Current page: Information->Indexed and Annotated Bibliography
Y. Wexler and A.~W. Fitzgibbon and A. Zisserman
ABSTRACT
When estimating foreground and background layers (or equivalently an {\em alpha matte}), it is often the case that pixel measurements contain mixed colours which are a combination of foreground and background. Object boundaries, especially at thin sub-pixel structures like hair, pose a serious problem. In this paper we present a multiple view algorithm for computing the alpha matte. Using a Bayesian framework, we model each pixel as a combined sample from the foreground and background and compute a MAP estimate to factor the two. The novelties in this work include the incorporation of three different types of priors for enhancing the results in problematic scenes. The priors used are inequality constraints on colour and alpha values, spatial continuity, and the probability distribution of alpha values. The combination of these priors result in accurate and visually satisfying estimates. We demonstrate the method on real image sequences with varying degrees of geometric and photometric complexity. The output enables virtual objects to be added between the augmentation to the original sequences. 
ECVision indexed and annotated bibliography of cognitive computer vision publications
This bibliography was created by Hilary Buxton and Benoit Gaillard, University of Sussex, as part of ECVision Specific Action 8-1
The complete text version of this BibTeX file is available here: ECVision_bibliography.bib
Bayesian Estimation of Layers from Multiple ImagesSite generated on Friday, 06 January 2006