Introduction to Cognitive Robotics

Module 5: Robot Vision

Lecture 1: Computer vision; optics and sensors; image acquisition; image representation

David Vernon
Carnegie Mellon University Africa

www.vernon.eu

Computer Vision is concerned with the

- content
- organization, and
- behaviour

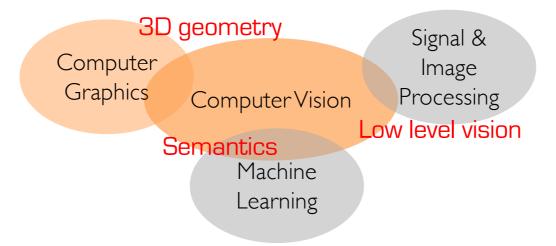
of a 3D world by the automatic analysis of images of that world

Extract descriptions of the world from images

Descriptions of what kind? qualitative vs. quantitative

Geometric: shape and position of object or distances in 3D world

Semantic: what objects do I see?


Dynamic: scene changes, object velocities, human actions, ...

Recognizing objects from images . . .

... may be difficult!

```
151 138 153 138 137 119 111 111 110 74 74 62 69
137 144 145 137 128 137 119 111 129 86 69 69 74
134 137 133 129 128 128 126 119 119 74 69 62 64
79 79 74 69 74 79 69 74 62 69 69 74 74
 62 62 64 64 57 57 55 57 62 69 69 72
 57 64 74 57 64 74 64 74 74 74 69 74
 86 84 91 84 86 86 84 86 86 84 69 74 69
 94 86 94 94 86 94 91 86 91 79 78 64 69
 94 99 102 94 94 103 94 99 103 86 69 64
128 138 133 144 138 138 145 144 142 100 78 74 69 72
176 176 183 170 176 170 183 170 168 126 78 74 78 78
174 176 176 189 170 176 170 189 170 135 74 69 74 72
183 181 183 174 181 181 189 181 170 135 78 69 69 69
181 181 183 174 181 189 170 181 172 146 86 69 74 72
176 174 181 181 183 174 183 181 174 148 84 69 69 74
181 176 183 183 174 181 181 181 176 141 99 69 69 72
183 183 183 181 181 189 183 174 181 151 91 69 69 69
181 181 189 174 181 181 174 189 183 161 91 69 69 78 62
176 181 183 181 174 189 176 181 174 165 91 78 74 72 69
181 176 189 181 176 176 183 174 181 163 91 78 69 78 62 69
176 174 183 189 176 181 174 170 176 168 91 74 69 74 69 69
```


An incomplete view of related disciplines

- The image is two-dimensional
- We lose information in the projection process, i.e., in passing from a 3D world to a 2D image
- The images are digital images
 - they are a discrete representation (i.e. they have distinct values at regularly sampled points)
 - they are a quantised representation (i.e. each value is an integer value)

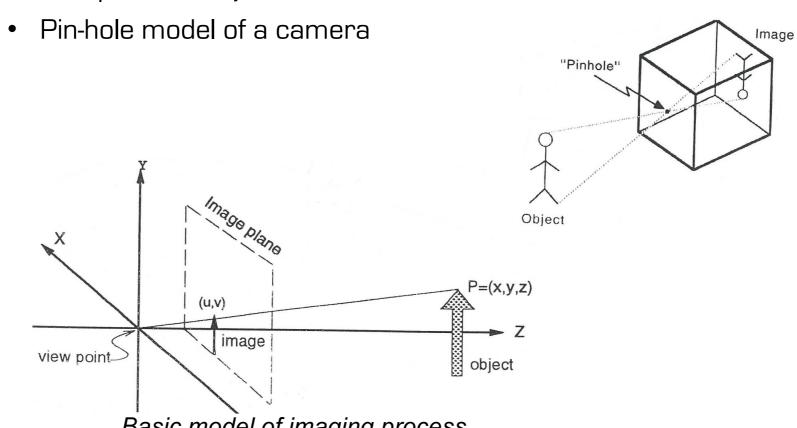
Image formation system

- part illumination
- sensing element
- associated optics

is critical to the successful deployment of industrial systems

The task of the image acquisition and processing sub-system is

- to convert this signal into a digital image
- to manipulate the resultant image to facilitate the subsequent extraction of information


The image analysis phase is concerned with the extraction of explicit information regarding the contents of the image (*e.g.* object category, identity, position, size, orientation)

There is a fundamental difference between image processing and image analysis

- Image Processing facilitates transformations of images to (hopefully, more useful) images
- Image Analysis facilitates the transformation from an image to explicit (symbolic) information

Optics and Sensors

Perspective Projection

Basic model of imaging process

Lenses are required to focus part of the visual environment onto the image sensor

Lenses are defined by:

- their Focal Length (quoted in millimetres)
- their Aperture (the f number)

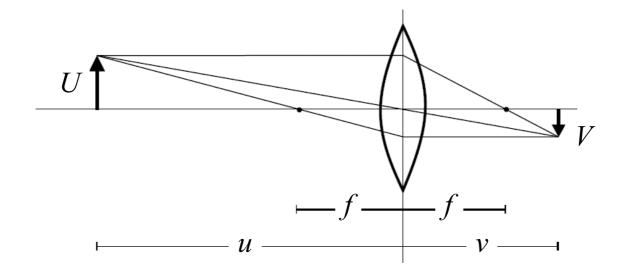
These parameters determine the performance of the lens in terms of light gathering power and magnification, and it often has a bearing on its physical size

The focal length of a lens is a guide to the magnification it effects and its field of view.

