Robotics: Principles and Practice

Module 1: Introduction and Robot Components

Lecture 2: A short history of robotics

David Vernon
Carnegie Mellon University Africa

www.vernon.eu

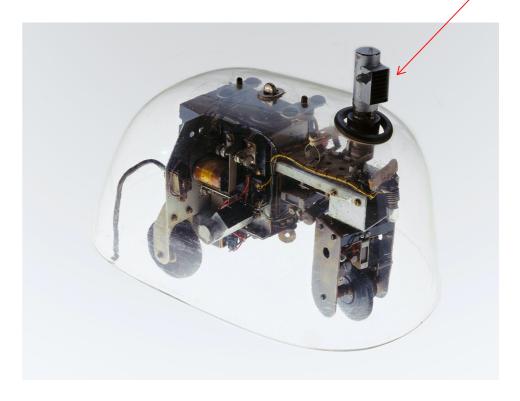
The word robot was popularized by the Czech playwright Karel Capek

pronounced Kha-rel Cha-pek

in his 1921 play Rossum's Universal Robots (R.U.R.).

 It resulted from combining the Czech words rabota, meaning "obligatory work" and robotnik, meaning "serf"

W. Grey Walter's Tortoises (1950)


- Neurophysiologist W. Grey Walter built his cybernetic tortoises to understand the functions of the brain
 - Elmer and Elsie
- Part of the emerging field of cybernetics
 - The field's founder, Norbert Wiener, defined cybernetics as "the scientific study of control and communication in the animal and the machine."

Meet the Roomba's Ancestor: The Cybernetic Tortoise, IEEE Spectrum, 2020 https://spectrum.ieee.org/tech-history/space-age/meet-roombas-ancestor-cybernetic-tortoise

W. Grey Walter's Tortoises (1950)

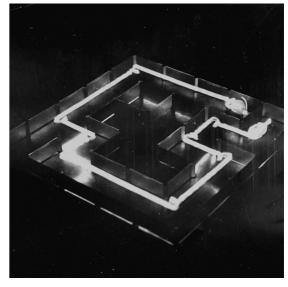
 "With just a photocell, a touch sensor, and two vacuum tubes, the robo-tortoise mimicked the way real animals move"

Meet the Roomba's Ancestor: The Cybernetic Tortoise, IEEE Spectrum, 2020 https://spectrum.ieee.org/tech-history/space-age/meet-roombas-ancestor-cybernetic-tortoise

Rotating photocell

Claude Shannon's Mouse (1950)

 This was one of the world's first examples of machine learning: a robotic maze-solving mouse known as Theseus

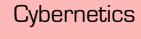

https://www.technologyreview.com/2018/12/19/138508/mighty-mouse/

Claude Shannon's Mouse

"These photos, published in Life magazine in 1952, show the path Theseus took while learning a maze pattern and the direct path taken on its second trip through the same maze"

https://www.technologyreview.com/2018/12/19/138508/mighty-mouse/

W. Ross Ashby, Warren McCulloch, Grey Walter, Norbert Wiener at the 1951 Congress on Cybernetics, Paris


N. Wiener

Cybernetics: or the Control and Communication in the Animal and the Machine, 1948.

(κυβερνητης or kybernetes: steersman)

W. Ross Ashby

Design for a Brain, first edition, 1952 ... 1956, 1960. Introduction to Cybernetics, 1957



Walter McCulloch

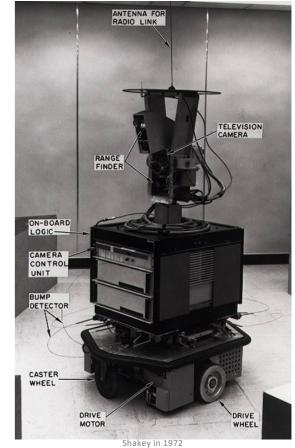
W. S. McCulloch and W. Pitts "A logical calculus of ideas immanent in nervous activity". Bulletin of Mathematical Biophysics 5:115–133, 1943

Both Walter's and Shannon's robots built on behaviorist psychology

- using associative and reinforcement learning in relatively simple neural networks
- rather than focussing on internal models and symbolic computation
- Precursor to reactive and behaviour-based robotics (more on this later when we discuss paradigms of robotics)

