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To Keelin, Ciana, and Georgina —
for never giving up on your dreams





“It’s a poor sort of memory that only works backwards.”

Lewis Carroll — Through the Looking Glass
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Preface

This primer introduces you to the emerging field of artificial
cognitive systems. Inspired by artificial intelligence, developmen-
tal psychology, and cognitive neuroscience, the aim is to build
systems that can act on their own to achieve goals: perceiving
their environment, anticipating the need to act, learning from
experience, and adapting to changing circumstances.

It is an exciting and challenging area. The excitement stems
from the possibility of designing intelligent adaptive systems
that can serve society in a host of ways. The challenge is the
breadth of the field and the need to bring together an intimidat-
ing spectrum of disciplines. Add to this the fact that there is no
universal agreement on what exactly it means to be cognitive
in the first place and the stage is set for an interesting journey.
Think of this primer as a guidebook to help you on that journey,
pointing out the main features of the landscape, the principal
routes, and the most important landmarks.

To get started, we develop a working definition of cognitive
systems, one that strikes a balance between being broad enough
to do service to the many views that people have on cognition
and deep enough to help in the formulation of theories and
models. We then survey the different paradigms of cognitive
science to establish the full scope of the subject and sketch the
main geography of the area. We follow that with a discussion
of cognitive architectures — effectively the blueprints for im-
plementing cognitive systems — before tackling the key issues,
one by one, in the remaining chapters: autonomy, embodiment,
learning & development, memory & prospection, knowledge &
representation, and social cognition.
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By the time you have finished reading this primer, you will
have a clear understanding of the scope of the domain, the dif-
ferent perspectives, and their underlying differences. You will
have a solid grasp of the issues that need to be addressed when
attempting to design an artificial cognitive system. Perhaps most
important of all, you will know where to go next to deepen your
understanding of the area and its constituent disciplines.

Like all guidebooks, this primer tells a story about the land
it surveys. In fact, it tells two stories in parallel, one in the main
narrative and another through a sequence of sidenotes. The main
text is kept as short and simple as possible, focussing on rela-
tively straightforward descriptions of the key issues. The side-
notes highlight the finer points of the material being discussed in
the main narrative, suggesting material that you can read to gain
a deeper insight into the topic under discussion. New ideas are
introduced in a natural intuitive order, building step-by-step to a
clear overview of this remarkable and exciting field, priming you
to go further and faster in your studies of cognitive systems.

Ideally, you will read the primer three times. On the first
reading, you might read only the main narrative to get a feeling
for the topic. You might then read through the sidenotes without
reference to the main text. This will expose you to a series of
interesting snapshots of key landmark topics and reinforce ideas
you encountered on the first reading. Finally, you should be
ready for a third, more careful reading of the book, referring to
each sidenote as it is referenced in the main narrative.

A primer, by its very nature, is a short book. Consequently,
there are many omissions in this text, some intentional, others
less so. By far, the topic that is most noticable by its absence is
language. While providing an overview of areas such as em-
bodiment and autonomy is a challenge because of their diverse
meanings, the task of doing the same for language is far greater.
So, rather than attempt it and almost inevitably fall short, I have
omitted it. If there is ever a second edition, the inclusion of lan-
guage will be the top priority.

Other omissions are more methodological. This primer fo-
cusses almost exclusively on the “What?” and “Why?” ques-
tions in cognitive systems, to the exclusion of the “How?” In
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other words, it does everything except tell you how you can
go about building a cognitive system. There is an unfortunate,
but inevitable, lack of formal theory and algorithmic practice
in this book. This doesn’t mean that this theory doesn’t exist —
it certainly does, as a quick scan of the literature on, e.g., ma-
chine learning and computer vision will demonstrate — but the
breadth of cognitive systems is so great that to address the com-
putational and mathematical theories as well as the algorithmic
and representational details of cognition would require a book of
far greater scope than this one. Perhaps, some day, a companion
volume might be appropriate.

Skövde, Sweden David Vernon
May 2014





Acknowledgements

My interest in cognitive systems was ignited in 1984 by Dermot
Furlong, Trinity College, Dublin, who introduced me to the
seminal work of Humberto Maturana and Francisco Varela. In
the intervening 30 years, he has continued to prompt, question,
and debate, and his insights have helped greatly in putting the
many different aspects of cognition in perspective.

