04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vVernon.eu

Lecture 28

Correctness

— Types of software defects

* Syntactic, semantic, logical defects
— Formal verification
— Static tests

* Reviews, walkthroughs, inspections

* Reviewing algorithms and software
— Dynamic testing

* Unit tests

* Test harness, stubs, drivers,

* Integration testing

* Regression testing

— Verification and validation strategies

(The material on correctness was adapted from M. Rosso-Llopart’'s notes for Computer Science for Practicing Engineers)

Lecture 28

* Abstract Data Types and Object-oriented Programming

— 0O0A
— 00D
— 0O0P
— 00T

 Standard Template Library

Types of Software Defects

Specification

— defective requirements
System Design

— defects introduced during design of the system
Detailed Design

— defects introduced during code module design
Syntactic

— using “,” instead of *;” or forgetting to match {}
Semantic

— applying arithmetic operations to non- arithmetic values, order of arithmetic
evaluation,.. e.g. 5+6 * 2 when you mean (5+6)*2

Logical

— this is when the solution to the algorithmic problem is incorrect, usually for
just some of the inputs

Types of Software Defects

* Syntactic defects are relatively easy to find and fix

* Semantic & logical defects are seen at "run time” in three general ways:

1. In execution that terminates normally but with incorrect outputs
2. An aborted execution

3. An execution that does not terminate

* (Quality attribute failure [security, performance, availability, maintainability,
etc.) - often the most difficult to repair

Detecting Defects

* Formal Verification
— Rigorously showing that an algorithm is correct
— Generally referred to as “formal methods” in computer science

e Static Testing
— Reviews, walkthroughs or inspections of code

* Dynamic Testing

— Executing programmed code with a given set of test cases and expected
results

otatic Testing
Reviews, Walkthroughs, Inspections

Structured reviews are a kind of static test that can be used to review
designs, code, or algorithms

e algorithm reviews - this is a review where the structure and flow of an
algorithm is reviewed by a group of engineers

* code reviews - this Is a review where actual code is reviewed by a group
of engineers for semantic correctness.

otatic Testing
Reviews, Walkthroughs, Inspections

e Structured reviews or inspections

— are used to check the correctness of algorithmic designs and
implementations of a software product

— aim to find software defects early in the development process to reduce the
costs of finding and removing these defects

* The cost of finding and removing defects increases the longer they go
undetected

otatic Testing
Reviews, Walkthroughs, Inspections

A review team is selected - typically 3 to 5 reviewers [may or may not
include the producer)

The team receives the algorithm or source code and are given time to
privately review the artifact

A review meeting is scheduled and the review team convenes and roles
are assigned:

— moderator

— time keeper

— issue recorder (usually the producer)
The moderator will lead the review of the code or algorithm a bit at a time

The members of the review team (including the producer) may raise issues
during the review

The recorder documents the issues - they are addressed later by the
producer

otatic Testing
Reviews, Walkthroughs, Inspections

* Algorithms should be in a form such as:
— pseudo-code
— flow charts
— formal mathematics,... or some combination...

* \When preparing review handouts, include
— a general description of the algorithm [or algorithms)
— purpose of the algorithm and its role in the system
— preconditions and post conditions

otatic Testing
Reviews, Walkthroughs, Inspections

* \When reviewing the algorithm, each step should be read aloud by the
moderator, then:

— the reviewers should be given an opportunity to ask clarifying questions or
raise issues

— the producer will answer any questions and record any issues that arise
during the review

* The way that the algorithm is traced through by the reviewers depends
upon how the algorithm is documented.

* Itis important that issues are captured and NOT SOLVED during the
review

Dynamic Testing

Software testing is an empirical method for finding defects in software
systems

— It is clearly the most widely used technique for detecting defects

— Usually involves running the program on several typical and atypical inputs,
called test sets

— Certain kinds of dynamic test, under certain operational conditions can be
automated

Dynamic Testing

There are many strategies for dynamic software test...

