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Lecture 24

Complex Networks 

– The importance of complex networks and network science

– Review of graph theory
• Euler’s theorem: the Bridges of Königsberg
• Networks vs. graphs
• Degree, average degree, and degree distribution
• Bipartite networks
• Path length, BFS, Connectivity, Components
• Clustering coefficient

This lecture is based on Chapters 1 and 2 of Network Science by A.-L. Barabási
(see http://barabasi.com/book/network-science)
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Lecture 23

Complex Networks

– Communities
• Fundamental Hypothesis & Connectedness and Density Hypothesis
• Strong and weak communities
• Graph partitioning & Community detection

– Hierarchical clustering
– Girvan-Newman Algorithm
– Modularity
– Random Hypothesis
– Maximum Modularity Hypothesis
– Greedy algorithm for community detection by maximizing modularity

• Overlapping communities
– Clique percolation algorithm and CFinder

This lecture is based on Chapters 9 of Network Science by A.-L. Barabási
(see http://barabasi.com/book/network-science)
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Lecture 22

Complex Networks

– The importance of complex networks and network science
– The origin of graph theory: the Bridges of Konigsberg
– Review of graph theory
– Communities

This lecture is based on Chapters 2-9 of Network Science by A.-L. Barabási
(see http://barabasi.com/book/network-science)
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Complex Networks
Network Science

Economic Impact: From Web Search to Social Networking

“The most successful companies of the 
21st century, from Google to Facebook, 
Twitter, LinkedIn, Cisco, Apple and Akamai, 
base their technology and business model 
on networks”

A.-L. Barabási
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Complex Networks
Network Science

Health: From Drug Design to Metabolic Engineering
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Complex Networks
Network Science

Security: Fighting Terrorism

This diagram was designed during the Afghan war in 2012 to portray the American 
operational plans in Afghanistan
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Complex Networks
Network Science

Epidemics: from Forecasting to Halting Deadly Viruses

The predicted spread of the H1N1 epidemics during 2009, representing the 
first successful real-time prediction of a pandemic
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Complex Networks
Network Science

Neuroscience: Mapping the Brain
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Complex Networks
Network Science

Neuroscience: Mapping the Brain
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Complex Networks
Network Science

Management: Uncovering the Internal Structure of an Organization
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Complex Networks
Network Science

Science
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Complex Networks
Network Science

The Rise of Networks: 
The frequency of use of the words evolution, quantum, and network in books 

since 1880



Data Structures and  Algorithms for Engineers 14 Carnegie Mellon University Africa

Complex Networks
Network Science

“Network science is an enabling platform, offering novel 
tools and perspectives for a wide range of scientific 
problems, from social networking to drug design.”

A.-L. Barabási
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Complex Networks
Network Science

“A key discovery of network science is that the architecture of 
networks emerging in various domains of science, nature, and 
technology are similar to each other, 

a consequence of being governed by the same organizing principles. 

Consequently we can use a common set of mathematical tools to 
explore these systems.”

A.-L. Barabási
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Complex Networks
The origin of graph theory: the Bridges of Königsberg
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Can one walk across the 
seven bridges and never 
cross the same bridge 

twice?    

Complex Networks
The origin of graph theory: the Bridges of Konigsberg
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Can one walk across the 
seven bridges and never 

cross the same bridge 
twice?    

1735: Euler’s theorem:

(a) If a graph has more than two nodes of odd degree, there is no path. 

(b) If a graph is connected and has no odd degree nodes, it has at least one path.

Complex Networks
The origin of graph theory: the Bridges of Königsberg
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Complex Networks
Networks and Graphs

Network Science: Graph Theory 

§ components: nodes, vertices N

§ interactions:  links, edges L

§ system:  network, graph (N,L)
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Complex Networks
Networks and Graphs

network often refers to real systems

graph: mathematical representation of a network
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Complex Networks
Networks and Graphs

Links: undirected (symmetrical) 

Graph:

Directed links :
URLs on the www
phone calls 
metabolic reactions

Network Science: Graph Theory 

Undirected Directed

A

B

D

C

L

MF

G

H

I

Links:  directed (arcs). 

Digraph = directed graph:

Undirected links :
coauthorship links
Actor network
protein interactions

An undirected 
link is the 
superposition of 
two opposite 
directed links.

