Current page: Information->Indexed and Annotated Bibliography
B. Haasdonk and D. Keysers
ABSTRACT
When dealing with pattern recognition problems one encounters different types of a-priori knowledge. It is important to incorporate such knowledge into the classification method at hand. A very common type of a-priori knowledge is transformation invariance of the input data, e.g. geometric transformations of image-data like shifts, scaling etc. Distance based classification methods can make use of this by a modified distance measure called tangent distance [13, 14]. We introduce a new class of kernels for support vector machines which incorporate tangent distance and therefore are applicable in cases where such transformation invariances are known. We report experimental results which show that the performance of our method is comparable to other state-of-the-art methods, while problems of existing ones are avoided. 
ECVision indexed and annotated bibliography of cognitive computer vision publications
This bibliography was created by Hilary Buxton and Benoit Gaillard, University of Sussex, as part of ECVision Specific Action 8-1
The complete text version of this BibTeX file is available here: ECVision_bibliography.bib
Tangent Distance Kernels for Support Vector MachinesSite generated on Friday, 06 January 2006