Introduction to Cognitive Robotics

Module 3: Mobile Robots

Lecture 7: the go-to-position and go-to-pose problems; MIMO controller

David Vernon Carnegie Mellon University Africa

www.vernon.eu

2D solution to a 2D problem \Rightarrow MIMO strategy

Multiple Input, Multiple Output

Compute forward and rotation velocities

If required, convert them to left and right wheel angular velocities

 $v = K_p^{pos} e_{pos}$ [K_p^{pos} and K_p^h gains have different values than Solution 1] $\omega = K_p^h e_h$

- Translation velocity v depends on how far the robot is from the goal
- Rotation velocity ω depends on how much it is heading away from the goal
- We limit v by an upper bound v_{max}

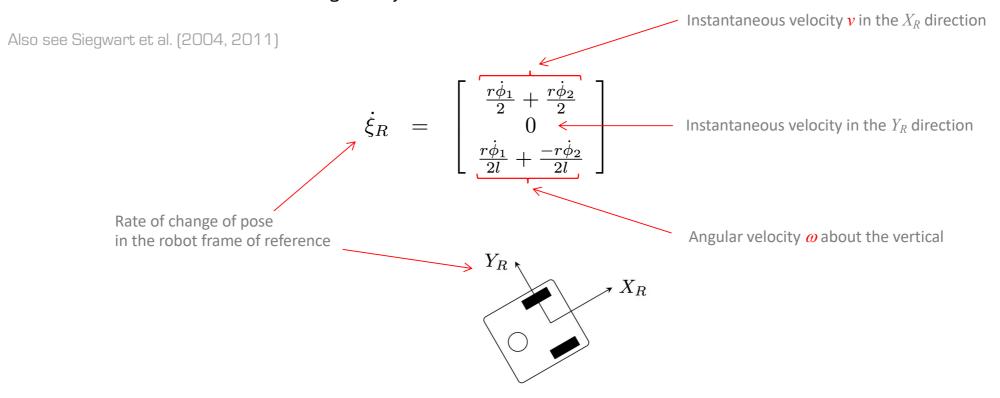
If required, convert them to left and right wheel angular velocities ... to do this we need the inverse kinematics

- We need to convert (v, ω) to $(\dot{\phi}_1, \dot{\phi}_2)$
- That is, we need to find f_L , f_R such that:

 $\dot{\phi}_1 = f_R(v, \omega)$ $\dot{\phi}_2 = f_L(v, \omega)$

Recall: Forward Kinematics

The motion of the robot in the local robot frame of reference R due to the rotation of the wheels is given by:



Inverse Kinematics

That is
$$v = \frac{r\dot{\phi}_1}{2} + \frac{r\dot{\phi}_2}{2}$$

 $\omega = \frac{r\dot{\phi}_1}{2l} + \frac{-r\dot{\phi}_2}{2l}$

Thus
$$\dot{\phi}_1 = rac{v}{r} + rac{\omega l}{r}$$

 $\dot{\phi}_2 = rac{v}{r} - rac{\omega l}{r}$

Forward kinematics vs. inverse kinematics

- Joint space

- configurations of the movable joints of the robot
- here, change in configuration given by ($\dot{\phi}_1$, $\dot{\phi}_2$)
- Work space
 - configurations of the robot in the environment
 - here, change in configuration given by (v, ω)

- Direct (forward) kinematics

• transformation from joint space to work space

multiplying by time elapsed and the radius of the wheels, the distance travelled by the right and left wheels: d_R and d_L

Equivalently, multiplying by time elapsed, the distance travelled by the robot and the robot's rotation: d and $\Delta \theta$

Equivalently,

- Inverse kinematics

• transformation from work space to joint space

Algorithm $goto2(x_g, y_g)$ using proportional control

Global variables: the current robot position and orientation (x_r, y_r, θ_r)

Arguments:the goal position of the robot (x_g, y_g) the proportional gains for controlling position K_p^{pos} and orientation K_p^h the tolerances on position error Δ_{pos}