A
G

F

B
C

D

E
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Complex Networks
Networks and Graphs

NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.33

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90



Data Structures and  Algorithms for Engineers 23 Carnegie Mellon University Africa

Complex Networks
Degree, Average Degree, and Degree Distribution

Node degree: the number of links connected to the node.

� 

kB = 4

U
nd
ire
ct
ed

In directed networks we can define an in-degree and out-degree. 

The (total) degree is the sum of in- and out-degree.

Source: a node with kin= 0; Sink: a node with kout= 0.

2k inC = 1koutC = 3=Ck
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Complex Networks
Degree, Average Degree, and Degree Distribution

Network Science: Graph Theory 

8

DEGREE, AVERAGE DEGREE,
AND DEGREE DISTRIBUTION

SECTION 2.3

A key property of each node is its degree, representing the number of 
links it has to other nodes. The degree can represent the number of mobile 
phone contacts an individual has in the call graph (i.e. the number of dif-
ferent individuals the person has talked to), or the number of citations a 
research paper gets in the citation network. 

Degree

We denote with ki the degree of the ith node in the network. For exam-
ple, for the undirected networks shown in Figure 2.2 we have k1=2, k2=3, 
k3=2, k4=1. In an undirected network the total number of links, L, can be 
expressed as the sum of the node degrees: 

         
      .

Here the 1/2 factor corrects for the fact that in the sum (2.1) each link is 
counted twice. For example, the link connecting the nodes 2 and 4 in Figure 
2.2 will be counted once in the degree of node 1 and once in the degree of 
node 4. 

Average Degree

An important property of a network is its average degree (BOX 2.2), which 
for an undirected network is

         
    

In directed networks we distinguish between incoming degree, ki
in, rep-

resenting the number of links that point to node i, and outgoing degree,        
ki

out, representing the number of links that point from node i to other 
nodes. Finally, a node’s total degree, ki, is given by

         
    

For example, on the WWW the number of pages a given document 
points to represents its outgoing degree, kout, and the number of docu-
ments that point to it represents its incoming degree, kin. The total number 

GRAPH THEORY

(2.1)

(2.2)

(2.3)

BOX 2.2
BRIEF STATISTICS REVIEW

Four key quantities characterize 
a sample of N values x1, ... , xN : 

Average (mean):

The nth moment:
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DEGREE, AVERAGE DEGREE,
AND DEGREE DISTRIBUTION

SECTION 2.3
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Complex Networks
Degree, Average Degree, and Degree Distribution

N – the number of nodes in the graph
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Network Science: Graph Theory 
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Complex Networks
Degree, Average Degree, and Degree Distribution

Network Science: Graph Theory 

NETWORK NODES LINKS N L kDIRECTED
UNDIRECTED

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

Webpages

Power plants, transformers

Subscribers

Email addresses

Scientists

Actors

Paper

Metabolites

Proteins

Links

Cables

Calls

Emails

Co-authorship

Co-acting

Citations

Chemical reactions

Binding interactions

Directed

Undirected

Directed

Directed

Undirected

Undirected

Directed

Directed

Undirected

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

Internet Routers Internet connections Undirected 192,244 609,066 6.33

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.90
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Complex Networks
Degree, Average Degree, and Degree Distribution

Degree distribution 
P(k): probability that a
randomly chosen node 

has degree k

Nk = # nodes with degree k

P(k) = Nk / N     ➔ plot
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Complex Networks
Degree, Average Degree, and Degree Distribution

The degree distribution has taken a central role in net-
work theory following the discovery of scale-free networks 
(Barabási & Albert, 1999). Another reason for its impor-
tance is that the calculation of most network properties re-
quires us to know pk. For example, the average degree of a 
network can be written as

      

We will see in the coming chapters that the precise func-
tional form of pk determines many network phenomena, 
from network robustness to the spread of viruses.

∑=
=

∞

k kpk
k 0

Image 2.4a
Degree distribution.

The degree distribution is defined as the pk = Nk /N ratio, where Nk denotes 
the number of k-degree nodes in a network. For the network in (a) we 
have N = 4 and p1 = 1/4 (one of the four nodes has degree k1 = 1), p2 = 
1/2 (two nodes have k3 = k4 = 2), and p3 = 1/4 (as k2 = 3). As we lack nodes 
with degree k > 3, pk = 0 for any k > 3. Panel (b) shows the degree distri-
bution of a one dimensional lattice. As each node has the same degree k = 
2, the degree distribution is a Kronecker’s delta function pk = H(k - 2).

