
Data Structures and Algorithms for Engineers 1 Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2 Carnegie Mellon University Africa

Lecture 27

Hashing

– Dictionaries
– Hashing
– Hash functions
– Collision resolution
– Complexity
– Applications

Data Structures and Algorithms for Engineers 3 Carnegie Mellon University Africa

Recall: Lecture 8

Containers and Dictionaries

– Containers

– Dictionaries

Data Structures and Algorithms for Engineers 4 Carnegie Mellon University Africa

Containers and Dictionaries

• Containers are data structures that permit storage and
retrieval of data items independent of content

• Dictionaries are data structures that retrieve data based on
key values (i.e. content)

Data Structures and Algorithms for Engineers 5 Carnegie Mellon University Africa

Containers and Dictionaries

• Dictionaries permits access to data items by content

– You put an item into a dictionary so that you can find it when you
need it

Data Structures and Algorithms for Engineers 6 Carnegie Mellon University Africa

Containers and Dictionaries

• Main dictionary operations are

– Search(D, k) Given a search key k, return a pointer
to the element in dictionary D whose key value is k,
if one exists

– Insert(D, x) Given a data item x, add it to the dictionary D

– Delete(D, x) Given a pointer to a given data item x in the dictionary
D, remove it from D

Data Structures and Algorithms for Engineers 7 Carnegie Mellon University Africa

Containers and Dictionaries

• Some dictionary data structures also efficiently support
other useful operations

– Max(D) Retrieve the item with the largest key from D

– Min(D) Retrieve the item with the smallest key from D

These operations allows the dictionary to serve as a priority queue

Data Structures and Algorithms for Engineers 8 Carnegie Mellon University Africa

Containers and Dictionaries

• Some dictionary data structures also efficiently support
other useful operations

– Predecessor(D, x) Retrieve the item from D whose key is
immediately before x in sorted order

– Successor(D, x) Retrieve the item from D whose key is
immediately afterx in sorted order

These operations enable us to iterate through the elements of the
data structure

Data Structures and Algorithms for Engineers 9 Carnegie Mellon University Africa

Containers and Dictionaries

• We have defined these container and dictionary operations in an abstract
manner,

without reference to their implementation or the implementation of the
structure itself

• There are many implementation options

– Unsorted arrays
– Sorted arrays
– Singly-linked lists
– Doubly-linked lists
– Binary search trees
– Balanced binary search trees
– Hash tables
– Heaps
– …

Data Structures and Algorithms for Engineers 10 Carnegie Mellon University Africa

Hashing

• Hash tables are a very practical way to maintain a dictionary

• It takes a constant amount of time to look up an item in an
array, if you have its index … O(1)

• A hash function is a mathematical function to maps keys to
integers

– This integer is used as an index into an array

– We store our item at that position

Data Structures and Algorithms for Engineers 11 Carnegie Mellon University Africa

Hashing

[0]

[1]

[2]

[3]

[4]

.

.

.

Empty

4501

Empty

8903

8

10

values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

HandyParts company
makes no more than 100
different parts. But the
parts all have four digit numbers.

This hash function can be used to
store and retrieve parts in an array.

Hash(key) = partNum % 100

Data Structures and Algorithms for Engineers 12 Carnegie Mellon University Africa

Use the hash function

Hash(key) = partNum % 100

to place the element with

part number 5502 in the

array.

[0]

[1]

[2]

[3]

[4]

.

.

.

Empty

4501

Empty

8903

8

10

values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Placing Elements in the Array

Data Structures and Algorithms for Engineers 13 Carnegie Mellon University Africa

Next place part number
6702 in the array.

Hash(key) = partNum % 100

6702 % 100 = 2

But values[2] is already
occupied.

COLLISION OCCURS

[0]

[1]

[2]

[3]

[4]

.

.

.

values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

Placing Elements in the Array

Data Structures and Algorithms for Engineers 14 Carnegie Mellon University Africa

One way is by linear/sequential probing.
This uses the rehash function

(HashValue + 1) % 100

repeatedly until an empty location
is found for part number 6702.

[0]

[1]

[2]

[3]

[4]

.

.

.

values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

How to Resolve the Collision?

