
Data Structures and Algorithms for Engineers 1. Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

Data Structures and Algorithms for Engineers 2. Carnegie Mellon University Africa

Lecture 28

• Correctness

– Types of software defects
• Syntactic, semantic, logical defects

– Formal verification

– Static tests
• Reviews, walkthroughs, inspections

• Reviewing algorithms and software

– Dynamic testing
• Unit tests

• Test harness, stubs, drivers,

• Integration testing

• Regression testing

– Verification and validation strategies

(The material on correctness was adapted from M. Rosso-Llopart’s notes for Computer Science for Practicing Engineers)

Data Structures and Algorithms for Engineers 3. Carnegie Mellon University Africa

Lecture 28

• Abstract Data Types and Object-oriented Programming
– OOA

– OOD

– OOP

– OOT

• Standard Template Library

Data Structures and Algorithms for Engineers 4. Carnegie Mellon University Africa

Types of Software Defects

Specification
– defective requirements

System Design
– defects introduced during design of the system

Detailed Design
– defects introduced during code module design

Syntactic
– using “,” instead of “;” or forgetting to match {}

Semantic
– applying arithmetic operations to non- arithmetic values, order of arithmetic

evaluation,... e.g. 5+6 * 2 when you mean (5+6)*2

Logical
– this is when the solution to the algorithmic problem is incorrect, usually for

just some of the inputs

Data Structures and Algorithms for Engineers 5. Carnegie Mellon University Africa

Types of Software Defects

• Syntactic defects are relatively easy to find and fix

• Semantic & logical defects are seen at “run time” in three general ways:

1. In execution that terminates normally but with incorrect outputs

2. An aborted execution

3. An execution that does not terminate

• Quality attribute failure (security, performance, availability, maintainability,
etc.) – often the most difficult to repair

Data Structures and Algorithms for Engineers 6. Carnegie Mellon University Africa

Detecting Defects

• Formal Verification
– Rigorously showing that an algorithm is correct

– Generally referred to as “formal methods” in computer science

• Static Testing
– Reviews, walkthroughs or inspections of code

• Dynamic Testing
– Executing programmed code with a given set of test cases and expected

results

Data Structures and Algorithms for Engineers 7. Carnegie Mellon University Africa

Static Testing
Reviews, Walkthroughs, Inspections

Structured reviews are a kind of static test that can be used to review
designs, code, or algorithms

• algorithm reviews – this is a review where the structure and flow of an
algorithm is reviewed by a group of engineers

• code reviews – this is a review where actual code is reviewed by a group
of engineers for semantic correctness.

Data Structures and Algorithms for Engineers 8. Carnegie Mellon University Africa

Static Testing
Reviews, Walkthroughs, Inspections

• Structured reviews or inspections

– are used to check the correctness of algorithmic designs and
implementations of a software product

– aim to find software defects early in the development process to reduce the
costs of finding and removing these defects

• The cost of finding and removing defects increases the longer they go
undetected

Data Structures and Algorithms for Engineers 9. Carnegie Mellon University Africa

Static Testing
Reviews, Walkthroughs, Inspections

• A review team is selected – typically 3 to 5 reviewers (may or may not
include the producer)

• The team receives the algorithm or source code and are given time to
privately review the artifact

• A review meeting is scheduled and the review team convenes and roles
are assigned:
– moderator

– time keeper

– issue recorder (usually the producer)

• The moderator will lead the review of the code or algorithm a bit at a time

• The members of the review team (including the producer) may raise issues
during the review

• The recorder documents the issues – they are addressed later by the
producer

Data Structures and Algorithms for Engineers 10. Carnegie Mellon University Africa

Static Testing
Reviews, Walkthroughs, Inspections

• Algorithms should be in a form such as:
– pseudo-code

– flow charts

– formal mathematics,... or some combination...

• When preparing review handouts, include
– a general description of the algorithm (or algorithms)

– purpose of the algorithm and its role in the system

– preconditions and post conditions

Data Structures and Algorithms for Engineers 11. Carnegie Mellon University Africa

Static Testing
Reviews, Walkthroughs, Inspections

• When reviewing the algorithm, each step should be read aloud by the
moderator, then:

– the reviewers should be given an opportunity to ask clarifying questions or
raise issues

– the producer will answer any questions and record any issues that arise
during the review

• The way that the algorithm is traced through by the reviewers depends
upon how the algorithm is documented.

