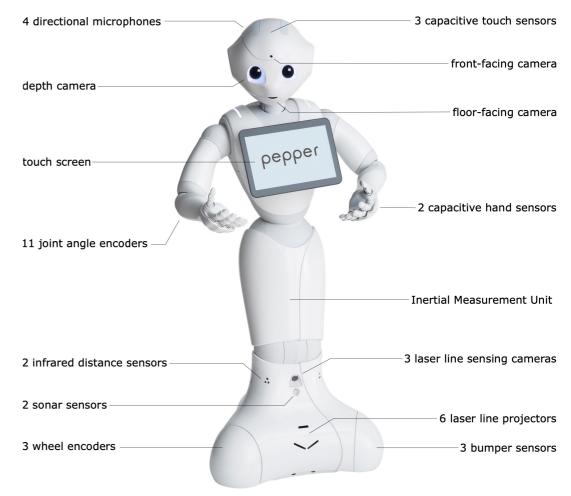
Robotics: Principles and Practice

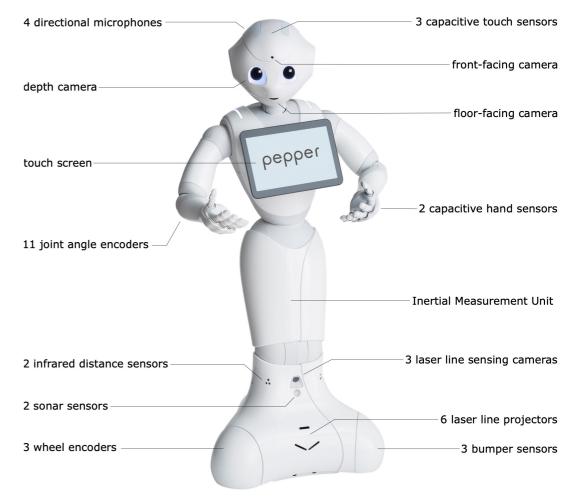
Module 1: Introduction and Robot Components


Lecture 5: Effectors

David Vernon
Carnegie Mellon University Africa

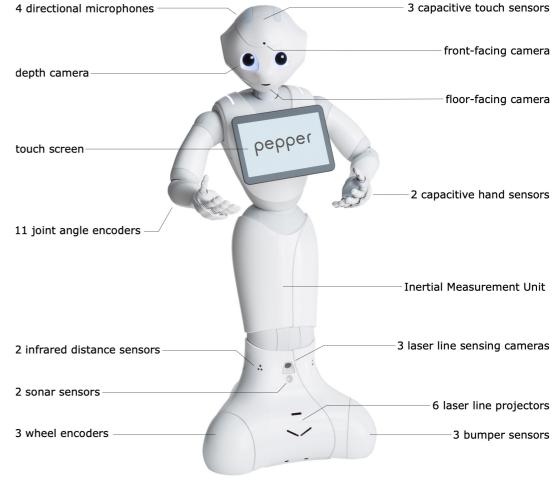
www.vernon.eu

Robot Components


- Physical embodiment
- Sensors To perceive the environment
- Actuators To take action
- Effectors
- Controllers For autonomy

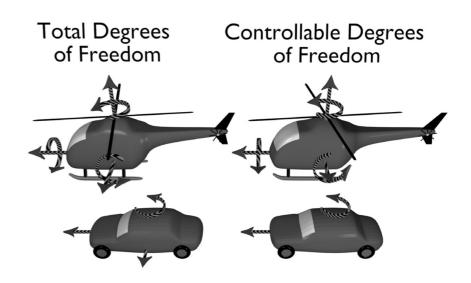
Definition

"An effector is any device on a robot that has an effect (impact or influence) on the environment"


M. Mataric

Effectors for locomotion - Legs - Wheels Effectors much be matched to the task - Tracks the robot has to do and the environment in which it has to work - Wings - Flippers Effectors for manipulation - Arms - Hands

