Current page: Information->Indexed and Annotated Bibliography
Current Index Position:
Papers
L. Paletta and A. Pinz
G. M. Wallis and H. H. B{\"{u}}lthoff
M. O. {Newell, F. N.and Ernst} and B. S. Tjan and H. H. B{\"{u}}lthoff
H. Kruppa and M. A. Bauer and B. Schiele
S. Edelman
B. Heisele and T. Serre and M. Pontil and T. Vetter and T. Poggio
Silvio Savarese and Holly Rushmeiera and Fausto Bernardini and Pietro Perona
Roger Trias-Sanz and Nicolas Lom{\'e}nie
K. Inoue and K. Urahama
Maloof, M.A. and Langley, P. and Sage, S. and Binford, T.O.
X. O. Tang
S. di Zenzo
G. Heidemann and D. Lucke and H. Ritter
J. Hornegger and H. Niemann
 
ECVision indexed and annotated bibliography of cognitive computer vision publications
This bibliography was created by Hilary Buxton and Benoit Gaillard, University of Sussex, as part of ECVision Specific Action 8-1
The complete text version of this BibTeX file is available here: ECVision_bibliography.bib
Recognition, Categorisation and Estimation
Content
Objects/Parts
Active object recognition by view integration and reinforcement learning
BibTex Abstract Paper 
The Handbook of Brain Theory and Neural Networks
BibTex Abstract Paper 
Viewpoint Dependance in Visual and haptic Object Recognition
BibTex Abstract Paper 
Skin Patch Detection in Real-World Images
BibTex Abstract Paper 
Computational theories of object recognition
BibTex Abstract Paper 
Categorization by Learning and Combining Object Parts
BibTex Abstract Paper 
Shadow Carving
BibTex Abstract Paper 
Automatic Bridge Detection in High-Resolution Satellite Images
BibTex Abstract Paper 
Learning of view-invariant pattern recognizer with temporal context
BibTex Abstract Paper 
Learning to detect rooftops in aerial images
BibTex Abstract Paper 
Multiple Competitive Learning Network Fusion for Object Classification
BibTex Abstract Paper 
Pattern recognition of collections
BibTex Abstract Paper 
A System for Various Visual Classification Tasks Based on Neural Networks
BibTex Abstract Paper 
A Bayesian Approach to Learn and Classify 3{D} Objects from Intensity Images
BibTex Abstract Paper Site generated on Friday, 06 January 2006