• It is important that issues are captured and NOT SOLVED during the
review

Data Structures and Algorithms for Engineers 12. Carnegie Mellon University Africa

Dynamic Testing

Software testing is an empirical method for finding defects in software
systems

– It is clearly the most widely used technique for detecting defects

– Usually involves running the program on several typical and atypical inputs,
called test sets

– Certain kinds of dynamic test, under certain operational conditions can be
automated

Data Structures and Algorithms for Engineers 13. Carnegie Mellon University Africa

Dynamic Testing

There are many strategies for dynamic software test...

• Black Box testing
treats the software as a "black box" without any knowledge of internal
implementation; focus on specification as test driver

• White Box testing
when the tester has access to the internal data structures and
algorithms and focuses on critical code sections to design tests

• Grey Box testing
testers have some insight into internal data structures and algorithms
and may influence the design of tests

Data Structures and Algorithms for Engineers 14. Carnegie Mellon University Africa

Dynamic Testing

Testing occurs at many levels:

• Unit test – this kind of testing involves testing small code modules

• Integration test – this test involves checking interfaces

• System test – this is test of the entire system

• Acceptance testing – customer tests where acceptance of the product
is contingent upon successfully completing agreed to tests

• Regression testing – any type of software testing that seeks to uncover
newly introduced defects in software (usually due to maintenance,
upgrades, etc.) that was working properly

Data Structures and Algorithms for Engineers 15. Carnegie Mellon University Africa

Unit Test

• In unit testing we isolate the testable software “chunks” from remainder
of the code, and determine whether it behaves as expected

• Units are tested separately before integrating them into larger “chunks”
and finally into a complete system

• The most common approach to unit testing requires test harnesses and
stubs to be written

Data Structures and Algorithms for Engineers 16. Carnegie Mellon University Africa

Test Harness and Stubs

• Test harnesses simulate the calling unit in order to test methods,
functions, procedures

• Stubs simulate a called unit by returning dummy and/or “hardwired”
data until the real methods, procedures, functions can be delivered

Data Structures and Algorithms for Engineers 17. Carnegie Mellon University Africa

Test Harness and Stubs

• Test harnesses and stubs play a role in product quality

• Test harnesses and stubs may require significant attention and when
there are stringent quality demands:

– May require high level of design attention

– Might need to be reviewed/inspected

– Often require a lot of effort and time to develop

“To achieve the level of quality we need, we write as much test code [harnesses and
stubs] as functional, production code – and we review it [the test code]!”

Andy Park G3 Technologies

Data Structures and Algorithms for Engineers 18. Carnegie Mellon University Africa

Test Harness and Stubs

• Advantages

– A large percentage of operational defects can be identified prior to system
integration

– Unit tests reduce difficulties of discovering errors contained in larger, more
complex chunks of the system or application

• Disadvantages

– The development of test harnesses and stubs can represent a significant
investment
• because of this, unit testing is minimized or skipped because of schedule

• not a good idea

– Often leads to code, test, fix cycles rather than thoughtful design and analysis

Data Structures and Algorithms for Engineers 19. Carnegie Mellon University Africa

Integration Test

• As we aggregate “units,” we test the behaviour of the sub-system or the
entire system

• Integration testing usually begins in a lab setting where we test the
system (in whole or in part) under simulated and ideal conditions

• Integration testing will eventually include a deployment test, testing the
system under real environmental conditions

• Integration testing identifies problems that occur when units are
combined

Data Structures and Algorithms for Engineers 20. Carnegie Mellon University Africa

Integration Test

• The advantages speak for themselves:

We must show that the system works!

• Poor practices include not ...

– deliberately planning integration tests

– testing the system under realistic conditions

– stress testing the system

– verifying that the system possesses the required systemic properties

– budgeting time and schedule for integration tests

Data Structures and Algorithms for Engineers 21. Carnegie Mellon University Africa

Regression Test

• Whenever system software is modified we conduct regression tests to
verify we did not introduce defects

• The goal is to provide “sufficient” coverage without wasting time – the
real trick is determining what is “sufficient”

– Spend as little resources as possible in regression test, without reducing the
probability that we will find defects

• The regression test strategy we use will often be dictated by the quality
needs of our project and product

• Issue is path coverage, how much is reasonable

Data Structures and Algorithms for Engineers 22. Carnegie Mellon University Africa

Regression Test

Factors to consider:

• Design separate regression tests for each defect fixed or enhancement
to the system

– TDD – Design the test first?

