
Using Turtlesim with CRAM 6 1 Introduction to Cognitive Robotics

Introduction to Cognitive Robotics

Module 10: Using Turtlesim with CRAM
Lecture 6: Creating process modules

www.cognitiverobotics.net

Using Turtlesim with CRAM 6 2 Introduction to Cognitive Robotics

The CRAM Beginner Tutorials

Based on CRAM tutorials
http://cram-system.org/tutorials

Using Turtlesim with CRAM 6 3 Introduction to Cognitive Robotics

Creating Process Modules

Based on Using Prolog for reasoning
http://cram-system.org/tutorials/beginner/process_modules_2

Using Turtlesim with CRAM 6 4 Introduction to Cognitive Robotics

Creating Process Modules

• Different robots require different controllers to cater for their different kinematics

• We want an abstract interface in the high level of task specification

– We don't want to be concerned if a robot has two arms or one when specifying a task

• Process modules provides this abstraction

– A well-defined robot-independent interface for robot control

– Used for high level planning

Using Turtlesim with CRAM 6 5 Introduction to Cognitive Robotics

Creating Process Modules

Example

(with-designators
((my-designator :location '((:close-to :fridge))))

(pm-execute :navigation my-designator))

• The resolution of the designator (by some other module in the system) provides the location

• which the process module then uses to control the robot and navigate to that location

• The kinematics of the robot (i.e. differential drive or legged locomotion) are abstracted away

Run a process module associated with :navigation. and use my-designator as an input parameter

This is a location designator These are the symbolic
parameters for the designator

Using Turtlesim with CRAM 6 6 Introduction to Cognitive Robotics

Creating Process Modules

Writing a process module for turtlesim

• Use a process module to execute a resolved motion designator

• To drive to some location

Using Turtlesim with CRAM 6 7 Introduction to Cognitive Robotics

Creating Process Modules

As before, when developing new code, we need to

• Update the dependencies in package.xml
• Update the dependencies in cram-my-beginner-tutorial.asd
• Update the dependencies in package.lisp
• Add the new code to process-modules.lisp
• Test the code

– Run the ROS master
– Run the Lisp REPL, loading the new program, creating a ROS node
– Run turtlesim
– Run turtlesim_teleop
– Call the new functions

We will place the new code is the Lisp file

The new code depends on the
cram-process-modules package

Using Turtlesim with CRAM 6 8 Introduction to Cognitive Robotics

Creating Process Modules

Update the ROS dependencies

Make sure you are in the cram_my_beginner_tutorial sub-directory

~$ cd ~/workspace/ros/src/cram_my_beginner_tutorial
~/workspace/ros/src/cram_my_beginner_tutorial$

Using Turtlesim with CRAM 6 9 Introduction to Cognitive Robotics

Creating Process Modules

Update the ROS dependencies

Edit package.xml

~/workspace/ros/src/cram_my_beginner_tutorial$ emacs package.xml

Using Turtlesim with CRAM 6 10 Introduction to Cognitive Robotics

Creating Process Modules

Update the ROS dependencies

Edit package.xml

Add the following lines

<exec_depend>cram_language</exec_depend>

<depend>turtlesim</depend>
<depend>roslisp</depend>
<depend>cl_transforms</depend>
<depend>geometry_msgs</depend>
<depend>cram_prolog</depend>
<depend>cram_designators</depend>
<depend>cram_process_modules</depend>

Add after this line

CRAM process modules

Using Turtlesim with CRAM 6 11 Introduction to Cognitive Robotics

Creating Process Modules

Update the ASDF dependencies

Make sure you are in the cram_my_beginner_tutorial sub-directory

~$ cd ~/workspace/ros/src/cram_my_beginner_tutorial
~/workspace/ros/src/cram_my_beginner_tutorial$ You should be there already

from the previous step

Using Turtlesim with CRAM 6 12 Introduction to Cognitive Robotics

Creating Process Modules

Update the ASDF dependencies

Edit cram-my-beginner-tutorial.asd

~/workspace/ros/src/cram_my_beginner_tutorial$ emacs cram-my-beginner-tutorial.asd

Using Turtlesim with CRAM 6 13 Introduction to Cognitive Robotics

Creating Process Modules

Update the ASDF dependencies

(defsystem cram-my-beginner-tutorial

:depends-on (roslisp cram-language
turtlesim-msg turtlesim-srv
cl-transforms geometry_msgs-msg
cram-designators cram-prolog
cram-process-modules cram-language-designator-support)

:components
((:module "src"