Data Structures and Algorithms for Engineers 15 Carnegie Mellon University Africa

Still looking for a place for 6702
using the function

(HashValue + 1) % 100

[0]

[1]

[2]

[3]

[4]

.

.

.

values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

Resolving the Collision

Data Structures and Algorithms for Engineers 16 Carnegie Mellon University Africa

Part 6702 can be placed at
the location with index 4.

[0]

[1]

[2]

[3]

[4]

.

.

.

values

[97]

[98]

[99]

7803

Empty

.

.

.

Empty

2298

3699

Empty

4501

5502

Collision Resolved

Data Structures and Algorithms for Engineers 17 Carnegie Mellon University Africa

Part 6702 is placed at
the location with index 4.

Where would the part with
number 4598 be placed using
linear probing?

[0]

[1]

[2]

[3]

[4]

.

.

.

values

[97]

[98]

[99]

7803

6702

.

.

.

Empty

2298

3699

Empty

4501

5502

Collision Resolved

Data Structures and Algorithms for Engineers 18 Carnegie Mellon University Africa

Hashing

• In general, the keys are not so conveniently defined (e.g. part
numbers) and they have to be computed

• Typically, they are some alphanumeric string S

• The first step of a hash function is to map each key to a big
integer

• Let α be the size of the alphabet in which S is written

• Let char(c) be a function that maps each symbol of the
alphabet to a unique integer from 0 to α - 1

Data Structures and Algorithms for Engineers 19 Carnegie Mellon University Africa

Hashing

• The hash function

maps each string to a unique (but large) integer by treating the
characters of the string as “digits” in a base-α number system

• The result is unique identified numbers, but they are so large they
will quickly exceed the number of slots m in the hash table

• We reduce this number to an integer between 0 and m - 1 by
taking the remainder of H(S) mod m

Data Structures and Algorithms for Engineers 20 Carnegie Mellon University Africa

Hashing

• If m, the size of the hash table, is selected well, the resulting
hash value will be fairly uniformly distributed

• Ideally, it is a large prime not too close to 2i - 1

Data Structures and Algorithms for Engineers 21 Carnegie Mellon University Africa

Hashing

• Collisions

– No matter how good the hash function is, there will sometimes be
collisions: two keys mapping to the same number/index

– One approach to collision resolution: open addressing

• On insertion, check to see if the desired position is empty

• If so, insert it

• If not, find some other place …

• Simplest approach is sequential probing: look for the next open spot in
the table

Data Structures and Algorithms for Engineers 22 Carnegie Mellon University Africa

Hashing

• Collisions

– No matter how good the hash function is, there will sometimes be
collisions: two keys mapping to the same number/index

– Alternative approach: chaining

Data Structures and Algorithms for Engineers 23 Carnegie Mellon University Africa

Hashing

• Complexity of operations in a hash table

– Assuming chaining with doubly-linked lists
– m-element hash table

– n keys

Data Structures and Algorithms for Engineers 24 Carnegie Mellon University Africa

Hashing

• A hash table is often the best data structure to maintain a
dictionary

• Also useful for other applications

– Efficient string matching via hashing

Problem: given a text string t and a pattern string p,
does t contain the pattern p as a substring, and if so where?

Data Structures and Algorithms for Engineers 25 Carnegie Mellon University Africa

Hashing

• A hash table is often the best data structure to maintain a
dictionary

• Also useful for other applications

– String matching

Simplest algorithm:

• Overlay p in t at every position in the text

• Check whether every pattern character matches the text character
• Complexity O(nm), where n = |t| and m = |p|

Data Structures and Algorithms for Engineers 26 Carnegie Mellon University Africa

Hashing

– String matching

Rabin-Karp algorithm:

• Basic idea: if two strings are identical, so are their hash values

• If the two strings are different, the hash values are almost certainly
different (may need to check, but not often)

• With some clever computation of the hash function (to reduce
complexity to constant) the algorithm will usually run in O(n + m)

Data Structures and Algorithms for Engineers 27 Carnegie Mellon University Africa

Hashing

• Related applications

– Is a given document different from all the rest in a large corpus?

– Is part of this document plagiarized from a document in a large
corpus?

