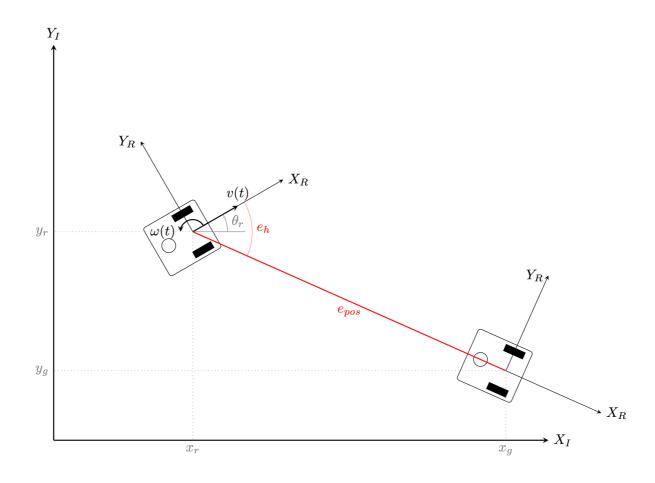

Introduction to Cognitive Robotics

Module 3: Mobile Robots


Lecture 6: The go-to-position problem; divide-and-conquer controller

David Vernon
Carnegie Mellon University Africa

www.vernon.eu

- The robot knows its own global current position
 - $-(x_r,y_r,\theta_r)$
- It knows the global position of the goal
 - $-(x_g, y_g)$
- Compute error in position and heading
 - $-(e_{pos}, e_h)$

The robot knows its own global current position

$$-(x_c, y_c, \theta_c)$$

It knows the global position of the goal

$$-(x_g, y_g)$$

Compute error in position and heading

$$-(e_{pos}, e_h)$$

- Reduce both errors to zero
 - by generating the appropriate forward and angular velocities (v, ω) or, alternatively,
 - by generating the appropriate angular velocities of the wheels, (v_R, v_L) i.e. $(\dot{\phi}_1, \dot{\phi}_2)$

Solution 1: Divide and Conquer

Decompose 2D problem into two 1D problems

– First, correct the heading:

rotate to reduce the orientation error to zero

Second, correct the position:

translate straight ahead to reduce the position error to zero

Solution 1: Divide and Conquer

Algorithm $goto1(x_g, y_g)$ using proportional control

Global variables: the current robot position and orientation (x_n, y_n, θ_r)

Arguments:

- the goal position of the robot (x_g, y_g)
- the proportional gains for controlling position and heading

$$K_p^{pos}$$
 K_p^h

- the tolerances on position error Δ_{pos} and orientation error Δ_h

Solution 1: Divide and Conquer

Version A: Control forward and angular velocities of the robot

The difference between the desired heading and

the current robot orientation

Do

Compute the current position of the robot (x_n, y_n)

Compute the distances from the robot position to the target position (d_x, dy)

$$d_x = x_g - x_r$$

$$d_y = y_g - y_r$$

Compute the position and heading errors(e_{pos} , e_h)

$$e_{pos} = \operatorname{sqrt} \left(d_x^2 + d_y^2 \right)$$

$$e_h = \operatorname{atan2}(d_v, d_x) - \theta_r \stackrel{\leftarrow}{}$$

Otherwise, correct position

correct heading

If not oriented correctly,

if $|e_h| > \Delta_h$

set forward velocity: v = 0

set angular velocity: $\omega = K_p^h e_h$

else

or some maximum velocity v_{max}

set forward velocity: $v = K_p^{pos} e_{pos}$

set angular velocity: $\omega = 0$

Send velocities $(v, \overline{\omega})$ to the robot

Pause some time

while $|e_{pos}| > \Delta_{pos}$

Send velocities (0, 0) to the robot

Solution 1: Divide and Conquer

Version B: Control angular velocities of the wheels

Do

Compute the current position of the robot (x_n, y_n)

Compute the distances from the robot position to the target position (d_x, dy)

$$d_x = x_g - x_r$$

$$d_y = y_g - y_r$$

Compute the position and heading errors(e_{pos} , e_{θ})

$$e_{pos} = \operatorname{sqrt} \left(d_x^2 + d_y^2 \right)$$

$$e_h = \operatorname{atan2} (d_v, d_x) - \theta_r$$

Otherwise, correct position

correct heading

If not oriented correctly,

if $|e_h| > \Delta_h$

set right wheel angular velocity: $\dot{\phi}_1 = -K_p{}^h e_h$ set left wheel angular velocity: $\dot{\phi}_2 = -\dot{\phi}_1$

else

set right wheel angular velocity: $\dot{\phi}_1 = K_p^{pos} e_{pos}$ set left wheel angular velocity: $\dot{\phi}_2 = \dot{\phi}_1$ Translate: left and right wheels go in same direction

Send velocities ($\dot{\phi}_1$, $\dot{\phi}_2$) to the robot

Pause some time

while
$$|e_{pos}| > \Delta_{pos}$$

Send velocities (0, 0) to the robot