:components
((:file "package")
(:file "control-turtlesim" :depends-on ("package"))
(:file "simple-plans" :depends-on ("package" "control-turtlesim"))
(:file "motion-designators" :depends-on ("package"))
(:file "process-modules" :depends-on ("package"

"control-turtlesim"
"simple-plans"
"motion-designators"))))))

Add this line

Add these lines

Using Turtlesim with CRAM 6 14 Introduction to Cognitive Robotics

Creating Process Modules

Update the Lisp package to add :cram-process-modules and

cram-language-designator-support to the namespace

Make sure you are in the cram_my_beginner_tutorial/src sub-directory

~$ cd ~/workspace/ros/src/cram_my_beginner_tutorial/src
~/workspace/ros/src/cram_my_beginner_tutorial/src$

Using Turtlesim with CRAM 6 15 Introduction to Cognitive Robotics

Creating Process Modules

Update the Lisp package to add :cram-process-modules and
cram-language-designator-support to the namespace

Edit package.lisp

~/workspace/ros/src/cram_my_beginner_tutorial/src$ emacs package.lisp

Using Turtlesim with CRAM 6 16 Introduction to Cognitive Robotics

Creating Process Modules

Update the Lisp package to add :cram-process-modules and
cram-language-designator-support to the namespace

Edit package.lisp

Add :cram-designators to the (:use :cpl ...) line and add the (:import-from ...) line

(defpackage :cram-my-beginner-tutorial
(:nicknames :tut)
(:use :cpl :roslisp :cl-transforms :cram-designators
:cram-process-modules cram-language-designator-support)
(:import-from :cram-prolog :def-fact-group :<- :lisp-fun))

Add these

Be careful with
the closing bracket

Using Turtlesim with CRAM 6 17 Introduction to Cognitive Robotics

Creating Process Modules

Create a new Lisp file for the process modules code

Make sure you are in the cram_my_beginner_tutorial/src sub-directory

~$ cd ~/workspace/ros/src/cram_my_beginner_tutorial/src
~/workspace/ros/src/cram_my_beginner_tutorial/src$

Using Turtlesim with CRAM 6 18 Introduction to Cognitive Robotics

Creating Process Modules

Create a new Lisp file for the process modules code

Edit process-modules.lisp

~/workspace/ros/src/cram_my_beginner_tutorial/src$ emacs process-modules.lisp

Using Turtlesim with CRAM 6 19 Introduction to Cognitive Robotics

Creating Process Modules

Create a new Lisp file for the process modules code

Edit process-modules.lisp

Copy and paste the code from the following slide

Using Turtlesim with CRAM 6 20 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

Using Turtlesim with CRAM 6 21 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

The cram-process-modules:def-process-module macro is used to define the
turtlesim-navigation process module with one parameter,
motion-designator, a motion designator

Using Turtlesim with CRAM 6 22 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

Print a message to the terminal saying
what motion designator has been used in
the invocation of the process module

Using Turtlesim with CRAM 6 23 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

This binds the result of resolving (i.e. referencing) the
designator passed as a parameter to the process module
to the two variables command and motion.

Recall that the motion designators we wrote previously
resolve with two values: the name of the motion and the
motion itself.

For the inference rules we defined (see next slide for a
reminder) there are two names, drive and move, and two
motions, a turtle-motion structure and a 3d-vector
for drive and move motions, respectively

We really should another one for move
but we'll add that in a moment

Using Turtlesim with CRAM 6 24 Introduction to Cognitive Robotics

(def-fact-group turtle-motion-designators (motion-grounding)
;; for each kind of motion, check for and extract the necessary info

;; drive and turn
(<- (desig:motion-grounding ?desig (drive ?motion))

(desig-prop ?desig (:type :driving))
(desig-prop ?desig (:speed ?speed))
(desig-prop ?desig (:angle ?angle))
(lisp-fun make-turtle-motion :speed ?speed :angle ?angle ?motion))

;; drive
(<- (desig:motion-grounding ?desig (drive ?motion))

(desig-prop ?desig (:type :driving))
(desig-prop ?desig (:speed ?speed))
(lisp-fun make-turtle-motion :speed ?speed ?motion))

;; turn
(<- (desig:motion-grounding ?desig (drive ?motion))

(desig-prop ?desig (:type :driving))
(desig-prop ?desig (:angle ?angle))
(lisp-fun make-turtle-motion :angle ?angle ?motion))

;; move
(<- (desig:motion-grounding ?desig (move ?motion))

(desig-prop ?desig (:type :moving))
(desig-prop ?desig (:goal ?goal))
(lisp-fun apply make-3d-vector ?goal ?motion)))

Recall that the motion designators we wrote previously
resolve with two values: the name of the motion and the
motion itself.