Image 2.4b
  

In many real networks, the node degree can vary considerably. For exam-
ple, as the degree distribution (a) indicates, the degrees of the proteins in 
the protein interaction network shown in (b) vary between k=0 (isolated 
nodes) and k=92, which is the degree of the largest node, called a hub. 
There are also wide differences in the number of nodes with different 
degrees: as (a) shows, almost half of the nodes have degree one (i.e. 
p1=0.48), while there is only one copy of the biggest node, hence p92 = 1/
N=0.0005.  (c) The degree distribution is often shown on a so-called log-
log plot, in which we either plot log pk in function of log k, or, as we did in 
(c), we use logarithmic axes. 

DEGREE, AVERAGE DEGREE, AND DEGREE DISTRIBUTION | 29
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Complex Networks
Degree, Average Degree, and Degree Distribution

Discrete Representation: pk is the probability that a node has degree k. 

Continuum Description:   p(k) is the pdf of the degrees, where

represents the probability that a node’s degree is between k1 and k2. 

Normalization condition:

where Kmin is the minimal degree in the network.

� 

p(k)dk
k1

k2

∫

� 

pk =1
0

∞

∑

� 

p(k)dk
Kmin

∞

∫ =1

Network Science: Graph Theory 
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Complex Networks
Adjacency Matrix Representation

Aij=1 if there is a link between node i and j
Aij= 0 if nodes i and j are not connected to each 
other.

Note that for a directed graph (right) the matrix is not symmetric.

4

2 3

1
2 3

1

4

Aij = 1

Aij = 0

if there is a link pointing from node j and i

if there is no link pointing from j to i

Aij =

0

BB@

0 0 0 0
1 0 0 1
0 0 0 1
1 0 0 0

1

CCAAij =

0

BB@

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

1

CCA
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Complex Networks
Adjacency Matrix Representation
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Complex Networks
Adjacency Matrix Representation

a    b    c    d    e    f    g    h

a 0    1    0    0    1    0    1    0

b 1    0    1    0    0    0    0    1

c 0    1    0    1    0    1    1    0

d 0    0    1    0    1    0    0    0

e 1    0    0    1    0    0    0    0

f 0    0    1    0    0    0    1    0

g 1    0    1    0    0    0    0    0

h 0    1    0    0    0    0    0    0

b

e

g

a

c

f

h d
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Complex Networks
Real Networks are Sparse

The maximum number of links a network 
of N nodes can have is:

� 

Lmax =
N
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = N(N −1)

2

A graph with degree L = Lmax is called a complete graph, 
and its average degree is ⟨k⟩ = N-1
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Complex Networks
Real Networks are Sparse

Most networks observed in real systems are sparse: 

L <<  Lmax
or

⟨k⟩ << N-1

WWW (ND Sample): N=325,729; L=1.4 106 Lmax=1012 <k>=4.51
Protein (S. Cerevisiae): N=    1,870; L=4,470 Lmax=107 <k>=2.39 
Coauthorship (Math): N=  70,975; L=2 105 Lmax=3 1010 <k>=3.9
Movie Actors: N=212,250; L=6 106 Lmax=1.8 1013 <k>=28.78

(Source: Albert, Barabasi, RMP2002)

Network Science: Graph Theory 
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Complex Networks
Real Networks are Sparse
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Complex Networks
Bipartite Networks

A bipartite graph (or bigraph) is a graph whose nodes can be divided into two 
disjoint sets U and V such that every link connects a node in U to one in V; that is, 
U and V are independent sets. 

Examples:

Hollywood actor network
Collaboration networks
Disease network (diseasome)

Network Science: Graph Theory  

http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)
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Complex Networks
Bipartite Networks

Gene network

GENOME

PHENOMEDISEASOME  

Disease network

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)
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Complex Networks
Bipartite Networks

Human disease network
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Complex Networks
Paths

A path is a sequence of nodes in which  each node is adjacent to the next one

Pi0,in of length n between nodes i0 and in is an ordered collection of n+1 nodes and n links 

� 

Pn = {i0,i1,i2,...,in}

� 

Pn = {(i0 ,i1),(i1,i2 ),( i2 ,i3 ),...,( in−1,in )}
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Complex Networks
Paths – Breadth-First Search

Distance between node 0 and node 4:

1.Start at 0.