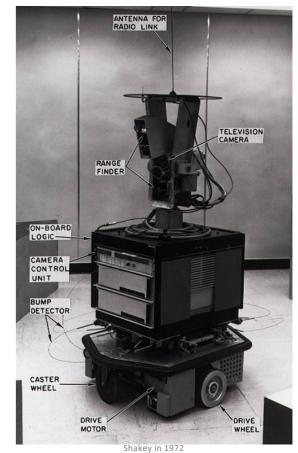
Meet the Roomba's Ancestor: The Cybernetic Tortoise, IEEE Spectrum, 2020 https://spectrum.ieee.org/tech-history/space-age/meet-roombas-ancestor-cybernetic-tortoise

Shakey (1966 - 1972)


- "Shakey" was the first mobile robot with the ability to perceive and reason about its surroundings and its actions
- Developed at the Artificial Intelligence Center of Stanford Research Institute (now called SRI International)
- Charles Rosen, Nils Nilsson, Alfred Brain, Sven Wahlstrom, Bertram Raphael, Richard Duda, Peter Hart, Richard Fikes, Richard Waldinger, Thomas Garvey, Jay Tenenbaum, Helen Chan Wolf and Michael Wilber

https://www.sri.com/hoi/shakey-the-robot/

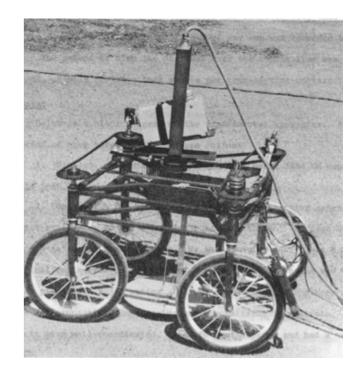
Shakey built on computationalist (cognitivist) psychology and symbolic Al


- Programming was primarily done in LISP
- Using the Stanford Research Institute Problem Solver (STRIPS) planner
- The first robot that was a logical, goal-based agent
- Precursor to hierarchical "sense-plan-act" robotics (more on this later when we discuss paradigms of robotics)

https://en.wikipedia.org/wiki/Shakey_the_robot

Some research results

- The A* search algorithm
- The Hough transform
- The visibility graph method
- Major impact on the development of robotics & Al (and computer science, generally)



https://en.wikipedia.org/wiki/Shakey_the_robot

Stanford Cart (1960 - 1980)

James Adams
Stanford University

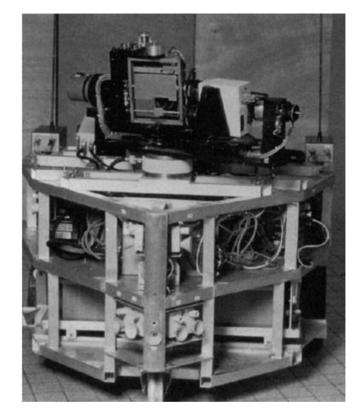
https://web.stanford.edu/~learnest/sail/oldcart.html

Stanford Cart with cable, 1961
https://web.stanford.edu/~learnest/sail/oldcart.html

Stanford Cart (1961 - 1980)

Hans Moravec Stanford Artificial Intelligence Laboratory SAIL

- Sensors
 - Stereo vision (camera on a slider)
- Speed
 - ~1 meter per 10-15 minutes
 - Full run: 5 hours
- Accomplishments:
 - Successfully navigated 20 meter courses, avoiding obstacles using visual sensing
 - Used graph search to find shortest path


Stanford Cart 1980 © Mark Richards

https://www.computerhistory.org/revolution/artificial-intelligence-robotics/13/293/1277

HILARE (late 1970s)

LAAS Lab Laboratoire d'Analyse et D'Architecture des Systemes, Toulouse, France

- Sensors
 - Video camera
 - 14 sonar sensors
 - Laser range finder
- Actuators
 - Three wheels: two actuated, one caster
- Weight
 - 400 kg

https://slideplayer.com/slide/11973896/

Rover (1983)

Hans Moravec
Carnegie Mellon University

- Follow-on from the Stanford Cart
- Sensors
 - Video camera with pan and tilt
 - Sonar
 - Infrared
- Actuators
 - Three independently powered wheels
- Accomplishments: set the stage for behavior-based robotics

https://slideplayer.com/slide/11973896/

Robotics "The mathematics of controlling machines" Control Theory **Artificial** Cybernetics Intelligence "The integration of sensing, "The mechanisms for planning action, and the environment" and reasoning"

M. Mataric, The Robotics Primer, MIT Press, 2007; Chapter 2, p. 17.

Reading

M. Mataric, The Robotics Primer, MIT Press, 2007. Chapter 2.