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Lecture 24

Complex Networks

— The importance of complex networks and network science

— Review of graph theory
* Euler’s theorem: the Bridges of Kdnigsberg
* Networks vs. graphs
* Degree, average degree, and degree distribution
* Bipartite networks
* Path length, BFS, Connectivity, Components
* Clustering coefficient

This lecture is based on Chapters 1 and 2 of NMetwork Science by A.-L. Barabasi
(see http:/ /barabasi.com/book/network-science])



Lecture 23

Complex Networks
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Complex Networks

Network Science

Economic Impact: From Web Search to Social Networking

“The most successful companies of the
21st century, from Google to Facebook,
Twitter, LinkedIn, Cisco, Apple and Akamai,
base their technology and business model

on networks”

A.-L. Barabasi



Complex Networks

Network Science

Health: From Drug Design to Metabolic Engineering

namre
REVIEWS

GENETICS

nature
REVIEWS

GENETICS




Complex Networks

Network Science

Security: Fighting Terrorism
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Complex Networks

Network Science

Epidemics: from Forecasting to Halting Deadly Viruses

Feb 18 2009

The predicted spread of the H1N1 epidemics during 2009, representing the
first successful real-time prediction of a pandemic



Complex Networks

Network Science

Neuroscience: Mapping the Brain

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

A 3D wiring
diagram for
the mouse
brain

B
1

1

AGEING

EPIGENETIC
CLOCKWORK
DNA methylation
marks the years
PAGE 68
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Complex Networks

Network Science

Q‘\ Human Brain Project




Complex Networks

Network Science

Management: Uncovering the Internal Structure of an Organization
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Complex Networks

Network Science




Complex Networks

Network Science

The Rise of Networks:

The frequency of use of the words evo/ution, guantum, and network in books
since 1880




Complex Networks

Network Science

"Network science is an enabling platform, offering novel
tools and perspectives for a wide range of scientific
problems, from social networking to drug design.”

A.-L. Barabasi



Complex Networks

Network Science

"A key discovery of network science is that the architecture of
networks emerging in various domains of science, nature, and
technology are similar to each other,

a consequence of being governed by the same organizing principles.

Consequently we can use a common set of mathematical tools to
explore these systems.”

A.-L. Barabasi



Complex Networks
The origin of graph theory: the Bridges of Konigsberg




Complex Networks
The origin of graph theory: the Bridges of Konigsberg

KONINGSBERGA

Can one walk across the
seven bridges and never
cross the same bridge

twice?



Complex Networks
The origin of graph theory: the Bridges of Konigsberg

C
-

¢
[

A
\&J "

/ -
s K Can one walk across the
seven bridges and never
| | \ cross the same bridge
a b
twice?
®

1735: Euler’s theorem:
(a) If a graph has more than two nodes of odd degree, there is no path.

(b)  If a graphis connected and has no odd degree nodes, it has at least one path.



Complex Networks
Networks and Graphs

= components: nodes, vertices N

= interactions: links, edges L

= system: network, graph (N,L)



Complex Networks
Networks and Graphs

Networks or Graphs?

In the scientific literature the terms network and graph are used interchangeably:

Network Science Graph Teory
Network Graph
Node Vertex

Link Edge

network often refers to real systems

graph: mathematical representation of a network



Complex Networks

Undirected

Links: undirected (symmetrical)

Graph:

Undirected links :
coauthorship links
Actor network
protein interactions

Networks and Graphs

Directed

Links: directed (arcs).

Digraph = directed graph:

Directed links :
URLs on the www
phone calls
metabolic reactions

An undirected
link is the
superposition of
two opposite
directed links.



NETWORK

Internet

WWW

Power Grid

Mobile Phone Calls
Email

Science Collaboration
Actor Network
Citation Network

E. Coli Metabolism

Protein Interactions

Complex Networks

Networks and Graphs

NODES

Routers

Webpages

Power plants, transformers
Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

LINKS

Internet connections
Links

Cables

Calls

Emails
Co-authorship
Co-acting

Citations

Chemical reactions

Binding interactions

DIRECTED

UNDIRECTED

Undirected
Directed
Undirected
Directed
Directed
Undirected
Undirected
Directed
Directed

Undirected

192,244
325,729
4,941
36,595
57,194
23133
702,388
449,673
1,039

2,018

609,066
1,497,134
6,594
91,826
103,731
93,439
29,397,908
4,689,479
5,802

2,930




Undirected

Directed

Complex Networks

Degree, Average Degree, and Degree Distribution

Node degree: the number of links connected to the node.

In directed networks we can define an in-degree and out-degree.

The (total) degree is the sum of in- and out-degree.

k=2 k=1 k.=3

Source: a node with ki'= 0; Sink: a node with kout= 0.



