and see if it is the best solution

Data Structures and Algorithms for Engineers 70 Carnegie Mellon University Africa

Backtracking

• Pruning

– But it is very wasteful to construct all the permutations first and then
analyze them later

• For example, if the search starts at vertex v1 and if (v1, v2) is not in the
graph

• The next (n-2)! permutations enumerated starting with would be a
complete waste of effort

• Much better to prune the search after (v1, v2) and continue next with (v1,
v3)

• By restricting the set of next elements to reflect only moves that are
legal / valid from the current partial configuration, we significantly
reduce the search complexity

Data Structures and Algorithms for Engineers 71 Carnegie Mellon University Africa

Backtracking

• Pruning

– Is the technique of cutting off the search the instant we have
established that a partial solution cannot be extended into a full
solution

– Combinatorial searches, when augmented with tree pruning
techniques, can be used to find the optimal solution of small
optimization problems

• The actual size depends on the problem

• Typical size limit are somewhere from 15 to 50 items

Data Structures and Algorithms for Engineers 72 Carnegie Mellon University Africa

Branch-and-Bound

• In backtracking, we used depth-first search with pruning to
traverse the state space

• We can achieve better performance for many problems
using breadth-first search with pruning

• This approach is known as branch-and-bound

– The implicit stack in depth first search is replaced by an explicit
queue in breadth first search

– If we use a priority queue, we have a best-first traversal of the state
space

Data Structures and Algorithms for Engineers 73 Carnegie Mellon University Africa

Branch-and-Bound

• Advantage of using breadth-first (or best-first) search:

– When a node (i.e. a partial solution) that is judged to be promising
(i.e. a possible candidate for a full solution) when it is first
encountered and placed in the queue, it may no longer be promising
when it is removed

– If it is no longer promising, it is discarded and the evaluation and
testing of its children (i.e. remainder of the solution) is avoided

• Branch-and-bound is by far the most widely used tool for
solving large scale NP-hard combinatorial optimization
problems

• However, it is an algorithm paradigm that has be be
customized for each specific problem type

Data Structures and Algorithms for Engineers 74 Carnegie Mellon University Africa

Branch-and-Bound

• Use bounds for the function to be optimized & the value of
the current best solution to limit the search space