• Watch out for side effects of fixes and enhancements

• If two or more tests are similar, determine which is less effective and get
rid of it

Data Structures and Algorithms for Engineers 23. Carnegie Mellon University Africa

Regression Test

Factors to consider:

• Develop and maintain tests suites

– Archive and reuse them

• Test critical systemic properties (performance, security, availability, ...)

Data Structures and Algorithms for Engineers 24. Carnegie Mellon University Africa

General Issues with Dynamic Testing

• It’s often impossible to test a program on all possible inputs

– the input sets might be very large, or even infinite

• It can be impossible to test a system without placing life, limb, and
material at significant risk

– You can only really test the software when you fly it, drive it, ... That is a
terrible time to find defects!

• Dynamic testing focuses on testing functionality, not systemic properties
such as modifiability, maintainability, scalability, ...

Data Structures and Algorithms for Engineers 25. Carnegie Mellon University Africa

General Issues with Dynamic Testing

• “Testing can only be used to demonstrate the presence of errors in
software, not their absence.” Dijkstra

• Too often testing is conducted in an ad hoc way and is not planned. It can
be difficult to

– determine the level of coverage

– know if the important things have been tested

• Testing ¹ Quality – you can’t “test-in” quality

– testing is not cheap

– testing is the last resort

– achieving quality software requires a quality strategy base on quality goals

Data Structures and Algorithms for Engineers 26. Carnegie Mellon University Africa

Verification and Validation Strategies

• How much quality do you need and when do you need it?

– Does it have to be perfect when it is delivered?

– Can we deliver with “good-enough” quality and improve over time?

• Adopting an explicit V&V strategy and creating a plan to achieve quality
goals is an essential part of project planning

Data Structures and Algorithms for Engineers 27. Carnegie Mellon University Africa

Verification and Validation Strategies

• What we try to do when we devise a V&V strategy is select multiple
layers of techniques to prevent and detect defects before they are
deployed

• The combination of techniques you select will vary based on your quality
goals

Data Structures and Algorithms for Engineers 28. Carnegie Mellon University Africa

The Cost of Finding and Fixing Defects

• Data shows that the earlier a defect is found the cheaper it is to fix it

• The following table shows the average cost of fixing defect depending on
when it was introduced and when it was found

• For example, a defect introduced in design, costs on average 25–100
times more to fix it once deployed

Data Structures and Algorithms for Engineers 29. Carnegie Mellon University Africa

The Cost of Finding and Fixing Defects

Validation and verification cuts across the lifecycle ...

Data Structures and Algorithms for Engineers 30. Carnegie Mellon University Africa

Verification Considerations

Explore the input domain

• Inputs that force all the errors

• Input messages

• Inputs that force default values

• Explore allowable inputs

• Overflow input buffers

• Test inputs that may interact, and test combinations of their values

• Repeat the same input numerous times

Data Structures and Algorithms for Engineers 31. Carnegie Mellon University Africa

Verification Considerations

Explore the outputs

• try to force different outputs to be generated for each input

• try to force invalid outputs to be generated

• force properties of an output to change

• force the screen to refresh

Data Structures and Algorithms for Engineers 32. Carnegie Mellon University Africa

Verification Considerations

Explore data constraints

• force a data structure to store too many or too few values

• find ways to violate internal data constraints

Data Structures and Algorithms for Engineers 33. Carnegie Mellon University Africa

Verification Considerations

Explore feature interactions

• force invalid operator/operand combinations

• make a function call itself recursively

• force computation results to be too big or too small

• test features that share data

Data Structures and Algorithms for Engineers 34. Carnegie Mellon University Africa

Verification Considerations

Explore the file system conditions

• file system full to capacity

• disk is busy or unavailable

• invalid file name

• invalid disk

• vary file permissions

• vary or corrupt file context

Data Structures and Algorithms for Engineers 35. Carnegie Mellon University Africa