Selecting the focal length which is appropriate to a particular application is simply a matter of applying the basic lens equation

$$\frac{1}{u} \square \frac{1}{v} \square \frac{1}{f}$$

where


- v is the distance from the lens to the image
- u is the distance from the lens to the object
- f is the focal length

Gaussian lens equations:
$$\frac{1}{u} \Box \frac{1}{v} \Box \frac{1}{f}$$

and
$$\frac{V}{U} \Box \frac{v}{u}$$

Focal length:

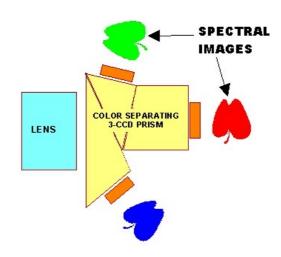
$$f \Box \frac{u}{U} \frac{V}{\Box V}$$

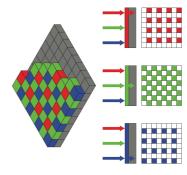
Noting the Magnification Factor M is

$$M \square \frac{image_size}{object_size} U$$

Thus

$$f \square \frac{uM}{M \sqcap 1}$$


Hence if we know the required magnification factor and the distance from the object to the lens, we can compute the required focal length.


Sensors

3-Chip Colour Camera

1-Chip Colour Camera (Bayer filter)

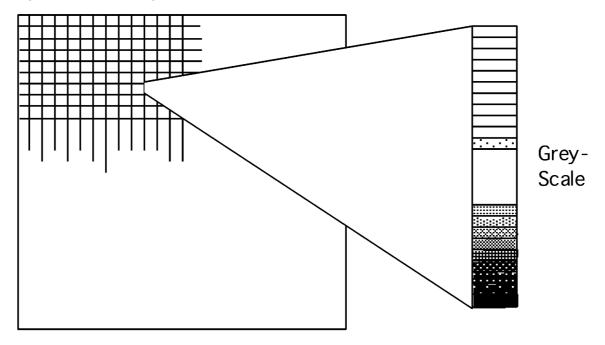
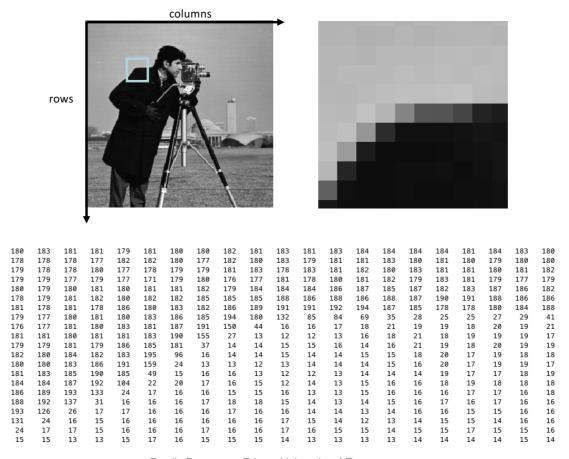
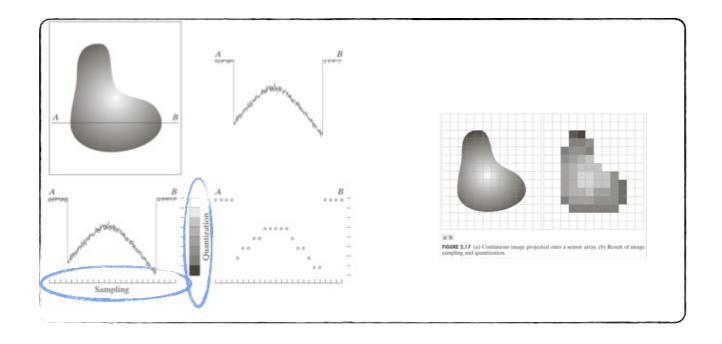

C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, S. Šabanović, Human-Robot Interaction – An Introduction, Cambridge University Press, 2020

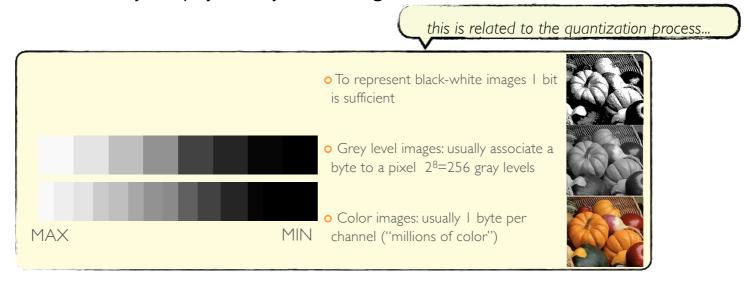
Image Acquisition and Image Representation


Digital images represent the reflectance function of a scene but they do so in a sampled and quantised form

Each quantized integer value is known as a pixel and is the smallest discrete accessible sub-section of a digital image.


