Current page: Information->Indexed and Annotated Bibliography
 
ECVision indexed and annotated bibliography of cognitive computer vision publications
This bibliography was created by Hilary Buxton and Benoit Gaillard, University of Sussex, as part of ECVision Specific Action 8-1
The complete text version of this BibTeX file is available here: ECVision_bibliography.bib


D.~P. Capel and A. Zisserman
Super-resolution enhancement of text image sequences.

ABSTRACT

The objective of this work is the super-resolution enhancement of image sequences. We consider in particular images of scenes for which the point-to-point image transformation is a plane projective transformation. We first describe the imaging model, and a maximum likelihood (ML) estimator of the super-resolution image. We demonstrate the extreme noise sensitivity of the unconstrained ML estimator. We show that the Irani and Peleg super-resolution algorithm does not suffer from this sensitivity, and explain that this stability is due to the error back-projection method which effectively constrains the solution. We then propose two estimators suitable for the enhancement of text images: a maximum a posterior (MAP) estimator based on a Huber prior, and an estimator regularized using the Total Variation norm. We demonstrate the improved noise robustness of these approaches over the Irani and Peleg estimator. We also show the effects of a poorly estimated point spread function (PSF) on the super-resolution result and explain conditions necessary for this parameter to be included in the optimization. Results are evaluated on both real and synthetic sequences of text images. In the case of the real images, the projective transformations relating the images are estimated automatically from the image data, so that the entire algorithm is automatic.


Site generated on Friday, 06 January 2006