Conclusion

Simple Formal Verification Techniques

Dynamic Testing Techniques

Static Testing Techniques

These methods must be coupled with
disciplined software practices and

a broader verification and validation strategy
to provide practical, cost effective, benefit

“you can’t test quality into software”

Data Structures and Algorithms for Engineers 36. Carnegie Mellon University Africa

References

• Stephen H. Kan, Metrics and Models in Software Quality Engineering (2nd edition) Addison-
Wesley, September 2002

• Capers Jones, Measuring Defect Potentials and Defect Removal Efficiency, Cross Talk –
The Journal of Defense Software Engineering, Jun 2008

• Algorithmics: The Spirit of Computing (3rd edition), David Harel, Yishai Feldman

• Data Structures and Algorithms, Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft

• Introduction to Algorithms (2nd edition), Thomas H. Cormen et al.

• M. E. Fagan, Design and Code Inspections to Reduce Errors in Program Development, IBM
Systems Journal, vol. 15, no. 3, pp. 182, 211, 1976.

• W. E. Stephenson, An Analysis of Resources Used on the SAFEGUARD System Software
Development, Technical Report, Bell Labs, August 1976.

• E. B. Daly, Management of Software Engineering, IEEE Transactions on Software
Engineering, vol. 3, pp. 229, 242, May 1977.

• B.W.Boehm,SoftwareEngineeringEconomics.PrenticeHall,1981.

• J. Whittaker, How to Break Software: A Practical Guide to Testing, 2003

Data Structures and Algorithms for Engineers 37. Carnegie Mellon University Africa

Supplementary Reading

• "Integrating Software Testing and Run-Time Checking in an Assertion Verification
Framework," Lopez-Garcıa/Hermenegildo

• All I Really Need to Know about Pair Programming I Learned In Kindergarten," Williams,
Kessler

• "Unit Testing–a Very Short Parable," Sanford M. Sorkin
http://ww2.cis.temple.edu/sorkin/CIS338UnitTesting.htm

• “Designing Unit Tests,” IPL Information Processing Ltd.
(With permission from IPL Information Processing Ltd., Eveleigh House, Grove Street Bath,
BA1 5LR, United Kingdom)

• Invariant Assertion Method, http://www.rose- hulman.edu/Users/faculty/young/CS-
Classes/csse373/current/Resources/Ardis1.pdf

Data Structures and Algorithms for Engineers 38. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

• OOA: Object-oriented Analysis (Booch method; Coad and Yourdon method)

• OOD: Object-oriented Design

• OOP: Object-oriented Programming

• OOT: Object-oriented Testing

• What is an object-oriented approach?

One definition:

It is the exploitation of class objects, with private data members and
associated access functions

Data Structures and Algorithms for Engineers 39. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

• Class

– A class is a ‘template’ for the specification of a particular collection of entities (e.g. a
widget in a Graphic User Interface)

– More formally, ‘a class is an OO concept that encapsulates the data and procedural
abstractions that are required to describe the content and behaviour of some real-
world entity’

• Attributes

– Each class will have specific attributes associated with it (e.g. the position and size of
the widget)

– These attributes are queried using associated access functions (e.g. set_position)

Data Structures and Algorithms for Engineers 40. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

• Object

– An object is a specific instance (or instantiation) of a class (e.g. a button or an input
dialogue box)

• Data Members
– The object will have data members representing the class attributes (e.g. int x, y;)

Data Structures and Algorithms for Engineers 41. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

• Access functions

– The values of these data members are accessed using the access functions (e.g.
set_position(x, y);)

– These access functions are called methods (or services)

– Since the methods tend to manipulate a limited number of attributes (i.e. data
members) a given class tends to be cohesive.

– Since communication occurs only through methods, a given class tends to be
decoupled from other objects.

