Current page: Information->Indexed and Annotated Bibliography
C. Yuan and H. Niemann
ABSTRACT
In this paper we present a neural network (NN) based system for recognition and pose estimation of 3D objects from a single 2D perspective view. We develop an appearance based neural approach for this task. First the object is represented in a feature vector derived by a principal component network. Then a NN classifier trained with Resilient backpropagation (Rprop) algorithm is applied to identify it. Next pose parameters are obtained by four NN estimators trained on the same feature vector. Performance on recognition and pose estimation for real images under occlusions are shown. Comparative studies with two other approaches are carried out. 
ECVision indexed and annotated bibliography of cognitive computer vision publications
This bibliography was created by Hilary Buxton and Benoit Gaillard, University of Sussex, as part of ECVision Specific Action 8-1
The complete text version of this BibTeX file is available here: ECVision_bibliography.bib
Neural networks for the recognition and pose estimation of 3{D} objects from a single 2{D} perspective viewSite generated on Friday, 06 January 2006