* Black Box testing
treats the software as a "black box" without any knowledge of internal
implementation; focus on specification as test driver

* \White Box testing
when the tester has access to the internal data structures and
algorithms and focuses on critical code sections to design tests

* Grey Box testing
testers have some insight into internal data structures and algorithms

and may influence the design of tests

Dynamic Testing

Testing occurs at many levels:

Unit test - this kind of testing involves testing small code modules
* Integration test - this test involves checking interfaces
* System test - this is test of the entire system

* Acceptance testing - customer tests where acceptance of the product
Is contingent upon successfully completing agreed to tests

* Regression testing - any type of software testing that seeks to uncover
newly introduced defects in software (usually due to maintenance,
upgrades, etc.) that was working properly

Unit Test

In unit testing we isolate the testable software “chunks” from remainder
of the code, and determine whether it behaves as expected

Units are tested separately before integrating them into larger “chunks”
and finally into a complete system

The most common approach to unit testing requires test harnesses and
stubs to be written

Test Harness and Stubs

Test harnesses simulate the calling unit in order to test methods,
functions, procedures

Stubs simulate a called unit by returning dummy and/or "hardwired”
data until the real methods, procedures, functions can be delivered

.

call

<o return

- code used for test
- code under test

Test Harness and Stubs

* Test harnesses and stubs play a role in product quality

* Test harnesses and stubs may require significant attention and when
there are stringent quality demands:

— May require high level of design attention
— Might need to be reviewed/inspected

— Often require a lot of effort and time to develop

“To achieve the level of quality we need, we write as much test code [harnesses and

stubs] as functional, production code - and we review it [the test code]!”
Andy Park G3 Technologies

Test Harness and Stubs

* Advantages

— A large percentage of operational defects can be identified prior to system
integration

— Unit tests reduce difficulties of discovering errors contained in larger, more
complex chunks of the system or application

* [Disadvantages

— The development of test harnesses and stubs can represent a significant
iInvestment

* because of this, unit testing is minimized or skipped because of schedule
* nota good idea

— Often leads to code, test, fix cycles rather than thoughtful design and analysis

Integration Test

As we aggregate “units,” we test the behaviour of the sub-system or the
entire system

Integration testing usually begins in a lab setting where we test the
system [in whole or in part) under simulated and ideal conditions

Integration testing will eventually include a deployment test, testing the
system under real environmental conditions

Integration testing identifies problems that occur when units are
combined

Integration Test

* The advantages speak for themselves:

We must show that the system works!

* Poor practices include not ...

— deliberately planning integration tests
— testing the system under realistic conditions

— stress testing the system
— verifying that the system possesses the required systemic properties

— budgeting time and schedule for integration tests

Regression Test

Whenever system software is modified we conduct regression tests to
verify we did not introduce defects

The goal is to provide “sufficient” coverage without wasting time - the
real trick is determining what is “sufficient”

— Spend as little resources as possible in regression test, without reducing the
probability that we will find defects

The regression test strategy we use will often be dictated by the quality
needs of our project and product

Issue Is path coverage, how much is reasonable

Regression Test

Factors to consider:

* Design separate regression tests for each defect fixed or enhancement
to the system

— TDD - Design the test first?

 \Watch out for side effects of fixes and enhancements

* If two or more tests are similar, determine which is less effective and get
rid of it

Regression Test

Factors to consider;

* Develop and maintain tests suites

— Archive and reuse them

* Test critical systemic properties [performance, security, availability, ...)

General Issues with Dynamic Testing

It's often impossible to test a program on all possible inputs

— the input sets might be very large, or even infinite

It can be impossible to test a system without placing life, limb, and
material at significant risk

— You can only really test the software when you fly it, drive it, ... That is a
terrible time to find defects!

Dynamic testing focuses on testing functionality, not systemic properties
such as modifiability, maintainability, scalability, ...

General Issues with Dynamic Testing

 "Testing can only be used to demonstrate the presence of errors in
software, not their absence.” Dijkstra

* Too often testing is conducted in an ad hoc way and is not planned. It can
be difficult to

— determine the level of coverage
— know if the important things have been tested

 Testing # Quality - you can’t “test-in” quality
— testing is not cheap

— testing is the last resort
— achieving quality software requires a quality strategy base on quality goals

Verification and Validation Strategies

* How much quality do you need and when do you need it?