Remember: you will need to use different gain values for this controller

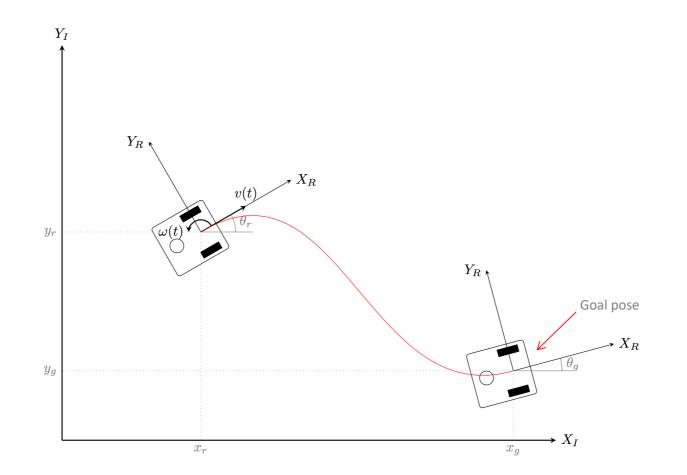
Do

Compute the current position of the robot (x_r, y_r) Compute the distances from the robot position to the target position (d_x, dy) $d_x = x_g - x_r$ $d_v = y_g - y_r$ Compute the position and heading errors(e_{pos} , e_h) The difference between the desired heading and $e_{pos} = \text{sqrt} (d_x^2 + d_y^2)$ the current robot orientation $e_h = \operatorname{atan2} \left(d_v, d_x \right) - \theta_r^{\bigstar}$ Compute the forward velocity and angular velocity (v, ω) $v = K_p^{pos} e_{pos}$ $\omega = K_n^h e_h$ If required, convert (v, ω) to $(\dot{\phi}_1, \dot{\phi}_2)$ using inverse kinematics Send velocities (v, ω) or ($\dot{\phi}_1$, $\dot{\phi}_2$) to the robot Pause some time while $|e_{pos}| > \Delta_{pos}$ Send velocities (0, 0) to the robot

As we saw in the part on PID control, selecting the gain values is crucial for effective control:

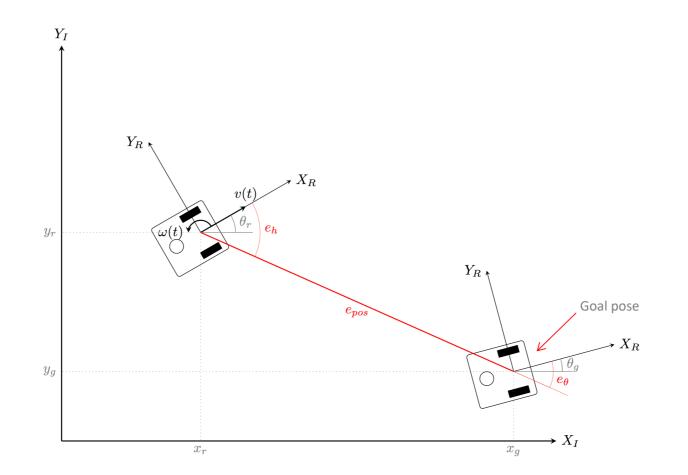
- if the ratio of K_p^{pos} to K_p^h is too high, the path will overshoot

- if the ratio of K_p^{pos} to K_p^h is too low, the path will oscillate



- The robot knows its own global current position
 - $-(x_r, y_r, \theta_r)$
- It knows the global pose of the goal
 - (x_g, y_g, θ_g)
- Compute error in position, heading, and orientation

$$- (e_{pos}, e_h, e_{\theta})$$



- The robot knows its own global current position
 - $-(x_c, y_c, \theta_c)$
- It knows the global position of the goal
 - $-(x_g, y_g, \theta_g)$
- Compute error in position, heading, and orientation
 - $(e_{pos}, e_h, e_{\theta})$
- Reduce all three errors to zero
 - by generating the appropriate forward and angular velocities (v, ω) or, alternatively,
 - by generating the appropriate angular velocities of the wheels, (v_{R}, v_{L}) i.e. $(\dot{\phi}_{1}, \dot{\phi}_{2})$

Go-to-Pose as a Control Problem MIMO Controller

Algorithm $goto3(x_g, y_g)$ using proportional control

Global variables: the current robot position and orientation (x_r, y_r, θ_r)

Arguments: - the goal pose of the robot (x_g, y_g, θ_g)