Complex Networks

Degree, Average Degree, and Degree Distribution

BRIEF STATISTICS REVIEW

Four key quantities characterize
a sample of Nvalues x, ..., x,;:

Average (mean):

XX+ tx, 1
x)= =— > x
(x) N NZ‘

The nt*" moment:

Standard deviation:

Distribution of x:

1
p= WZ%,.

i

where p_follows

2P =1 ([ poax=1)

1



Undirected

Directed

Complex Networks

Degree, Average Degree, and Degree Distribution

O——
(k)= 2ok @;%L

C/j N —the number of nodes in the graph

D in 1 - in out 1 - out in out
()= LSk, ()= LS e, (k)= ()

A~
o
~~
I

L
N



NETWORK

Internet

Www

Power Grid

Mobile Phone Calls
Email

Science Collaboration
Actor Network
Citation Network

E. Coli Metabolism

Protein Interactions

Complex Networks

Degree, Average Degree, and Degree Distribution

NODES

Routers

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists
Actors
Paper
Metabolites

Proteins

LINKS

Internet connections
Links

Cables

Calls

Emails
Co-authorship
Co-acting

Citations

Chemical reactions

Binding interactions

DIRECTED
UNDIRECTED

Undirected
Directed
Undirected
Directed
Directed
Undirected
Undirected
Directed
Directed

Undirected

192,244,
325,729
4,941
36,595
57194
23,133
702,388
449,673
1,039
2,018

609,066
1,497,134
6,594
91,826
103,731
93,439
29,397,908
4,689,479
5,802

2,930

(k)

6.33
4.60

2.67
2.51
1.81
8.08
83.71
10.43
5.58
2.90

Network Science: Graph Theory



Complex Networks

Degree, Average Degree, and Degree Distribution

Degree distribution
P(k): probability that a
randomly chosen node
has degree k

Nk = # nodes with degree k

Pk)=Nk/N = plot

0
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O
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Complex Networks

Degree, Average Degree, and Degree Distribution
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Complex Networks

Degree, Average Degree, and Degree Distribution

Discrete Representation: p, is the probability that a node has degree «.

Continuum Description: p(k) is the pdf of the degrees, where

]T p(k)dk

ky

represents the probability that a node’s degree is between k; and k.

Normalization condition:

D=1 | prar =1

K.

min

where K,,;, iS the minimal degree in the network.



Complex Networks

Adjacency Matrix Representation

S~ [S

—1 if there is a link between node i and j

AZJ O if nodes i and j are not connected to each

other.
D00 Lo o
Az“: Aij:
J 0 0 0 1 0 0 0 1
1 0 0 O

1 11 0

Note that for a directed graph (right) the matrix is not symmetric.

A;; = 1 if there is a link pointing from node j and i

A;; = 0 if there is no link pointing from j to i



Complex Networks

Adjacency Matrix Representation
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Complex Networks

Adjacency Matrix Representation

Or@y O - O




Complex Networks

Real Networks are Sparse

The maximum number of links a network
of N nodes can have is: ; :(NJ: N(N 1)

2 2 ¢

A graph with degree L =L, is called a complete graph,
and its average degree is (k) = N-1



Complex Networks

Real Networks are Sparse

Most networks observed in real systems are sparse:

L<< L,

or

(k) << N-1

WWW (ND Sample): N=325,729; L=14 106 L =10!2 <k>=4.51
Protein (S. Cerevisiae): N= 1,870; L=4470 L =107 <k>=2.39
Coauthorship (Math): N= 70,975; L=210° L ..=3101" <k>=39

Movie Actors: N=212,250; L=6 10° L. ..=1.8103 <k>=28.78

max

max

(Source: Albert, Barabasi, RMP2002)



Complex Networks

Real Networks are Sparse



Complex Networks
Bipartite Networks

A bipartite graph (or bigraph] is a graph whose nodes can be divided into two
disjoint sets Jand V'such that every link connects a node in UJto one in I/ that is,

{/and lVare independent sets.