— Does it have to be perfect when it is delivered?
— Can we deliver with “good-enough” quality and improve over time?

* Adopting an explicit V&V strategy and creating a plan to achieve quality
goals is an essential part of project planning

Verification and Validation Strategies

* \What we try to do when we devise a V&V strategy Is select multiple
layers of techniques to prevent and detect defects before they are

deployed

* The combination of techniques you select will vary based on your quality
goals

—

Formal Analysis
Reviews/Inspections

Unit Test | Example V&V
System Test Stack
Integration Test

Acceptance Test

—

The Cost of Finding and Fixing Defects

Data shows that the earlier a defect is found the cheaper it is to fix it

The following table shows the average cost of fixing defect depending on
when it was introduced and when it was found

For example, a defect introduced in design, costs on average 25-100
times more to fix it once deployed

Time Detected

Requirements | Design | Coding | Test | Deployment

Time Requirements 1x 3x 5-10x | 10x 10-100x
Introduced Design 1x 10x 15x 25-100x

Coding 1x 10x 10-25x

The Cost of Finding and Fixing Defects

Validation and verification cuts across the lifecycle ...

1X

A ¢
S

requirements

Layers

3-10X

systemic/architectural
design

Layers

[]
N
]

10X

detailed
design

Layers 100X
- if then else
-,

implementation,
integration,

deployment

Verification Considerations

Explore the input domain

* Inputs that force all the errors

* Input messages

* Inputs that force default values

* Explore allowable inputs

* Overflow input buffers

* Test inputs that may interact, and test combinations of their values

* Repeat the same input numerous times

Verification Considerations

Explore the outputs

* try to force different outputs to be generated for each input
* tryto force invalid outputs to be generated

* force properties of an output to change

* force the screen to refresh

Verification Considerations

Explore data constraints

« force a data structure to store too many or too few values

* find ways to violate internal data constraints

Verification Considerations

Explore feature interactions

* force invalid operator/operand combinations

* make a function call itself recursively

* force computation results to be too big or too small
* test features that share data

Verification Considerations

Explore the file system conditions

* file system full to capacity
e diskis busy or unavailable
* invalid file name

* invalid disk

* vary file permissions

e vary or corrupt file context

Conclusion

Simple Formal Verification Techniques
Dynamic Testing Techniques
Static Testing Techniques

These methods must be coupled with
disciplined software practices and
a broader verification and validation strategy
to provide practical, cost effective, benefit

“you can't test quality into software”

References

Stephen H. Kan, Metrics and Models in Software Quality Engineering (2nd edition) Addison-
Wesley, September 2002

Capers Jones, Measuring Defect Potentials and Defect Removal Efficiency, Cross Talk -
The Journal of Defense Software Engineering, Jun 2008

Algorithmics: The Spirit of Computing (3rd edition), David Harel, Yishai Feldman
Data Structures and Algorithms, Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft
Introduction to Algorithms [2nd edition], Thomas H. Cormen et al.

M. E. Fagan, Design and Code Inspections to Reduce Errors in Program Development, IBM
Systems Journal, vol. 15, no. 3, pp. 182,211, 1976.

W. E. Stephenson, An Analysis of Resources Used on the SAFEGUARD System Software
Development, Technical Report, Bell Labs, August 197/6.

E. B. Daly, Management of Software Engineering, IEEE Transactions on Software
Engineering, vol. 3, pp. 229, 242, May 1977.