For the inference rules we defined there are two names,
drive and move, and two motions, a turtle-motion
structure and a 3d-vector for drive and move motions,
respectively

Using Turtlesim with CRAM 6 25 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

The ecase Lisp expression is similar to a case expression except it signals an error if there
is no match between the value of argument and the sequence of keys. Here we have just
one key, drive, but we really should another one for move

Using Turtlesim with CRAM 6 26 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

The send-vel-cmd function is the one we wrote previously to control the turtle.
We invoke it here with two arguments extracted from the resolved motion designator

Recall that these are the functions for accessing the slots of a structure

Using Turtlesim with CRAM 6 27 Introduction to Cognitive Robotics

Creating Process Modules

Create a new Lisp file for the process modules code

Edit process-modules.lisp

Add the code from the following slide

Using Turtlesim with CRAM 6 28 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

(defun drive (?speed ?angle)
(top-level

(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))

(pm-execute 'turtlesim-navigation trajectory)))))

Using Turtlesim with CRAM 6 29 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

(defun drive (?speed ?angle)
(top-level

(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))

(pm-execute 'turtlesim-navigation trajectory)))))

Define a new function drive that has two parameters ?speed and ?angle

Using Turtlesim with CRAM 6 30 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

(defun drive (?speed ?angle)
(top-level

(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))

(pm-execute 'turtlesim-navigation trajectory)))))

This is a CPL (CRAM Plan Language) macro so it needs to run inside a top-level form

Using Turtlesim with CRAM 6 31 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

(defun drive (?speed ?angle)
(top-level

(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))

(pm-execute 'turtlesim-navigation trajectory)))))

Activate the turtle process modules
(there's just one at the moment and that's turtlesim-navigation)

We can add more later and they will all run concurrently

Using Turtlesim with CRAM 6 32 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

(defun drive (?speed ?angle)
(top-level

(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))

(pm-execute 'turtlesim-navigation trajectory)))))
Create a motion designator trajectory (of type driving)
and pass the two parameter values to it

Using Turtlesim with CRAM 6 33 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

(defun drive (?speed ?angle)
(top-level

(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))

(pm-execute 'turtlesim-navigation trajectory)))))

Call the cram-process-modules:pm-execute macro to use the turtlesim-navigation process module to
follow the trajectory specified by the trajectory designator

Using Turtlesim with CRAM 6 34 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command

(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion))))))

(defun drive (?speed ?angle)
(top-level

(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))

(pm-execute 'turtlesim-navigation trajectory)))))

Don't be confused: the function drive has nothing to do with the drive command (label) in the ecase

Using Turtlesim with CRAM 6 35 Introduction to Cognitive Robotics

Creating Process Modules

Now, let's experiment with this code

First, we need to make sure a ROS master is running

If you have not already done it, open a terminal and enter

~$ roscore

Using Turtlesim with CRAM 6 36 Introduction to Cognitive Robotics

Creating Process Modules

Now, start turtlesim

Open a new terminal and enter

~$ rosrun turtlesim turtlesim_node

This is what you should see

Using Turtlesim with CRAM 6 37 Introduction to Cognitive Robotics

Creating Process Modules

Launch the Lisp REPL

If you have not already done it, open a terminal and enter

~/workspace/ros$ roslisp_repl

Load the system

CL-USER> (ros-load:load-system "cram_my_beginner_tutorial" :cram-my-beginner-tutorial)

Switch to the package

CL-USER> (in-package :tut)
TUT>

Using Turtlesim with CRAM 6 38 Introduction to Cognitive Robotics

Creating Process Modules

Start a ROS node

TUT> (start-ros-node "turtle1")
[(ROSLISP TOP) INFO] 1292688669.674: Node name is turtle1
[(ROSLISP TOP) INFO] 1292688669.687: Namespace is /
[(ROSLISP TOP) INFO] 1292688669.688: Params are NIL
[(ROSLISP TOP) INFO] 1292688669.689: Remappings are:
[(ROSLISP TOP) INFO] 1292688669.691: master URI is 127.0.0.1:11311
[(ROSLISP TOP) INFO] 1292688670.875: Node startup complete

The name doesn't matter

Using Turtlesim with CRAM 6 39 Introduction to Cognitive Robotics

Creating Process Modules

Call the function we wrote to perform the initialization

TUT> (init-ros-turtle "turtle1")

Use turtle1 ... remember, this forms the prefix on the topic names
This is the name of the first turtle that turtlesim spawns

Using Turtlesim with CRAM 6 40 Introduction to Cognitive Robotics

Creating Process Modules

Now, let's call drive

TUT> (drive 5 2)

This is what you should see

Using Turtlesim with CRAM 6 41 Introduction to Cognitive Robotics

Creating Process Modules

Now, let's call drive

TUT> (drive 5 2)
[(TURTLE-PROCESS-MODULES) INFO] 1562698751.679: TurtleSim navigation invoked with motion designator `#<A MOTION

(TYPE DRIVING)
(SPEED 5)
(ANGLE 2)>'.