- Grippers - End-effectors


Tools

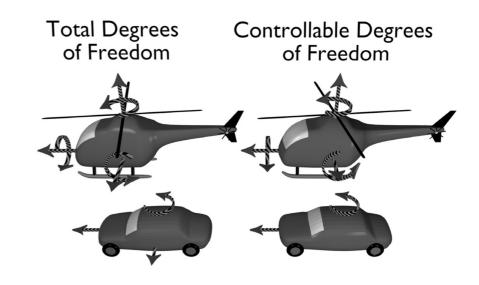
- The minimum number of coordinates required to completely specify the motion of a mechanical system
- Determines what poses (positions and orientations) the robot can achieve
- Determines how it can move

- It requires six degrees of freedom to position and orient a body in space
 - Three translational degrees of freedom
 - Three rotational degrees of freedom
- The position and orientation of a body is referred to as its pose
- Much more on pose specification later in the course

- A flying helicopter has six degrees of freedom
 - Three translational & three rotational
- A car or bicycle moving on a plane has three degrees of freedom
 - Two translational and one rotational
 - But only two are controllable
 - Forward velocity
 - Rotation about the vertical axis

M. Mataric, The Robotics Primer, MIT Press, 2007

TDOF: total degrees of freedom


CDOF: controllable degrees of freedom

Holonomic robot: CDOF = TDOF

Non-holonomic robot: *CDOF* < *TDOF*

Redundant robot: *CDOF* > *TDOF*

(We'll cover a more technical explanation of non-holonomic robots later in the course)

M. Mataric, The Robotics Primer, MIT Press, 2007

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers End-effectors
- Tools

Atlas

Atlas is the most agile humanoid in existence. It uses whole-body skills to move quickly and balance dynamically. It can lift and carry objects like boxes and crates, but its favorite tricks are running, jumping, and doing backflips.

CREATOR

Boston Dynamics 2

COUNTRY

United States

YEAR

2016

TYPE

Humanoids, Industrial

Source: https://robots.ieee.org/robots/atlas2016/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers End-effectors
- Tools

Spot

Spot is a compact, nimble four-legged robot that can trot around your office, home, or outdoors. It can map its environment, sense and avoid obstacles, climb stairs, and open doors. It can also fetch you a drink.

CREATOR

Boston Dynamics 🗹

COUNTRY

United States **5**

YEAR

2016

TYPE

Industrial, Research

Source: https://robots.ieee.org/robots/spotmini/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers End-effectors
- Tools

PR2

The PR2 is one of the most advanced research robots ever built. Its powerful hardware and software systems let it do things like clean up tables, fold towels, and fetch you drinks from the fridge.

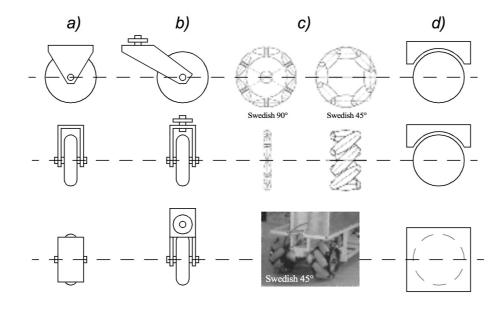
CREATOR

Willow Garage 🗹

COUNTRY

United States

YEAR


2010

TYPE

Research, Humanoids

Source: https://robots.ieee.org/robots/pr2/

Wheels

Source: R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, 2004

- (a) Standard wheel
- (b) Castor wheel
- (c) Swedish wheel
- (d) Ball or spherical wheel

Rotation about axle for movement and about contact point for steering

Rotation about axle for movement and about vertical axis for steering; imparting a force on the robot body when steering

Rotation about axle for movement but also about rollers allowing movement is any direction