B.W.Boehm,SoftwareEngineeringEconomics.PrenticeHall,1981.
J. Whittaker, How to Break Software: A Practical Guide to Testing, 2003

supplementary Reading

"Integrating Software Testing and Run-Time Checking in an Assertion Verification
Framework," Lopez-Garcia/Hermenegildo

All | Really Need to Know about Pair Programming | Learned In Kindergarten," Williams,
Kessler

"Unit Testing-a Very Short Parable," Sanford M. Sorkin
http:/ /wwe.cis.temple.edu/sorkin/CIS338UnitTesting.htm

“Designing Unit Tests,” IPL Information Processing Ltd.
(With permission from IPL Information Processing Ltd., Eveleigh House, Grove Street Bath,
BA1 5LR, United Kingdom)

Invariant Assertion Method, http:;/ /www.rose- hulman.edu/Users/faculty/young/CS-
Classes/csse3/3/current/Resources,/Ardis .pdf

Abstract Data Types and
Object-Oriented Programming

OOA: Object-oriented Analysis (Booch method; Coad and Yourdon method]
0O0D: Object-oriented Design

OOP: Object-oriented Programming

OOT: Object-oriented Testing

What is an object-oriented approach?
One definition:

It is the exploitation of class objects, with private data members and
associated access functions

Abstract Data Types and
Object-Oriented Programming

e (lass

— Aclass is a template’ for the specification of a particular collection of entities (e.g. a
widget in a Graphic User Interface]

— More formally, ‘a class is an OO0 concept that encapsulates the data and procedural

abstractions that are required to describe the content and behaviour of some real-
world entity’

e Attributes

— Each class will have specific attributes associated with it (e.g. the position and size of
the widget)

— These attributes are queried using associated access functions (e.g. set_position)

Abstract Data Types and
Object-Oriented Programming

 (bject

— An object is a specific instance (or instantiation) of a class (e.g. a button or an input
dialogue box]

 Data Members
— The object will have data members representing the class attributes (e.g. Int x, V;)

Abstract Data Types and
Object-Oriented Programming

e Access functions

— The values of these data members are accessed using the access functions (e.g.
set_position(x, y];]

— These access functions are called methods (or services)

— Since the methods tend to manipulate a limited number of attributes (i.e. data
members) a given class tends to be cohesive.

— Since communication occurs only through methods, a given class tends to be
decoupled from other objects.

Abstract Data Types and
Object-Oriented Programming

* Encapsulation

— The object (and class] encapsulates the data members (attributes), methods (access
functions) in one logical entity

* Data Hiding
— It allows the implementation of the data members to be hidden

— Why? Because the only way of getting access to them - of seeing them - is through
the methods

— This is called data hiding

Abstract Data Types and
Object-Oriented Programming

 Abstraction

— This separation, though data hiding, of physical implementation from logical access is
called abstraction

* Messages

— Objects communicate with each other by sending messages

— This just means that a method from one class calls a method from another method
and information is passed as arguments

Abstract Data Types and
Object-Oriented Programming

Aside: an Alternative definition of object-orientation [Ellis and Stroustrup]

‘The use of derived classes and virtual functions is often called object-
oriented programming’

Abstract Data Types and
Object-Oriented Programming

Two views of a class:

class name

attributes:

attributes:

Abstract Data Types and
Object-Oriented Programming

Class hierarchy:

furniture

table A / \‘ desk chable

subclasses of the
furniture superclass
14 V |

instances of chair

Abstract Data Types and
Object-Oriented Programming

Message passing between objects

sender object

attributes:

.l.. receiver object
-I.. attributes:

Abstract Data Types and
Object-Oriented Programming

OOA: Object-Oriented Analysis

— Booch method
— Coad and Yourdon method
- Jacobson method

— Rambaugh method

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in O0A:

1. Obtain customer requirements

* identify scenarios or use cases
* build a requirements model

2. Select classes and objects using basic requirements

3. Identify attributes and operations for each object:

* Class-Responsibility-Collaborator (CRC) Modelling

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in O0A:

4. Define structures and hierarchies that organize classes

. Generalization-Specialization [Gen-Spec]) structure (“is a”)

Il

l

\

=
<
w

|
o 3
o

Cf —

E]
=3
2

)

i

T

. Composite-Aggregate (Whole-Part) structure (“has a”)

el
B
o

e
—o
—

=
=

B
a

eeeeee

z

I

il

|

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in O0A:

9. Build an object-relationship model o e (e s
11 1:1
produc recogr
Ok ' 0| !
aud b sensor
larm even
':’r“:}’[Homeowner Clomirol paned Syratem
6. Build an object-behaviour model e e T st
indtistes besp
cccccccccc J—- besp sounded
panel panel “reenter”
passwordentered [| compare passweed =incomrect peady for etivationteactivation
1 H compare passwerd = comect salects stamismmy
State transition dagram |/ @ /= e
“atrest “comparin panel sensors activstedilasctivated
redlight on request.
. red light cn
Event trace diagram ey o
tvation ccessful

/. Review the OO analysis model against use cases / scenarios

Abstract Data Types and
Object-Oriented Programming

0O0D: Object-Oriented Design

— 'Designing object-oriented software is hard, and designing reusable object-oriented
software Is even harder ... a reusable and flexible design is difficult if not impossible to
get “right” the first time’

— (00D is a part of an iterative cycle of analysis and design

— Several iterations of which may be required before one proceeds to the OOP stage

Analysis Model Design Model

classes objects
attributes —-- data structures

methods —-»algorithms

relationship_sj:messaging
behavior control

Abstract Data Types and
Object-Oriented Programming

0O0D: Object-Oriented Design

— 'Designing object-oriented software is hard, and designing reusable object-oriented
software Is even harder ... a reusable and flexible design is difficult if not impossible to
get "right” the first time’

— (00D is a part of an iterative cycle of analysis and design

— Several iterations of which may be required before one proceeds to the OOP stage

responsibilities
design

message
design

Class and object
design
subsystem
design

THE ANALYSIS MODEL THE DESIGN MODEL

Abstract Data Types and
Object-Oriented Programming

“/*

Interface file
Construction of an optimal prefix code using the Huffman binary code tree algorithm
Course 04-630 Data Structures and Algorithms for Engineers, Assignment 5

Based on code by David Vernon written originally on 13/03/1997, revised 15/10/2014.
This code has been rewritten to streamline the object-oriented design.

In this design, there are four classes:

Path a path from the root to a source alphabet symbol

Map a code map comprising pairs of source alphabet symbol & prefix code
Tree a code tree

Forest a forest of code trees used to construct the optimal code tree

As a general principle, the public access methods do not expose the underlying hidden data structures
i.e. they present an abstract interface to the data / object

David Vernon
19 March 2019
*/

Abstract Data Types and
Object-Oriented Programming

/************************/

/* */
/* Class Path */
/* */

/************************/

/* a class to represent the path to a leaf node in a binary tree */

/* a path comprises a sequence of elements of 0s and 1s ... */
/* @ means take a left link; 1 means take a right link */
/* functions are provided to add an element, remove and element, */
/* and print the path to the screen. */

/* the maximum number of elements is defined by MAX_PATH_LENGTH */

Iclass Path {

public:

Path(); // constructor: create an empty path

~Path(); // destructor

void add_to_path(int direction); // add a direction to the path

void remove_from_path(); // remove the last direction added to the path

void print_path(FILE *fp_out); // print a path to a file

void to_string(char code[]); // translate a path to a character string comprising @s and 1s
private:

int path_components[MAX PATH_LENGTH];
int path_length;
}s

Abstract Data Types and
Object-Oriented Programming

/************************/

/* */
/* Class Map */
/* */

/************************/

/* a class to represent the code map */
/* This is a dictionary of symbols (the key) and the corresponding paths */

class Map {
public:
Map();

~Map();
void add(char symbol, Path path); // add a symbol-code pair to the map

void retrieve(char symbol, char code[]); // retrieve the code corresponding to a given symbol

void print(FILE *fp out); // print the map to a file

void encode(char source[], char encoded source[]); // encode a source alphabet string as a code alphabet string
private:

Path path[MAXIMUM_NUMBER_OF SYMBOLS];

char symbol[MAXIMUM_NUMBER_OF SYMBOLS];

int size;