Projection V

A Examples:

Hollywood actor network
B Collaboration networks
Disease network (diseasome)



http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)

Complex Networks
Bipartite Networks

Orolaryngeal cancer

Li Fraumeni syndrome

P CFGFRI> G E N OM E Sliims fumar Juvenile polyposis Li Fraumeni syndrome
C_NF1_2 I - TN Prostate cancer
— / \ Orolaryngeal cancer
\ { .
|\ BRCA2 ) CBRIP1Y y TP53 | FPolyposis -
& 7 T A Dy | Colon cancer Melnoma ilms tumor
NS @_Elé-l_;ﬁ_ﬁi- ) Prostate cancer
(PIK3CAJ Peuiz-Jeghers syndrome
AéFi-AFA' Leukemia Fanconi anemia
‘BRAF GTNNET) :
= AL ‘ Melnoma
'LS__Mﬁq“/ Pancreatic cancer
.y it ¢ - - Breast cancer
‘CHEK2> §LC22A1B =Rl COClE ' {Adrenal cortical
" carcinoma
):(:F&‘EC_EZ:B_ BRAF lj’ancreaﬁc cancer — I
{CCND1> \ SUkemis Bladder cancer
T¥// i\ ¥ Bladder cancer \ 1 /. _Stomach cancer
{ STK11 ) -
ol e CDKN2A)
/ X s Colon cancer | Lung cancer
. KRAS ‘| Breast cancer T

Histiocytoma !

[_Histiocyloma ] - e
| Hepatic adenoma
Lung cancer | | Pa

Gene network

s :{_‘ Polyposis -
: Tps;xzv' ;—lepalil: adenoma D I sease n etwo r k
\ )
,’.’.T’:,/. Juvenile polyposis
STK11

AAAAAAAA Stomach cancer

Adrenal corfical carcinoma

Peutz-Jeghers syndrome

Goh, Cusick, Valle, Childs, Vidal & Barabasi, PNAS (2007)



Complex Networks
Bipartite Networks

Dicorder €
Disorder C

@ Bone

@ Cancer
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Complex Networks
Paths

A path is a sequence of nodes in which each node is adjacent to the next one

P, of length n between nodes iy and i, is an ordered collection of n+1 nodes and 7 links
P, ={i,i,i,,....0,} P = {(i, i) {10,y 05) LT, .1, )}
a. b.

Sherif Sakr.zip

The path shown in orange in (a) follows the route 1-2—5—7—4—6, hence its length is n = 5.

The network diameter is the largest distance in the network, being dmgx = 3 here.



Complex Networks
Paths - Breadth-First Search

Distance between node 0 and node 4:

1.Start at O.

Network Science: Graph Theory

Data Structures and Algorithms for Engineers 42 Carnegie Mellon University Africa



Complex Networks
Paths - Breadth-First Search

Distance between node 0 and node 4:

1.Start at 0.
2.Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue.

Network Science: Graph Theory

Data Structures and Algorithms for Engineers 43 Carnegie Mellon University Africa



Complex Networks
Paths - Breadth-First Search

Distance between node 0 and node 4:

1.Start at 0.

2.Find the nodes adjacent to 0. Mark them as at distance 1. Put them in a queue.
3.Take the first node out of the queue. Find the unmarked nodes adjacent to it in the
graph. Mark them with the label of 2. Put them in the queue.




Complex Networks
Paths - Breadth-First Search

Distance between node 0 and node 4:

1.Repeat until you find node 4 or there are no more nodes in the queue.
2.The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity.

@\« T
(—Gr—> (0—1 =

(3——2)
(2)
(ay—3, © (3~

00 (3) (4)




Complex Networks
Paths

Diameter: d,, . the maximum distance between any pair of nodes in the graph.

max

Average path length/distance, {d), for a connected graph:
<d> = ’ where d;; is the distance from node i to node j

In an undirected graph d;; =d;;, so we only need to count them once:

Jr’

(@)=—— X,

max i, j>i



Complex Networks
Paths

Shortest Path

The path with the shortest
length between two nodes
(distance)



Complex Networks
Paths

Diameter Average Path Length

(Lo +liss + lisat
+ 15 +la3 + o+
+lo 5+ 1334 + I35+
+ l45) /10 =1.6

l154 =3

The longest shortest path in The average of the shortest paths for
a graph all pairs of nodes.



Complex Networks
Paths

Cycle Self-avoiding Path

A path with the same start A path that does not intersect
and end node. itself.



Complex Networks
Paths

Eulerian Path Hamiltonian Path

A path that traverses each A path that visits each
link exactly once. node exactly once.



Complex Networks
Connectivity & Components: Undirected Graphs

Connected (undirected] graph: any two vertices can be joined by a path.
A disconnected graph is made up by two or more connected components.

A Largest Component:
Giant Component

c
D Fé = F c
F
. i>) F The rest: Isolates

G

Bridge: if we erase it, the graph becomes disconnected.



Complex Networks

Connectivity & Components: Directed Graphs

Strongly connected directed graph: has a path from each node to every other node
and vice versa (e.g. AB path and BA path].

Weakly connected directed graph: it is connected if we disregard the

edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.

In-component: nodes that can reach the scc,
Out-component: nodes that can be reached from the scc.



