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Lecture 25

Complex Networks

– Communities
• Fundamental Hypothesis & Connectedness and Density Hypothesis
• Strong and weak communities
• Graph partitioning & Community detection

– Hierarchical clustering
– Girvan-Newman Algorithm
– Modularity
– Random Hypothesis
– Maximum Modularity Hypothesis
– Greedy algorithm for community detection by maximizing modularity

• Overlapping communities
– Clique percolation algorithm and CFinder

This lecture is based on Chapter 9 of Network Science by A.-L. Barabási
(see http://barabasi.com/book/network-science)
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Lecture 22

Complex Networks

– The importance of complex networks and network science
– The origin of graph theory: the Bridges of Konigsberg
– Review of graph theory
– Communities

This lecture is based on Chapters 2-9 of Network Science by A.-L. Barabási
(see http://barabasi.com/book/network-science)
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Complex Networks
Communities

“In network science we call a community a 
group of nodes that have a higher likelihood 
of connecting to each other than to nodes 
from other communities.”

L.A. Barabási
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Complex Networks
Communities
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Complex Networks
Communities
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Complex Networks
Communities

Communities in Belgium: red, French-speaking; green, Flemish-speaking  
(node size = community size)
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Complex Networks
Communities

Zachary’s Karate Club:: 
A conflict between the club’s president and the instructor split the club into two. 

About half of the members followed the instructor and the other half the president, 
a breakup that unveiled the ground truth, representing club's underlying community structure
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Complex Networks
Communities

Zachary’s Karate Club:: 
Links capture interactions between the club members outside the club. 

The circles and the squares denote the two factions that emerged after the club split in two.
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Complex Networks
Communities

Zachary’s Karate Club:: 
The colors capture the best community partition predicted by 

an algorithm that optimizes the modularity coefficient
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Complex Networks
Communities

H1: Fundamental Hypothesis
A network’s community structure is uniquely encoded in its wiring diagram.
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Complex Networks
Communities

H2: Connectedness and Density Hypothesis
A community is a locally dense connected subgraph in a network

Connected: all members of a community 
must be reached through other 
members of the same community

Dense: nodes that belong to a 
community have a higher probability to 
link to the other members of that 
community than to nodes that do not 
belong to the same community
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Complex Networks
Communities

Strong Community
C is a strong community if each node within C has more links 
within the community than with the rest of the graph

Specifically, a subgraph C forms a strong community if for each 
node i ∈ C, 
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Complex Networks
Communities

Weak Community
C is a weak community if the total internal degree of a 
subgraph exceeds its total external degree

Specifically, a subgraph C forms a weak community if



Data Structures and  Algorithms for Engineers 15 Carnegie Mellon University Africa

Complex Networks
Communities

a. clique

a clique
corresponds to a 
complete subgraph
(rare)

b. strong community c. weak community
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Complex Networks
Communities

Numbers of communities
How many ways can we group the nodes of a network into communities? 

Graph partitioning, also called graph bisection: 

We aim to divide a network into two non-overlapping subgraphs, 
such that the number of links between the nodes in the two groups, 
called the cut size, is minimized
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Complex Networks
Communities

Numbers of communities
How many ways can we group the nodes of a network into communities? 

Graph Bisection
Brute-force solution: inspect all possible divisions into two groups and 
choosing the one with the smallest cut size (exponential complexity)



Data Structures and  Algorithms for Engineers 18 Carnegie Mellon University Africa

Complex Networks
Communities

Graph partitioning vs. community detection

• Graph partitioning divides a network into a predefined number of 
smaller subgraphs

• Community detection aims to uncover the inherent community 
structure of a network
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Complex Networks
Communities

Community detection

• Graph partitioning:
the number and the size of communities is predefined

• Community detection:
both parameters are unknown

• Idea: detect communities by investigating all possible partitions

The number of possible partitions is given by 
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Complex Networks
Communities

Community detection

Brute-force 
exponential-
complexity 
algorithms that 
aim to identify 
communities by 
inspecting all 
possible 
partitions are 
computationally 
infeasible
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Complex Networks
Communities

Community detection

Brute-force 
exponential-
complexity 
algorithms that 
aim to identify 
communities by 
inspecting all 
possible 
partitions are 
computationally 
infeasible

We need polynomial-time algorithms 
that can uncover the community 
structure of large real networks ...

Hierarchical Clustering
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Complex Networks
Community Detection

Hierarchical Clustering

• Generate a similarity matrix xij indicating the similarity between 
vertex/node i and vertex/node j

• Iteratively identify groups of nodes with high similarity

1. Agglomerative algorithms
merge nodes with high similarity into the same community

2. Divisive algorithms
isolate communities by removing low similarity links that tend to 
connect communities. 

Both procedures generate a hierarchical tree, called a dendrogram, 
that predicts the possible community partitions
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Publication Highlights Example
Newman and Girvan 
(2004)

q Divisive Algorithm
q Remove the edge iteratively from the 

network

Newman (2004) q Agglomerative Algorithm
q Modularity: measure quality of 

communities

Complex Networks
Communities
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Step 1: Define Centrality

Step 2: Hierarchical Clustering
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Step 1: Define Centrality

The similarity matrix xij is called centrality and selects node pairs that are in 
different communities

xij is high if nodes i and j belong to different communities 
xij is low if they are in the same community

Several options to choose from ...  
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Step 1: Define Centrality
link betweenness

xij is defined as the number of shortest paths that go through the link (i, j) 

Links connecting different communities are expected to have large xij while 
links within a community have small xij

NB: these link betweenness values are based on a single shortest path between two nodes
(which is not what the Girvan-Newman algorithm stipulates)
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Link (Edge) Betweenness Example

Calculate total flow 
over edge 7-8 

Credit: Frank McCown, Intro to Web Science, Harding University
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One unit flows over 7-8 
to get from 1 to 8 
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7 x 7 = 49 total units 
flow over 7-8 from 
nodes 1-7 to 8-14 
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Calculate betweenness 
for edge 3-7 
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3 units flow from 
1-3 to each 4-14 node,

so total = 
3 x 11 = 33
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Calculate betweenness 
for edge 1-3
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Carries all flow to node 
1 except from node 2,
so betweenness = 12
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Calculate betweenness 
for edge 1-2
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from 1 to 2, so 

betweenness = 1
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Step 2: Hierarchical Clustering

1. Compute the centrality xij of each link

2. Remove the link with the largest centrality. 
In case of a tie, choose one link randomly

3. Recalculate the centrality of each link for the altered network

4. Repeat steps 2 and 3 until all links are removed
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Dendrogram
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Dendrogram

Cut giving 3 communities

Cut is determined using a 
Modularity measure M
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

Computational complexity depends on the centrality metric

For link betweenness: O(LN) 

Including Modularity: O(L2N)
O(N3) for sparse graph
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Complex Networks
Community Detection

Divisive Procedures: the Girvan-Newman Algorithm

The Girvan-Newman algorithm predicted communities in Zachary’s Karate 
Club that the matched almost perfectly two groups after the break-up. 