Rectangular Sampling Pattern

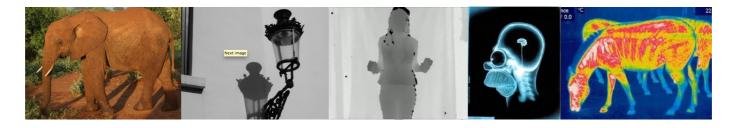
Sampling and Quantisation


Credit: Francesca Odone, University of Genova

Dynamic range

Total number of distinctive values occurring in the image

- it is limited by the number of bit per pixel we may want to use
- it is also limited by the physical dynamic range of the sensor



Credit: Francesca Odone, University of Genova

Image Representation

Pixel content depends on the image type

- Gray level pictorial digital images ("black and white photos"): intensity
- Color pictorial digital images: color (modeled as triplets, eg RGB)
- Range images: depth information
- Medical images: radiation absorbance level
- Thermal images: heat

Credit: Francesca Odone, University of Genova

There are many colour representations

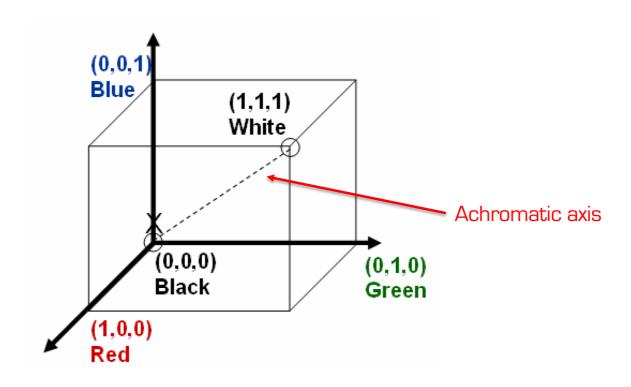
RGB Red, Green, Blue

CMY Cyan, Magenta, Yellow

YUV Luminance (Y), Blue minus Luminance (U), Red minus Luminance (V)

YCrCb Scaled version of YUV

CIE XYZ Standard reference colour space based on the response of human eye

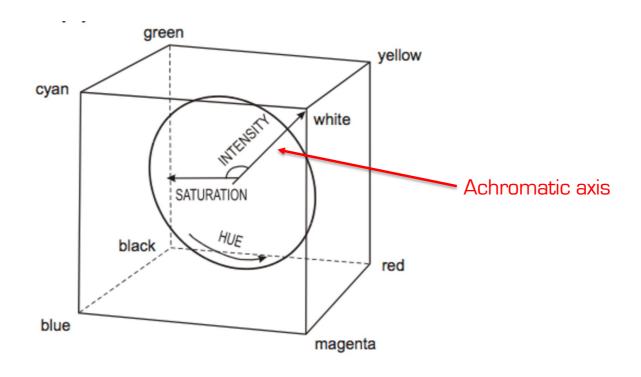

CIE L*u*V* Perceptually uniform colour space

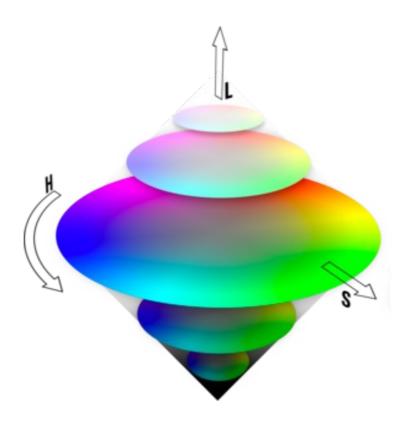
CIE L*a*b* Device independent colour space (all colours perceived by humans)

HSV Hue, Saturation, Value

HLS Hue, Luminance, Saturation

HSI Hue, Saturation, Intensity




Red Green Blue images

Red (~ 700nm) Green (~ 546nm) Blue (~ 436nm)

Credit: Kenneth Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV, © Wiley & Sons Inc. 2014

Credit: Kenneth Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV, © Wiley & Sons Inc. 2014

Reading

R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010.

Section 2.2.3 Optics

Section 2.3 The digital camera

Section 2.3.1 Sampling and aliasing

Section 2.3.2 Colour

D. Vernon, Machine Vision, 1991.

Section 2.2.1 Image formation: elementary optics

Section 2.2.2 Camera sensors

Section 3.1 Sampling and quantization