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Go-to-Position as a Control Problem
Solution 2;: MIMOQO Controller

2D solution to a 2D problem = MIMO strategy

Multiple Input, Multiple Output
Compute forward and rotation velocities

If required, convert them to left and right wheel angular velocities
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€105 (K7 and K" gains have different values than Solution 1)

— Translation velocity v depends on how far the robot is from the goal
— Rotation velocity @ depends on how much it is heading away from the goal

— We limit v by an upper bound v,



Go-to-Position as a Control Problem
Solution 2;: MIMOQO Controller

If required, convert them to left and right wheel angular velocities ...
to do this we need the inverse kinematics

— We need to convert (v, ®) to ( <51 , q52)

— That is, we need to find f; , fz such that:

<51 =fr (v, ®)
b2 =f1 (v, ®)



Recall: Forward Kinematics

The motion of the robot in the local robot frame of reference R

due to the rotation of the wheels is given by:
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Inverse Kinematics
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Forward kinematics vs. inverse kinematics

Joint space
 configurations of the movable joints of the robot
* here, change in configuration given by ( @1, ¢2)

Work space Equivalently,
multiplying by time elapsed
* configurations of the robot in the environment and the radius of the wheels,

the distance travelled by the

* here, change in configuration given by (v, ®) right and left wheels: d, and d,

Direct [fOI"WEI I"d] kinematics Equiv.alently, multiplying by time elapsed,
_ o the distance travelled by the robot
* transformation from joint space to work space and the robot's rotation: d and A&

Inverse kinematics
* transformation from work space to joint space



Go-to-Position as a Control Problem
Solution 2;: MIMOQO Controller

Algorithm goto2(x,, y,) using proportional control
Global variables: the current robot position and orientation (x, y, 0,)

Arguments: the goal position of the robot (x,, y,)

the proportional gains for controlling position K 7> and orientation Kph
the tolerances on position error A ,

Remember: you will need to use
different gain values for this controller



Go-to-Position as a Control Problem
Solution 2;: MIMOQO Controller

Do
Compute the current position of the robot (x, y,)
Compute the distances from the robot position to the target position (d,, dy)

d,=x,— X,
dy=yg=Yr
Compute the position and heading errors(e,,, ¢, ) The difference between

P P the desired heading and
€pos — sqrt (dx + dy ) the current robot orientation
e, =atan2 (d,, d,) — 0,

Compute the forward velocity and angular velocity (v, @)
V=Ko e,
= Kph €y .

If required, convert (v, ) to (@1, ¢2) using inverse kinematics

Send velocities (v,/@) or ( b1, q32) to the robot
Pause some time '

while [e,,s| > A,
Send velocities (0, 0) to the robot



Go-to-Position as a Control Problem
Solution 2;: MIMOQO Controller

As we saw In the part on PID contral,
selecting the gain values is crucial for effective control:

— if the ratio of K 7 to Kph Is too high, the path will overshoot

— if the ratio of K7 to Kph Is too low, the path will oscillate



The Go-to-Pose Problem
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The Go-to-Pose Problem

* The robot knows its own global current position
- (xv Vs Hr)

* |t knows the global pose of the goal
— (Xg Yg, 0,)

* Compute error in position, heading, and orientation

- (epos’ Ep 89)



The Go-to-Pose Problem
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The Go-to-Pose Problem

* Reduce all three errors to zero
— by generating the appropriate forward and angular velocities (v, @) or, alternatively,
— by generating the appropriate angular velocities of the wheels, (v, v;) i.e. (?1, ¢2)



o-to-Pose as a Control Problem
MIMO Controller

Algorithm goto3(x,, y,) using proportional control
Global variables: the current robot position and orientation (x, y, 0,)

Arguments: - the goal pose of the robot (x,, y,, 0,)

- the proportional gains for controlling position, heading, and orientation

- the tolerance on position error A,



o-to-Pose as a Control Problem
MIMO Controller

Do
Compute the current position of the robot (x, y,)

Compute the distances from the robot position to the target position (d,, dy)

d,=x,— X,
dy:yg_yr

Compute the position, heading, and orientation errors(e,, ¢, €y)
€pos = 51t (d,2 + d2)
e, =atan2 (d,, d,)— 6, </ /
ey = 0,—atan2 (d, d,)

Compute the forward velocity and angular velocity (v, @)

V=K P €,

w= Kph ey, + er €y
If required, convert (v, w)to (#1, é2) using inverse kinematics

Send velocities (v,/®) or (é1, ¢2) to the robot
Pause some time '

while [e,,| > A,
Send velocities (0, 0) to the robot

The difference between the required heading
and the current orientation

The difference between the goal orientation
and the required heading

The intuition behind this controller is that the
terms K 7°¢ e, and K, e, drive the robot along
a line in a heading towards the goal position
(same as the go-to-position controller)

while the term K, ey rotates the line so that the
error between the heading and the goal
orientation is zero (for details, see P. Corke,
Robotics, Vision and Control, Springer, 2017,
Section 4.2.4)



o-to-Pose as a Control Problem
MIMO Controller

Do
Compute the current position of the robot (x, y,)
Compute the distances from the robot position to the target position (d,, dy)

d,=x,— X,
dy:yg_yr

Compute the position, heading, and orientation errors(e,, ¢, €y)
Chos = sqrt (dx2 + dy2) The difference between the required heading

</ / and the current orientation
e, =atan2 (d,, d,) - 0,

ey = 0,—atan2 (d, d,)

The difference between the goal orientation

Compute the forward velocity and angular velocity (v, @) and the required heading
V=K P €,
W= Kph e, + er ey Note that K, is negative so that thg robot
. . . X . . . understeers or oversteers to reposmon the
If required, convert (v, ) to (¢1, ¢2) using inverse kinematics robot at a location where the new heading is
s ] y more closely aligned with the goal orientation
Send velocme.es (V,ﬂ)) or ( ¢1 ’ ¢2) to the robot (for details, see P. Corke, Robotics, Vision and
Pause some time Control, Springer, 2017, Section 4.2.4)

while [e,,| > A,
Send velocities (0, 0) to the robot



Path Tracking Through \Waypoints

The goal position need not be the final goal

There can also be intermediate goal positions,
called waypoints

We can adapt the go-to-position algorithm to
track through a list of waypoints
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Path Tracking Through \Waypoints

But we will need to modify the velocity control ERERREA
N Y O I B D:D:

18]
il

* Recall: v depends on e, of the current target

* But we do not want to stop at intermediate points

[HEHHH]

* Possible solution: use fixed v until the last point
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