Giulio Sandini, Istituto Italiano di Tecnologia (IIT), played a
pivotal role in the writing of this book. Twenty years after we
first worked together on an image understanding project, we
collaborated again in 2004 on his brainchild, the iCub, the open-
source 53 degree-of-freedom cognitive humanoid robot featured
on the front cover. In this 5-year research project, funded by the
European Commission, we investigated many aspects of artificial
cognitive systems, and I would like to thank him sincerely for
involving me in the project and for his insights and inspiration.

In 2003, Henrik Christensen, then at KTH in Sweden and now
at Georgia Tech in the USA, and Hans-Hellmut Nagel, University
of Karlsruhe (now Karlsruhe Institute of Technology), orga-
nized a lively workshop on cognitive vision systems at Schloss
Dagstuhl. The discussions at this workshop had a strong influ-
ence in determining the content of the book and in achieving, I
hope, a balanced perspective. I would like to pay a special trib-
ute to Hans-Hellmut for his remarkable attention to detail and
passion for clarity of expression. I learned much from him and I
have tried to put it into practice when writing this book.

From 2002 to 2005, I coordinated ECVision, the EU-funded
European research network for cognitive vision systems. Many
of the ideas discussed at the brainstorming sessions conducted in



xvi artificial cognitive systems

the development of the ECVision research roadmap were crucial
in developing my ideas on cognitive systems.

Beginning in 2006, I coordinated euCognition, the European
Network for the Advancement of Artificial Cognitive Systems,
for three years. The members — then numbering 300 or so, now
over 800 — are drawn from many disciplines, including neuro-
science, psychology, computer science, control, cognitive science,
linguistics, cybernetics, dynamical and self-organizing systems,
computer vision, and robotics. I have benefitted enormously
from being exposed to their thoughts and insights, and those of
our guest speakers at network meetings.

In the context of my work in European projects, I would like
to say a special thank you to Horst Forster, Colette Maloney,
Hans-Georg Stork, Cécile Huet, Juha Heikkilä, Franco Mastroddi,
and their colleagues in the European Commission for their un-
stinting support. Europe’s vibrant cognitive systems community
is due in no small part to their foresight and leadership.

I wish to thank Gordon Cheng and Uwe Haass for giving me
the opportunity to work at the Institute for Cognitive Systems
(ICS), Technical University of Munich, in 2011 and 2012. My
work at ICS provided the initial impetus to turn my lecture notes
into a textbook and the time to do it.

Marcia Riley, a researcher at ICS, provided the intellectual
flint that is essential for sparking new ideas and better ways of
communicating them. I am grateful for her time, knowledge, and
willingness to debate the finer points of robotics and cognition.

During my time in Munich, I had many fruitful conversations
with Michael Beetz, University of Bremen. His insights gave me
a fresh appreciation of the importance of new AI in cognitive
systems and a much better understanding of the ways knowl-
edge can be shared between people and robots.

If my time at the Technical University of Munich provided the
impetus, my move to the University of Skövde, Sweden, in early
2013 provided the ideal environment to write the bulk of the
book. Here I have the pleasure of working with great people —
Tom Ziemke, Serge Thill, Paul Hemeren, Erik Billing, Rob Lowe,
Jessica Lindblom, and many others — all of whom contributed
directly and indirectly to the throughts expressed in the chapters



preface xvii

that follow. Heartfelt thanks to each and every one of you.
The insights of Claes von Hoftsten, University of Uppsala,

and Luciano Fadiga, University of Ferrara and Istituto Italiano di
Tecnologia, contributed greatly to the material in Chapter 6. I am
obliged to them both for taking the time to explain the basis of
human development to me when we collaborated on the design
of the iCub cognitive humanoid robot.

During my time working on the iCub, I gave several short
courses on cognitive systems at the University of Genoa and
the Istituto Italiano di Tecnologia. The notes for these courses
formed the original basis of this book while a paper co-authored
by Giulio Sandini, IIT, and Giorgio Metta, IIT, in 2007 provided
the foundations for Chapter 2.

I am grateful to Alessandra Sciutti, Istituto Italiano di Tecnolo-
gia, for allowing me to use her survey data on milestones in the
development of human infants in Table 6.1, Chapter 6.