Complex Networks

Connectivity & Components: Directed Graphs

Finding the Connected Components of a Network

« Start from a randomly chosen node i and perform a BFS

Label all nodes reached this way with n = 1.

« If the total number of labeled nodes equals N, then the network is
connected. If the number of labeled nodes is smaller than N, the
network consists of several components. To identify them, proceed to
step 3.

« Increase the label n — n + 1. Choose an unmarked node j, label it

with n. Use BES to find all nodes reachable from j, label them all with n.
Return to step 2.




Complex Networks

Clustering Coefficient

Local clustering coefficient. what fraction of your neighbors are connected?

2L,

Ci = 70D

L, represents the number of links between the k;neighbors of node i

C; measures the network’s local link density: the more densely interconnected the
neighborhood of node i, the higher is its local clustering coefficient. Ci in [0,1]

C;=1/2 C; =0



Complex Networks

Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

N
1
(C) = N Z C;
i=1
(C) is the probability that two neighbors of a randomly selected node link to each
other.

13
= «— 23 [1.31
(C) 1 0.310

2/3




Complex Networks

Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

(C) is the probability that two neighbors of a randomly selected node link to each
other.

C, = 2L S Qx1)/(4x3)=1/6

ki(ki—1

13
= «— 23 [1.31
(C) 1 0.310

2/3




Complex Networks

Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

N
1
(C) = N Z C;
i=1
(C) is the probability that two neighbors of a randomly selected node link to each
other.

2L, ; =>2x2)/3x2)=4/6=2/3

T kitki—1




Complex Networks

Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

N
1
(C) = N Z C;
i=1
(C) is the probability that two neighbors of a randomly selected node link to each
other.

21,

— C =



Complex Networks

Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

N
|
(C) =~ Zlci
1=
(C) is the probability that two neighbors of a randomly selected node link to each
other.
2L 0
Ci = T 0 o 13
(C) = == ~0.310

=2x2)/4x3)=4/12=1/3 3 42
\1/3 2/3




Complex Networks

Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

= (1/7) x ((1/6) + (1/3) + (2/3) + (1/1))

N
— 1 C = (/7) x ((1/6) + (2/6) + (4/6) + (6/6))
<C> N ZIC’ =(13/42)

1=

(C) is the probability that two neighbors of a randomly selected node link to each
other.

13
= «— 23 [1.31
(C') 1 0.310

2/3




Complex Networks

Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

3XNumberOfTriangles

CA=

NumberOf ConnectedTriples




Complex Networks

Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

3XNumberOfTriangles

CA=

NumberOf ConnectedTriples

Triangle




Complex Networks

Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

3XNumberOfTriangles

CA=

NumberOf ConnectedTriples

Triangle




Complex Networks

Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

3XNumberOfTriangles

CA=

NumberOf ConnectedTriples

Connected triple




Complex Networks

Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

3XNumberOfTriangles
NumberOf ConnectedTriples

CA=

3x2)/(10+6)=(6/16)=3/8

N

closed triples

open triples




10 open triples

6 closed triples

Complex Networks

Clustering Coefficient



Complex Networks

Three Central Quantities in Network Science

'L " T4

L 452 103

f C’muz— 2, |
Degree distribution: p(k)  p,
Path length: (d)

Clustering coefficient: C. = 2L




Complex Networks

Case Study: Protein-Protein Interaction Network




Complex Networks

Case Study: Protein-Protein Interaction Network

a. ) I o T —
. is @
e £ [ . Undirected network
e N=2,018 proteins as nodes
o - hubs 1 L=2,930 binding interactions as links.
I o l&( Average degree <k>=2.90.
107 3 %0
1074100 ;;1 162
k
d. 109 — T
i Not connected: 185 components
i 1 the largest (giant component) 1,647
- - e 1 nodes
L 7 *% ]
%




Complex Networks

Case Study: Protein-Protein Interaction Network

b. 100

E pi is the probability that a
S node has degree k
101 F o
- " Nk = # nodes with degree k
®
! i =3 )
S:L 104 [ ] hu bS ‘
' “»
@
w5 1 ®
103 &
Y
104 ¢ +l :
10" 10! 104



Complex Networks

Case Study: Protein-Protein Interaction Network

C. 0.25 -

0.2 E
: d. =14
o E (d)=5.61
~ ' =5.
= :
0.1 :
0.05 E




Complex Networks

Case Study: Protein-Protein Interaction Network

d. 100 r L L l""'ll Ll T I’Illl"l L L] I""T

- '.'o'. d Ci=1/2
— L] -
Py ~.. &
= | X _ e
(J - e % . C =
: ® ] k;(k; —1)
S : (C) =0.12
10 pil B ETIT] B S S R T T] B S e E T
10° 101 102 103