Data Structures and Algorithms for Engineers 42. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

• Encapsulation

– The object (and class) encapsulates the data members (attributes), methods (access
functions) in one logical entity

• Data Hiding

– It allows the implementation of the data members to be hidden

– Why? Because the only way of getting access to them – of seeing them – is through
the methods

– This is called data hiding

Data Structures and Algorithms for Engineers 43. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

• Abstraction

– This separation, though data hiding, of physical implementation from logical access is
called abstraction

• Messages

– Objects communicate with each other by sending messages

– This just means that a method from one class calls a method from another method
and information is passed as arguments

Data Structures and Algorithms for Engineers 44. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

Aside: an Alternative definition of object-orientation (Ellis and Stroustrup)

‘The use of derived classes and virtual functions is often called object-
oriented programming’

Data Structures and Algorithms for Engineers 45. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

Two views of a class:

Data Structures and Algorithms for Engineers 46. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

Class hierarchy:

chairtable desk "chable"

instances of chair

furniture (superclass)

subclasses of the
furniture superclass

Data Structures and Algorithms for Engineers 47. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

Message passing between objects

Data Structures and Algorithms for Engineers 48. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOA: Object-Oriented Analysis

– Booch method

– Coad and Yourdon method

– Jacobson method

– Rambaugh method

Data Structures and Algorithms for Engineers 49. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in OOA:

1. Obtain customer requirements

• identify scenarios or use cases

• build a requirements model

2. Select classes and objects using basic requirements

3. Identify attributes and operations for each object:

• Class-Responsibility-Collaborator (CRC) Modelling

Data Structures and Algorithms for Engineers 50. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in OOA:

4. Define structures and hierarchies that organize classes

• Generalization-Specialization (Gen-Spec) structure (“is a”)

• Composite-Aggregate (Whole-Part) structure (“has a”)

Data Structures and Algorithms for Engineers 51. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

There are seven generic steps in OOA:

5. Build an object-relationship model

6. Build an object-behaviour model

State transition diagram

Event trace diagram

7. Review the OO analysis model against use cases / scenarios

Data Structures and Algorithms for Engineers 52. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOD: Object-Oriented Design

– ‘Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder … a reusable and flexible design is difficult if not impossible to
get “right” the first time’

– OOD is a part of an iterative cycle of analysis and design

– Several iterations of which may be required before one proceeds to the OOP stage

Data Structures and Algorithms for Engineers 53. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOD: Object-Oriented Design

– ‘Designing object-oriented software is hard, and designing reusable object-oriented
software is even harder … a reusable and flexible design is difficult if not impossible to
get “right” the first time’

– OOD is a part of an iterative cycle of analysis and design

– Several iterations of which may be required before one proceeds to the OOP stage

Data Structures and Algorithms for Engineers 54. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Data Structures and Algorithms for Engineers 55. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Data Structures and Algorithms for Engineers 56. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Data Structures and Algorithms for Engineers 57. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Data Structures and Algorithms for Engineers 58. Carnegie Mellon University Africa

Abstract Data Types and
Object-Oriented Programming

OOP: Object-Oriented Programming

Data Structures and Algorithms for Engineers 59. Carnegie Mellon University Africa

Standard Template Library
STL

Data Structures and Algorithms for Engineers 60. Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 61. Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 62. Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 63. Carnegie Mellon University Africa

Standard Template Library
STL

Adapted from https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

Data Structures and Algorithms for Engineers 64. Carnegie Mellon University Africa

Standard Template Library
STL

Adapted from https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/
https://www.geeksforgeeks.org/unordered_map-in-cpp-stl/

Data Structures and Algorithms for Engineers 65. Carnegie Mellon University Africa

Standard Template Library
STL

Data Structures and Algorithms for Engineers 66. Carnegie Mellon University Africa

Standard Template Library
STL

Data Structures and Algorithms for Engineers 67. Carnegie Mellon University Africa

Standard Template Library
STL

https://www.studytonight.com/cpp/stl/

Data Structures and Algorithms for Engineers 68. Carnegie Mellon University Africa

Data Structures and Algorithms for Engineers 69. Carnegie Mellon University Africa

Computational
Theory

Representation
& Algorithm

Hardware/Software
Implementation

Goal, logic, strategy, model

I/O representation, transformation algorithm

Physical realization

Loose coupling

Loose coupling

Marr’s Hierarchy of Abstraction / Levels of Understanding Framework

Data Structures and Algorithms for Engineers 70. Carnegie Mellon University Africa

04-630
Data Structures and Algorithms for Engineers

David Vernon
Carnegie Mellon University Africa

vernon@cmu.edu
www.vernon.eu