The material in Chapter 9 on joint action, shared intention,
and collaborative behaviour derives in part from the contribu-
tions made by Harold Bekkering, Radboud University Nijmegen,
Yiannis Demiris, Imperial College, London, Giulio Sandini, Isti-
tuto Italiano di Tecnologia, and Claes von Hofsten, University of
Uppsala, to a research proposal we worked on in 2012.

Thanks go to Alan Bushnell, Phoenix Technical Co. L.L.C., for
taking the time to cast a cold eye on the manuscript and for his
many helpful suggestions.

Books need publishers and editors, and it is a pleasure to
acknowledge the part played by Philip Laughlin, Senior Acqui-
sitions Editor at MIT Press, in bringing this particular book to
completion. Without his patience and support, I wouldn’t be
writing these acknowledgements. Thanks too to Virginia Cross-
man, Christopher Eyer, Susan Clark, and Erin Hasley at MIT
Press for all their help in transforming my initial draft into the
finished product.

The front cover picture — featuring the iCub cognitive hu-
manoid robot and Lorenzo Natale, IIT — is used with the kind
permission of the Department of Robotics, Brain and Cognitive
Sciences, Istituto Italiano di Tecnologia. The photograph was
taken by Massimo Brega.



xviii artificial cognitive systems

The final word of appreciation goes most especially to my
wonderful wife Keelin, for patiently putting up with me working
on the book during goodness-knows how many evenings, week-
ends, and holidays and for painstakingly proof-reading every
page. Such love and understanding is exceedingly rare and I will
be forever grateful.



References

[1] http://www.commsp.ee.ic.ac.uk/~mcpetrou/iron.html.

[2] http://en.wikipedia.org/wiki/Maria_Petrou.

[3] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and
P. Abbeel. Cloth grasp point detection based on multiple-
view geometric cues with application to robotic towel fold-
ing. In International Conference on Robotics and Automation
ICRA, pages 2308–2315, 2010.

[4] Willow Garage. The PR2 robot.
http://www.willowgarage.com/pages/pr2/overview,
2013.

[5] A. Morse and T. Ziemke. On the role(s) of modelling in
cognitive science. Pragmatics & Cognition, 16(1):37–56, 2008.

[6] T. C. Scott-Phillips, T. E. Dickins, and S. A. West. Evolu-
tionary theory and the ultimate-proximate distinction in
the human behavioural sciences. Perspectives on Psychologi-
cal Science, 6(1):38–47, 2011.

[7] N. Tinbergen. On the aims and methods of ethology.
Zeitschrift für Tierpsychologie, 20:410–433, 1963.

[8] E. Mayr. Animal species and evolution. Harvard University
Press, Cambridge, MA, 1963.

[9] D. Vernon. Cognitive system. In K. Ikeuchi, editor, Com-
puter Vision: A Reference Guide, pages 100–106. Springer,
2014.



216 artificial cognitive systems

[10] P. Medawar. Pluto’s Republic. Oxford University Press,
1984.

[11] http://www.cs.bham.ac.uk/research/projects/cogaff/misc/
meta-requirements.html.

[12] D. Vernon, C. von Hofsten, and L. Fadiga. A Roadmap for
Cognitive Development in Humanoid Robots, volume 11 of
Cognitive Systems Monographs (COSMOS). Springer, Berlin,
2010.

[13] M. H. Bickhard. Autonomy, function, and representation.
Artificial Intelligence, Special Issue on Communication and
Cognition, 17(3-4):111–131, 2000.

[14] H. Maturana and F. Varela. The Tree of Knowledge — The
Biological Roots of Human Understanding. New Science
Library, Boston & London, 1987.

[15] R. J. Brachman. Systems that know what they’re doing.
IEEE Intelligent Systems, 17(6):67–71, December 2002.

[16] A. Sloman. Varieties of affect and the cogaff architecture
schema. In Proceedings of the AISB ’01 Symposium on Emo-
tion, Cognition, and Affective Computing, York, UK, 2001.

[17] R. Sun. The importance of cognitive architectures: an anal-
ysis based on clarion. Journal of Experimental & Theoretical
Artificial Intelligence, 19(2):159–193, 2007.

[18] D. Marr. Vision. Freeman, San Francisco, 1982.