Omnidirectional wheel: can spin in any direction

Wheels

# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples	
2		One steering wheel in the front, one traction wheel in the rear Two-wheel differential drive	Bicycle, motorcycle Cye personal robot			Two motorized wheels in the rear, 2 steered wheels in the front; steering has to be different for the 2 wheels to avoid	Car with rear-wheel drive	6		Two motorized and steered wheels aligned in center, 1 omnidirectional wheel at each corner	First	
		with the center of mass (COM) below the axle	Cye personal robot			slipping/skidding. Two motorized and steered wheels in the front, 2 free wheels in the rear; steering has	Car with front-wheel drive			Two traction wheels (differential) in center, 1 omnidirectional wheel at each corner	Terregator (Carnegie Mellon University)	
3		Two-wheel centered differential drive with a third point of contact	Nomad Scout, smartRob EPFL			to be different for the 2 wheels to avoid slipping/skidding.						
					77	Four steered and motorized wheels Two traction wheels (differential) in rear/front, 2 omnidirectional wheels in the front/rear	Four-wheel drive, four-wheel steering Hyperion (CMU) Charlie (DMT-EPFL)	Icons fo	unpowered standard wheel;			
		Two independently driven wheels in the rear/front, 1 unpowered omnidirectional wheel in the front/rear	Many indoor robots, including the EPFL robots Pygmalion and Alice									
		Two connected traction wheels (differential) in rear, 1 steered free wheel in front	Piaggio minitrucks									
					TZZZI TZZZI	Four omnidirectional wheels	EPFL Khepera, Hyperbot		motorized and steered	castor wheel;		
		Two free wheels in rear, 1 steered traction wheel in front	Neptune (Carnegie Mellon University), Hero-1			Two-wheel differential drive		中	steered standard wheel	;		
						with 2 additional points of contact		团	connected wheels.			
		Three motorized Swedish or spherical wheels arranged in a triangle; omnidirectional move- ment is possible	Stanford wheel Tribolo EPFL, Palm Pilot Robot Kit (CMU)			Four motorized and steered						
						castor wheels						
		Three synchronously motorized and steered wheels; the orientation is not controllable	"Synchro drive" Denning MRV-2, Georgia Institute of Technology, I-Robot B24, Nomad 200									

Source: R. Siegwart and I. R. Nourbakhsh, *Introduction to Autonomous Mobile Robots*, MIT Press, 2004

Wheels

# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples	# of wheels	Arrangement	Description	Typical examples	
2		one traction wheel in the rear	Bicycle, motorcycle	4	TT	Two motorized wheels in the rear, 2 steered wheels in the front; steering has to be different for the 2 wheels to avoid	Car with rear-wheel drive	6		Two motorized and steered wheels aligned in center, 1 omnidirectional wheel at each corner	First	
		Two-wheel differential drive with the center of mass (COM) below the axle	Cye personal robot			slipping/skidding.	Car with front-wheel drive		0 0	Two traction wheels (differen-	Terregator (Carnegie Mel-	
						Two motorized and steered wheels in the front, 2 free wheels in the rear; steering has to be different for the 2 wheels to avoid slipping/skidding.	Car with front-wheel drive			tial) in center, 1 omnidirec- tional wheel at each corner	lon University)	
3		Two-wheel centered differential drive with a third point of contact	Nomad Scout, smartRob EPFL									
					77	Four steered and motorized wheels	Four-wheel drive, four- wheel steering Hyperion (CMU)	Icons for	the each wheel type are	as follows:		
		Two independently driven wheels in the rear/front, 1 unpowered omnidirectional wheel in the front/rear	Many indoor robots, including the EPFL robots Pygmalion and Alice						unpowered omnidirectional wheel (spherical, castor, Swedish);			
						Two traction wheels (differen-	Charlie (DMT-EPFL)		motorized Swedish wheel (Stanford wheel);			
						tial) in rear/front, 2 omnidirectional wheels in the front/rear			unpowered standard w	heel;		
		Two connected traction wheels (differential) in rear, 1 steered free wheel in front	Piaggio minitrucks						motorized standard wh	eel·		
					[777] [777]	Four omnidirectional wheels	Carnegie Mellon Uranus		motorized and steered	,		
		Two free wheels in rear, 1 steered traction wheel in front	Neptune (Carnegie Mellon University), Hero-1			TZZI TZZI			中	steered standard wheel	;	
						Two-wheel differential drive with 2 additional points of cortact	EPFL Khepera, Hyperbot Chip	团团	connected wheels.			
		Three motorized Swedish or spherical wheels arranged in a triangle; omnidirectional move- ment is possible	Stanford wheel Tribolo EPFL, Palm Pilot Robot Kit (CMU)									
						Four motorized and steered castor wheels	Nomad XR4000					
		Three synchronously motorized and steered wheels; the orientation is not controllable	"Synchro drive" Denning MRV-2, Georgia Institute of Technology, I-Robot B24, Nomad									
			200] ,	्र We will study two	-wheel differential driv	l e locomotion					

Source: R. Siegwart and I. R. Nourbakhsh, *Introduction to Autonomous Mobile Robots*, MIT Press, 2004

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers | End-effectors
- Tools

Kobra

Kobra is a rugged, remote control robot designed to search for explosives and carry out reconnaissance missions. It rolls on tank-like treads, and its manipulator arm can lift heavy payloads.