2

Using Turtlesim with CRAM 6 42 Introduction to Cognitive Robotics

Creating Process Modules

When adding a process module we have a choice:

1. Add it to an existing process module

2. Create a new process module

Using Turtlesim with CRAM 6 43 Introduction to Cognitive Robotics

Creating Process Modules

To prevent unwanted behaviour when executing multiple designators in parallel or in
succession, a process module only resolves one designator at a time

– Therefore, if the process module to be added uses the same resources as an existing one,
e.g. two or more process modules for robot locomotion,

we should add it the existing process module

– Otherwise, e.g adding a process module for robot manipulation to process modules for
locomotion, we should add it as a new process module

Note: if a process module is called while still executing, the new call is queued as
executed when the current call is finished ... we'll see that in just a moment

Using Turtlesim with CRAM 6 44 Introduction to Cognitive Robotics

Creating Process Modules

Let's add process modules, one for locomotion and one for setting the pen:

1. The locomotion one (in this case, for a move motion) should be added to the existing process
module

2. The set-pen module can be a new process module

Using Turtlesim with CRAM 6 45 Introduction to Cognitive Robotics

Creating Process Modules

Extend the Lisp file for the process modules code

Edit process-modules.lisp

Add the code in black from the following slide

(or, alternatively, copy copy-paste it all, overwriting the existing code)

Using Turtlesim with CRAM 6 46 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command
(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion)))

(move
(move-to motion)))))

(def-process-module turtlesim-pen-control (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim pen control invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command
(set-pen
(call-set-pen
(pen-motion-r motion)
(pen-motion-g motion)
(pen-motion-b motion)
(pen-motion-width motion)
(pen-motion-off motion))))))

(defun drive (?speed ?angle)
(top-level
(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))
(pm-execute 'turtlesim-navigation trajectory)))))

Using Turtlesim with CRAM 6 47 Introduction to Cognitive Robotics

(in-package :tut)

(def-process-module turtlesim-navigation (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim navigation invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command
(drive
(send-vel-cmd
(turtle-motion-speed motion)
(turtle-motion-angle motion)))

(move
(move-to motion)))))

(def-process-module turtlesim-pen-control (motion-designator)
(roslisp:ros-info (turtle-process-modules)

"TurtleSim pen control invoked with motion designator `~a'."
motion-designator)

(destructuring-bind (command motion) (reference motion-designator)
(ecase command
(set-pen
(call-set-pen
(pen-motion-r motion)
(pen-motion-g motion)
(pen-motion-b motion)
(pen-motion-width motion)
(pen-motion-off motion))))))

(defun drive (?speed ?angle)
(top-level
(with-process-modules-running (turtlesim-navigation)
(let ((trajectory (desig:a motion (type driving) (speed ?speed) (angle ?angle))))
(pm-execute 'turtlesim-navigation trajectory)))))

Finally, we add the case to handle the motion designator for the move command
Since move-to takes a 3d-vector as a parameter, we can pass the second resolved argument motion to it directly

Add this code for the new process
module for setting the pen

It uses the call-set-pen function we
wrote previously

Using Turtlesim with CRAM 6 48 Introduction to Cognitive Robotics

Creating Process Modules

Executing process modules in parallel

First, let's call the same process module twice to see how it behaves

– We'll use the par macro

– One process module will use a motion designator for driving

– The other process module will use a motion designator for moving

Using Turtlesim with CRAM 6 49 Introduction to Cognitive Robotics

Creating Process Modules

Remember:

• If the turtlesim environment gets a bit messy,
you can clear the background by entering the following from a terminal

~/workspace/ros/src/cram_my_beginner_tutorial/src$ rosservice call /clear

• Or you can reset it completely by entering the following from a terminal
(this creates a new turtle in the default pose)

~/workspace/ros/src/cram_my_beginner_tutorial/src$ rosservice call /reset

Using Turtlesim with CRAM 6 50 Introduction to Cognitive Robotics

Creating Process Modules

First the turtle moves to the goal

TUT> (top-level
(with-process-modules-running (turtlesim-navigation turtlesim-pen-control)
(let ((goal (desig:a motion (type moving) (goal (9 1 0))))