Network Science: Graph Theory Network Science: Graph Theory 

1 11

1

2

2

22

2

3

3

3

3

3

3

3

3

44

4

4

4

4

4

4

0
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Complex Networks
Paths – Breadth-First Search

Network Science: Graph Theory 

1 11

1

2

2

22

2

3

3

3

3

3

3

3

3

44

4

4

4

4

4

4

Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 1. Mark them as at distance 1. Put them in a queue.

0 11

1
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Complex Networks
Paths – Breadth-First Search

Network Science: Graph Theory 

1 11

1

2

2

22

2

3

3

3

3

3

3

3

3

44

4

4

4

4

4

4

Distance between node 0 and node 4:
1.Start at 0.
2.Find the nodes adjacent to 0. Mark them as at distance 1. Put them in a queue.
3.Take the first node out of the queue. Find the unmarked nodes adjacent to it in the 
graph. Mark them with the label of 2. Put them in the queue.

Network Science: Graph Theory 

0 11

1

2

2

22

2

Network Science: Graph Theory 

1

1
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Complex Networks
Paths – Breadth-First Search

Distance between node 0 and node 4:

1.Repeat until you find node 4  or there are no more nodes in the queue.
2.The distance between 0 and 4 is the label of 4 or, if 4 does not have a label, infinity.

Network Science: Graph Theory 

0 11

1

2

2

22
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Complex Networks
Paths

Diameter: dmax the maximum distance between any pair of nodes in the graph. 

Average path length/distance, ⟨d⟩ ,  for a connected graph:

where dij is the distance from node i to node j

In an undirected graph dij =dji , so we only need to count them once:

� 

d ≡
1

2Lmax
dij

i, j≠ i
∑

� 

d ≡
1
Lmax

dij
i, j> i
∑
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Complex Networks
Paths

Network Science: Graph Theory 

2 5

43

1

l1!4

l1!4

l1!5

Shortest Path 

l1!5 = 2

l1!4 = 3

The path with the shortest 
length between two nodes 

(distance) 
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Complex Networks
Paths

2 5

43

1

Diameter

l1!4 = 3

2 5

43

1

Average Path Length

(l1!2 + l1!3 + l1!4+

+ l1!5 + l2!3 + l2!4+

+ l2!5 + l3!4 + l3!5+

+ l4!5) /10 = 1.6

The longest shortest path in 
a graph

The average of the shortest paths for 
all pairs of nodes.
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Complex Networks
Paths

2 5

43

1
Cycle

2 5

43

1
Self-avoiding Path

A path with the same start 
and end node. 

A path that does not intersect 
itself.
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Complex Networks
Paths

2 5

43

1

2 5

43

1
Eulerian Path Hamiltonian Path

A path that visits each 
node exactly once.

A path that traverses each 
link exactly once.
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Complex Networks
Connectivity & Components: Undirected Graphs

Connected (undirected) graph: any two vertices can be joined by a path.
A disconnected graph is made up by two or more connected components.   

Bridge: if  we erase it, the graph becomes disconnected. 

Largest Component: 
Giant Component

The rest: Isolates

D
C

A

B

F

F

G

D
C

A

B

F

F

G
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Complex Networks
Connectivity & Components: Directed Graphs

Strongly connected directed graph: has a path from each node to every other node 
and vice versa (e.g. AB path and BA path).
Weakly connected directed graph: it is connected if we disregard the
edge directions.

Strongly connected components can be identified, but not every node is part
of a nontrivial strongly connected component.   

In-component: nodes that can reach the scc, 
Out-component: nodes that can be reached from the scc. 

D C

A

B

F
G

E

E

C

A

B

G

F

D



Data Structures and  Algorithms for Engineers 53 Carnegie Mellon University Africa

Complex Networks
Connectivity & Components: Directed Graphs
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Complex Networks
Clustering Coefficient

Local clustering coefficient:  what fraction of your neighbors are connected?