- the proportional gains for controlling position, heading, and orientation

$$K_p^{\ pos} \ K_p^{\ h} \ K_p^{\ \theta}$$

- the tolerance on position error Δ_{pos}

Go-to-Pose as a Control Problem MIMO Controller

Do

Compute the current position of the robot (x_n, y_n) Compute the distances from the robot position to the target position (d_x, dy) $d_x = x_{\varphi} - x_r$ $d_v = y_o - y_r$ Compute the position, heading, and orientation errors(e_{nos} , e_h , e_{θ}) The difference between the required heading $e_{pos} = \text{sqrt} (d_x^2 + d_y^2)$ and the current orientation $e_h = \operatorname{atan2} \left(d_v, d_x \right) - \theta_r \leftarrow$ $e_{\theta} = \theta_g - \operatorname{atan2}\left(d_{\nu}, d_x\right) \longleftarrow$ The difference between the goal orientation Compute the forward velocity and angular velocity (v, ω) and the required heading $v = K_p^{pos} e_{pos}$ $\omega = K_n^h e_h + K_n^\theta e_\theta \leftarrow$ If required, convert (v, ω) to $(\dot{\phi}_1, \dot{\phi}_2)$ using inverse kinematics Send velocities (v, ω) or $(\dot{\phi}_1, \dot{\phi}_2)$ to the robot Pause some time while $|e_{pos}| > \Delta_{pos}$ Send velocities (0, 0) to the robot

The intuition behind this controller is that the terms $K_p^{pos} e_{pos}$ and $K_p^h e_h$ drive the robot along a line in a heading towards the goal position (same as the go-to-position controller) while the term $K_{p}^{\ \theta} e_{\theta}$ rotates the line so that the error between the heading and the goal orientation is zero (for details, see P. Corke, Robotics, Vision and Control, Springer, 2017, Section 4.2.4)

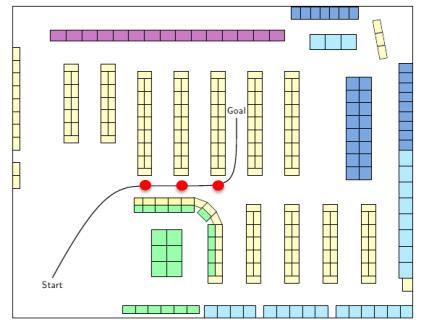
Go-to-Pose as a Control Problem MIMO Controller

Do

Compute the current position of the robot (x_r, y_r) Compute the distances from the robot position to the target position (d_x, dy) $d_x = x_{\varphi} - x_r$ $d_v = y_g - y_r$ Compute the position, heading, and orientation errors(e_{nos} , e_h , e_{θ}) The difference between the required heading $e_{pos} = \text{sqrt} (d_x^2 + d_v^2)$ and the current orientation $e_h = \operatorname{atan2} (d_v, d_x) - \theta_r \leftarrow$ $e_{\theta} = \theta_g - \operatorname{atan2} (d_v, d_x) \longleftarrow$ The difference between the goal orientation Compute the forward velocity and angular velocity (v, ω) and the required heading $v = K_p^{pos} e_{pos}$ Note that K_p^{θ} is negative so that the robot $\omega = K_p^h e_h + K_p^\theta e_\theta \leftarrow$ understeers or oversteers to reposition the If required, convert (v, ω) to $(\dot{\phi}_1, \dot{\phi}_2)$ using inverse kinematics robot at a location where the new heading is more closely aligned with the goal orientation Send velocities (v, ω) or $(\dot{\phi}_1, \dot{\phi}_2)$ to the robot (for details, see P. Corke, Robotics, Vision and Pause some time Control, Springer, 2017, Section 4.2.4) while $|e_{pos}| > \Delta_{pos}$ Send velocities (0, 0) to the robot

Path Tracking Through Waypoints

- The goal position need not be the final goal
- There can also be intermediate goal positions, called waypoints
- We can adapt the go-to-position algorithm to track through a list of waypoints



Path Tracking Through Waypoints

But we will need to modify the velocity control

- Recall: v depends on e_{pos} of the current target
- But we do not want to stop at intermediate points
- Possible solution: use fixed v until the last point