CREATOR

Endeavor Robotics ☐ (Originally created by iRobot)

COUNTRY

United States

YEAR

2011

TYPE

Military & Security, Disaster Response

Source: https://robots.ieee.org/robots/kobra/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers | End-effectors
- Tools

Zipline

Zipline is an autonomous fixed-wing aircraft drone used to carry blood and medicine from a distribution center to wherever it's needed. It can launch within minutes, and travel in any weather.

CREATOR

Zipline 🗹

COUNTRY

United States 📁

YEAR

2016

TYPE

Drones, Medical

Source: https://robots.ieee.org/robots/zipline/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers | End-effectors
- Tools

Salamandra robotica II

Salamandra robotica II is an amphibious robot inspired by the salamander's anatomy and nervous system. It's used to study robot locomotion and test neurobiological models in real environments.

CREATOR

Biorobotics Laboratory at EPFL 🗹

COUNTRY

Switzerland 2

YEAR

2012

TYPE

Research

Source: https://robots.ieee.org/robots/salamandra/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands

Tools

- Grippers - End-effectors

PR2

The PR2 is one of the most advanced research robots ever built. Its powerful hardware and software systems let it do things like clean up tables, fold towels, and fetch you drinks from the fridge.

CREATOR

Willow Garage 🗹

COUNTRY

United States

YEAR

2010

TYPE

Research, Humanoids

Source: https://robots.ieee.org/robots/pr2/

Effectors for locomotion


- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands

Tools

- Grippers - End-effectors

iCub

iCub is a child-size humanoid robot capable of crawling, grasping objects, and interacting with people. It's designed as an open source platform for research in robotics, AI, and cognitive science.

CREATOR

RoboCub Consortium and IIT 🗹

COUNTRY

Italy 💶

YEAR

2004

TYPE

Humanoids, Research

Source: https://robots.ieee.org/robots/icub/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers End-effectors
- Tools

Shadow Hand

The Shadow Dexterous Hand is one of the most advanced robot hands in the world. It's designed to replicate as much of the functionality, dimensions, and range of motion of the human hand as possible.

CREATOR

Shadow Robot Company 🗹

COUNTRY

United Kingdom ##

YEAR

2004

TYPE

Industrial, Telepresence, Research

Source: https://robots.ieee.org/robots/davinci/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers \rightarrow End-effectors

- Tools

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands

- Grippers \ End-effectors

Tools

Sawyer

Sawyer is an industrial collaborative robot designed to help out with manufacturing tasks and work alongside humans. You can teach it new tasks by demonstrating what to do using the robot's own arm.

CREATOR

Rethink Robotics 7

COUNTRY

United States 📁

YEAR

2015

TYPE

Industrial

Source: https://robots.ieee.org/robots/sawyer/

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers | End-effectors

- Tools

C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, S. Šabanović, Human-Robot Interaction – An Introduction, Cambridge University Press, 2020

Effectors for locomotion

- Legs
- Wheels
- Tracks
- Wings
- Flippers

Effectors for manipulation

- Arms
- Hands
- Grippers End-effectors
- Tools

Da Vinci

The da Vinci is a surgical robot designed for minimally invasive procedures. It has four arms equipped with surgical instruments and cameras that a physician controls remotely from a console.

CREATOR

Intuitive Surgical 📝

COUNTRY

United States

YEAR

1999

TYPE

Medical

Source: https://robots.ieee.org/robots/davinci/

Reading

C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, S. Šabanović, Human-Robot Interaction – An Introduction, Cambridge University Press, 2020. Chapter 3: How a Robot Works.

https://www.human-robot-interaction.org/download/170/

M. Mataric, The Robotics Primer, MIT Press, 2007. Chapters 5 and 6.