(trajectory (desig:a motion (type driving) (speed 3) (angle 8))))
(cpl:par
(pm-execute 'turtlesim-navigation goal)
(pm-execute 'turtlesim-navigation trajectory)))))

Then. it drives in a circle

Using Turtlesim with CRAM 6 51 Introduction to Cognitive Robotics

Creating Process Modules
TUT> (top-level

(with-process-modules-running (turtlesim-navigation turtlesim-pen-control)
(let ((goal (desig:a motion (type moving) (goal (9 1 0))))

(trajectory (desig:a motion (type driving) (speed 3) (angle 8))))
(cpl:par
(pm-execute 'turtlesim-navigation goal)
(pm-execute 'turtlesim-navigation trajectory)))))

[(TURTLE-PROCESS-MODULES) INFO] 1500997686.711: TurtleSim navigation invoked with motion designator `#<MOTION-DESIGNATOR ((TYPE
MOVING)
(GOAL
(9 1
0))) {1006DBC893}>'.

WARNING:
Process module #<TURTLESIM-NAVIGATION

{10074C0293}> already processing input. Waiting for it to become free.
[(TURTLE-PROCESS-MODULES) INFO] 1500997690.065: TurtleSim navigation invoked with motion designator `#<MOTION-DESIGNATOR ((TYPE

DRIVING)
(SPEED
3)
(ANGLE
8)) {1006DBCC73}>'.

T

Activate both process modules

Create a motion designator of type moving and set the goal
Create a motion designator of type driving and set the speed and angle

Run the following process modules in parallel

The two are not executed in parallel
and the second one is queued for execution

Using Turtlesim with CRAM 6 52 Introduction to Cognitive Robotics

Creating Process Modules

Executing process modules in parallel

Next, let's call the two different process modules to see how it behaves

– We'll use the par macro

– One process module will use a motion designator for setting-pen

• We will change the pen colour and width twice a second

– The other process module will use a motion designator for moving

– Now, the turtle moves and changes the pen in parallel

Using Turtlesim with CRAM 6 53 Introduction to Cognitive Robotics

Creating Process Modules

The pen changes as the turtle moves

TUT> (top-level
(with-process-modules-running (turtlesim-navigation turtlesim-pen-control)
(let ((goal (desig:a motion (type moving) (goal (9 9 0)))))
(cpl:par
(pm-execute 'turtlesim-navigation goal)
(dotimes (i 10)
(pm-execute 'turtlesim-pen-control

(let ((?r (random 255))
(?g (random 255))
(?b (random 255))
(?width (+ 3 (random 5))))

(desig:a motion (type setting-pen) (r ?r) (g ?g) (b ?b) (width ?width))))
(sleep 0.5))))))

Using Turtlesim with CRAM 6 54 Introduction to Cognitive Robotics

Creating Process Modules

Some notes:

• This approach is used

– to ensure that a single resource on a robot is not used by several functions simultaneously

– while allowing parallel execution functions using independent resources

• This is fine for low level motions but won't always be appropriate

– For example, in high level task specification when grasping an object while the robot is moving

– We need more sophisticated ways of handling possible interference between the sub-tasks

Using Turtlesim with CRAM 6 55 Introduction to Cognitive Robotics

CRAM Beginner Tutorials

Create a CRAM Package http://cram-system.org/tutorials/beginner/package_for_turtlesim
Controlling turtlesim from CRAM http://cram-system.org/tutorials/beginner/controlling_turtlesim_2
Implementing simple plans to move a turtle http://cram-system.org/tutorials/beginner/simple_plans
Using Prolog for reasoning http://cram-system.org/tutorials/beginner/cram_prolog
Creating motion designators for the TurtleSim http://cram-system.org/tutorials/beginner/motion_designators
Creating process modules http://cram-system.org/tutorials/beginner/process_modules_2

Using Turtlesim with CRAM 6 56 Introduction to Cognitive Robotics

Background Reading

G. Kazhoyan, Lecture notes: Robot Programming with Lisp 7. Coordinate Transformations,
TF, ActionLib, slides 5-8.
https://ai.uni-bremen.de/_media/teaching/7_more_ros.pdf

http://wiki.ros.org/tf/Overview/Transformations

T. Rittweiler, CRAM – Design and Implementation of a Reactive Plan Language, Bachelor
Thesis, Technical University of Munich, 2010.
https://common-lisp.net/~trittweiler/bachelor-thesis.pdf