Li represents the number of links between the ki neighbors of node i

Ci measures the network’s local link density: the more densely interconnected the 
neighborhood of node i, the higher is its local clustering coefficient. Ci in [0,1]
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Complex Networks
Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

⟨C⟩ is the probability that two neighbors of a randomly selected node link to each 
other.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41
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Complex Networks
Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

⟨C⟩ is the probability that two neighbors of a randomly selected node link to each 
other.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41

Þ (2 x 1) / (4 x 3) = 1/6
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Complex Networks
Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

⟨C⟩ is the probability that two neighbors of a randomly selected node link to each 
other.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41

Þ (2 x 2) / (3 x 2) = 4/6 = 2/3
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Complex Networks
Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

⟨C⟩ is the probability that two neighbors of a randomly selected node link to each 
other.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41

Þ (2 x 1) / (2 x 1) = 1
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Complex Networks
Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

⟨C⟩ is the probability that two neighbors of a randomly selected node link to each 
other.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41

Þ (2 x 2) / (4 x 3) = 4/12 = 1/3
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Complex Networks
Clustering Coefficient

The degree of clustering of a whole network is captured by the
average clustering coefficient:

⟨C⟩ is the probability that two neighbors of a randomly selected node link to each 
other.

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41

Þ (1/7) x ( (1/6) + (1/3) + (2/3) + (1/1))
=  (1/7) x ( (1/6) + (2/6) + (4/6) + (6/6))
= (13 / 42)
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Complex Networks
Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 

CLUSTERING COEFFICIENT | 41
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Complex Networks
Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.

=
−

C L
k k
2
( 1)i

i

i i

∑=
=

C N C1
i

i

N

1

Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 
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Complex Networks
Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 
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Complex Networks
Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 
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Complex Networks
Clustering Coefficient

The degree of global clustering of a whole network is captured by the
global clustering coefficient:

SECTION 10

CLUSTERING COEFFICIENT

The local clustering coefficient captures the degree to 
which the neighbors of a given node link to each other.  For 
a node i with degree ki the local clustering coefficient is de-
fined as [5].
        
      (19)

where Li represents the number of links between the ki 
neighbors of node i. Note that Ci is between 0 and 1:

Ci = 0 if none of the neighbors of node i link to each 
other; 

Ci = 1 if the neighbors of node i form a complete 
graph, i.e. they all link to each other (Image 2.7). 

In general Ci is the probability that two neighbors of a 
node link to each other: C = 0.5 implies that there is a 
50% chance that two neighbors of a node are linked. 

In summary Ci measures the network’s local density: 
the more densely interconnected the neighborhood 
of node i, the higher is Ci.

The degree of clustering of a whole network is captured by 
the average clustering coefficient, <C>, representing the av-
erage of Ci over all nodes i = 1, ..., N [5],
        
                .  (20)

In line with the probabilistic interpretation <C> is the 
probability that two neighbors of a randomly selected node 
link to each other. 

While Eq. (19) is defined for undirected networks, the 
clustering coefficient can be generalized to directed and 
weighted [6,7,8,9]) networks as well. Note that in the net-
work literature one also often encounters the global clus-
tering coefficient, defined in Appendix A.
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Image 2.15
Clustering Coefficient.

The local clustering coefficient, Ci , of the central node with degree ki=4 
for three different configurations of its neighborhood. The clustering 
coefficient measures the local density of links in a node’s vicinity. The 
bottom figure shows a small network, with the local clustering coefficient 
of a node shown next to each node. Next to the figure we also list the 
network’s average clustering coefficient <C>, according to Eq. (20), and 
its global clustering coefficient C, declined in Appendix A, Eq. (21). Note 
that for nodes with degrees ki=0,1, the clustering coefficient is taken to be 
zero. 
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(3 x 2) / (10 + 6) = (6/16) = 3 / 8
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Complex Networks
Clustering Coefficient

10 open triples

6 closed triples
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Complex Networks
Three Central Quantities in Network Science

Degree distribution: p(k)       pk
Path length: ⟨d⟩
Clustering coefficient:
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Complex Networks
Case Study: Protein-Protein Interaction Network
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Complex Networks
Case Study: Protein-Protein Interaction Network

Undirected network
N=2,018 proteins as nodes
L=2,930 binding interactions as links. 
Average degree  <k>=2.90. 

Not connected:  185 components
the largest (giant component) 1,647  

nodes
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Complex Networks
Case Study: Protein-Protein Interaction Network

pk is the probability that a 
node has degree k

Nk = # nodes with degree k

pk = Nk / N    
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Complex Networks
Case Study: Protein-Protein Interaction Network

dmax=14

⟨d⟩ = 5.61
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Complex Networks
Case Study: Protein-Protein Interaction Network

⟨C⟩ = 0.12