}s

Abstract Data Types and
Object-Oriented Programming

/************************/

/* */
/* Class Tree */
/* */

/************************/

/* a class to represent the binary code tree where leaf nodes represent the source alphabet symbols */

struct node

{
char symbol; // source alphabet symbol
float probability; // source alphabet probability
node *pleft, *pright; // links to left and right children nodes
}s
class Tree {
public:
Tree();
~Tree();

void add(char symbol, float probability);

void print(FILE *fp_out) const;

void delete_tree();

void join_to_tree(Tree &t);

float root_probability();

bool empty tree() const;

void compute_map(Map &code_map);

void decode(char source[], char decoded_source[]);

private:
node *root;
void delete_tree(node* &p);
void add(char symbol, float probability, node* &p);

//
//
//
//
//
//
//
//

void pr(const node *p, int nspace, FILE *fp_out) const;

node* get_root();
void cut_off_tree();

add a symbol and its probability to the code tree

print a tree to a file

delete a tree

join two trees: one is an argument, the other is tree for which the method is called
return the probability of the symbol at the root

test for empty tree

store the leaf nodes & the path to the leaf nodes in a map

decode an encoded message

// break the link to the root without deleting the tree

void traverse_leaf nodes(const node *p, Path &path, Map &code_map); // add to a map the leaf nodes and the path to leaf nodes
void decode(node *p, char source[], int &i, char decoded_source[], int &j);

}s

Abstract Data Types and
Object-Oriented Programming

[HFKE KA A K KKK KKK KKK KKK KK [

/* */
/* Class Forest */
/* */

/************************/

class Forest {
public:
Forest(int size);
~Forest();
void initialize forest();
void add_to_tree(int tree_number, char symbol, float probability);
void print_forest(FILE *fp out) const;
void print_tree(int tree_number, FILE *fp_ out);
void join_trees(int tree_1, int tree_2);
bool empty_tree(int tree_number);
float root_probability(int tree_number);
Map build map();
void build code_ tree(int number_of symbols, char symbols[], float probabilities[]);
void decode(char source[], char decoded_source[]);
private:
Tree tree_array[MAXIMUM_NUMBER_OF SYMBOLS];
int forest_size;

}s

Standard Template Library
STL

/* Example of use of STL for

stack

queue

priority queue

map (the underlying STL implementation is a red-black tree)
unordered map (the underlying STL implementation is a hash table)

*/

#include "stdio.h"

#include "string.h"
#include <string.h>
#include <iostream>

#include <iterator>
#include <stack>
#include <queue>
#include <unordered_map>
#include <map>

using namespace std;

stack<int> s;

printf("stack\n");
printf("----- \n");

s.push(1);
s.push(2);
s.push(3);

printf("%d \n",s.top()); // Note: top() accesses the element
s.pop(); // but you need pop() to remove it

printf("%d \n",s.top());
s.pop();

printf("%d \n",s.top());
s.pop();

if (s.empty())
printf("stack is empty\n\n");

queue<int> gq;

printf("queue\n");
printf("----- \n");

q.push(3);
q.push(7);
q.push(1);
q.push(2);

printf("queue size: %d \n",q.size());

printf("%d \n",q.front());
q.pop();

printf("%d \n",q.front());
q.pop();

printf("%d \n",q.front());
q.pop();

printf("%d \n",q.front());
q.pop();

if (q.empty())
printf("queue is empty\n\n");

priority queue<int> pq;

printf("priority queue\n");
Pr‘int'F(" ______________ \n");

pq.push(1);
pq.push(4);
pq.push(2);
pq.push(8);
pq.push(5);
pq.push(7);

printf("queue size: %d \n",pq.size());

printf("%d \n",pq.top());
pq.pop();

printf("%d \n",pq.top());
pq.pop();

printf("%d \n",pq.top());
pq.pop();

printf("%d \n",pq.top());
pq.pop();

printf("%d \n",pq.top());
pq.pop();

printf("%d \n",pq.top());
pq.pop();

if (pq.empty())
printf("priority queue

i

]

empty\n\n");

// unordered map: the underlying STL implementation is a hash table

unordered_map<string, double> umap; // Declaring umap to be of <string, double> type
// key will be of string type and mapped value will be of double type

unordered_map<string, double>:: iterator itr2;

printf("unorded_map\n");

Pr‘intf(" ___________ \nn);
// inserting values by using [] operator
wmap[*PT"] = 3.14;

umap["root2"] = 1.414;
umap["root3"] = 1.732;
umap["logle"] = 2.302;
umap["loge"] 1.0;

// inserting value by insert function

umap.insert(make_pair("e", 2.718));

key = "PI";

if (umap.find(key) == umap.end()) // If key not found in map iterator to end is returned
cout << key.c_str() << " not found\n";

else // If key found then iterator to that key is returned

cout << "Found " << key.c_str() << "\n";

key = "lambda";
if (umap.find(key) == umap.end())

cout << key.c_str() << " not found\n";
else

cout << "Found " << key.c_str() << endl;

// iterating over all value of umap

cout << "All elements : \n";

for (itr2 = umap.begin(); itr2 != umap.end(); itr2++) {
// itr works as a pointer to pair<string, double>
// type itr->first stores the key part and itr->second stroes the value part
cout << itr2->first.c_str() << " " << itr2->second << endl;

}

cout << endl;

https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

// map: the underlying STL implementation is a red-black tree

map<string, double> myMap; // Declaring map to be of <string, double> type
// key will be of string type and mapped value will be of double type

map<string, double>:: iterator itr;
string key;

printf("map\n");
printf("---\n");

// inserting values by using [] operator
myMap["PI"] = 3.14;

myMap["root2"] = 1.414;
myMap["root3"] = 1.732;
myMap["logle"] = 2.302;
myMap["“loge"] = 1.0;

// inserting value by insert function

myMap.insert(make pair("e", 2.718));

key = "PI";

if (myMap.find(key) == myMap.end()) // If key not found in map iterator to end is returned
cout << key.c_str() << "not found\n\n";

else // If key found then iterator to that key is returned

cout << "Found " << key.c_str() << "\n";

key = "lambda";
if (myMap.find(key) == myMap.end())

cout << key.c_str() << " not found\n";
else

cout << "Found " << key.c_str() << endl;

// iterating over all value of myMap

cout << "All elements: \n";

for (itr = myMap.begin(); itr != myMap.end(); itr++) {
// itr works as a pointer to pair<string, double>
// type itr->first stores the key part and itr->second stroes the value part
cout << itr->first.c_str() << " " << itr->second << endl;

https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

Standard Template Library
STL

/* this is required for the unordered map and the map classes */
/* so that they know how to compare the string keys */

namespace std {
template<>
struct equal_to<string> {
bool operator()(const string& a, const string& b) const {
if (strcmp(a.c_str(), b.c_str()) == 0)
return true;
else
return false;

}s
}

namespace std {
template<>
struct less<string> {
bool operator()(const string& a, const string& b) const {
if (strcmp(a.c_str(), b.c_str()) < 0)
return true;
else
return false;

}s

gueue size: 4
3
7
1
2
gueue is empty

priority queue

gueue size: 6

priority queue is empty

map
Found PI

lambda not found
All elements:

PI 3.14

e 2.718

logle 2.302

loge 1

root2 1.414
root3 1.732

unorded_map

Found PI

lambda not found
All elements

PI 3.14

root2 1.414
root3 1.732

e 2.718

loge 1

logle 2.302

Standard Template Library
STL

STL Containers lterators Algorithms in STL
Introduction to STL Introduction to lterators Overview of Algorithms
Overview of Containers in STL Operations on lterators Sorting Algorithms
Pair Template Binary Search and Equal Range
Tuple Template Upper Bound and Lower Bound
Array Non Modifying Algorithms
Vector Modifying Algorithms
List Numeric Algorithms
Map Minimum and Maximum operations
Stack MinMax and Permutation operations
Queue
Priority Queue

Deque

TSXTS IN COMPUTER SCIENCE

Algorithm Design

Steven S. Skiena

@ Springer

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

Computational
Theory

Goal, logic, strategy, model

i | - Loose coupling

Representation
& Algorithm

|/O representation, transformation algorithm

A

Loose coupling

Hardware/SoftWare Physical realization
Implementation

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
WWW.vVernon.eu