[19] T. Poggio. The levels of understanding framework, revised.
Perception, 41:1017–1023, 2012.

[20] D. Marr and T. Poggio. From understanding computation
to understanding neural circuitry. In E. Poppel, R. Held,
and J. E. Dowling, editors, Neuronal Mechanisms in Visual
Perception, volume 15 of Neurosciences Research Program
Bulletin, pages 470–488. 1977.

[21] J. A. S. Kelso. Dynamic Patterns – The Self-Organization
of Brain and Behaviour. MIT Press, Cambridge, MA, 3rd
edition, 1995.



references 217

[22] R. Pfeifer and J. Bongard. How the body shapes the way we
think: a new view of intelligence. MIT Press, Cambridge, MA,
2007.

[23] A. Clark. Being There: Putting Brain, Body, and World To-
gether Again. MIT Press, Cambridge, MA, 1997.

[24] A. Clark. Time and mind. Journal of Philosophy,
XCV(7):354–376, 1998.

[25] N. Wiener. Cybernetics: or the Control and Communication
in the Animal and the Machine. John Wiley and Sons, New
York, 1948.

[26] W. Ross Ashby. An Introduction to Cybernetics. Chapman
and Hall, London, 1957.

[27] W. S. McCulloch and W. Pitts. A logical calculus of ideas
immanent in nervous activity. Bulletin of Mathematical
Biophysics, 5:115–133, 1943.

[28] J. A. Anderson and E. Rosenfeld, editors. Neurocomputing:
Foundations of Research. MIT Press, Cambridge, MA, 1988.

[29] W. R. Ashby. Design for a Brain. John Wiley & Sons, New
York, first edition. edition, 1952.

[30] W. R. Ashby. Design for a Brain. John Wiley & Sons, New
York, first edition. reprinted with corrections. edition, 1954.

[31] W. R. Ashby. Design for a Brain. John Wiley & Sons, New
York, second edition. edition, 1960.

[32] F. J. Varela. Whence perceptual meaning? A cartography
of current ideas. In F. J. Varela and J.-P. Dupuy, editors,
Understanding Origins – Contemporary Views on the Origin of
Life, Mind and Society, Boston Studies in the Philosophy of
Science, pages 235–263, Dordrecht, 1992. Kluwer Academic
Publishers.

[33] A. Clark. Mindware – An Introduction to the Philosophy of
Cognitive Science. Oxford University Press, New York, 2001.



218 artificial cognitive systems

[34] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring,
D. Gáalvez-Loópez, K. Häussermann, R. Janssen, J. M. M.
Montiel, A. Perzylo, B. Schießlele, M. Tenorth, O. Zweigle,
and R. van de Molengraft. Roboearth: A world-wide web
for robots. IEEE Robotics and Automation Magazine, pages
69–82, June 2011.

[35] A. Newell and H. A. Simon. Computer science as empir-
ical inquiry: Symbols and search. Communications of the
Association for Computing Machinery, 19:113–126, March
1976. Tenth Turing award lecture, ACM, 1975.

[36] W. J. Freeman and R. Núñez. Restoring to cognition the
forgotten primacy of action, intention and emotion. Journal
of Consciousness Studies, 6(11-12):ix–xix, 1999.

[37] http://www.aaai.org/Conferences/AAAI/2012/
aaai12cognitivecall.php.

[38] http://www.agi-society.org.

[39] http://www.agiri.org/wiki/Artificial_General_Intelligence.

[40] S. Harnad. The symbol grounding problem. Physica D,
42:335–346, 1990.

[41] A. Newell. The knowledge level. Artificial Intelligence,
18(1):87–127, March 1982.

[42] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: an
architecture for general intelligence. Artificial Intelligence,
33(1–64), 1987.

[43] A. Newell. Unified Theories of Cognition. Harvard University
Press, Cambridge MA, 1990.

[44] J. Anderson. Cognitive architectures in rational analysis.
In K. van Lehn, editor, Architectures for Intelligence, pages
1–24. Lawrence Erlbaum Associates, Hillsdale, NJ, 1999.

[45] http://ai.eecs.umich.edu/cogarch0.

[46] E. von Glaserfeld. Radical Constructivism. Routeledge-
Falmer, London, 1995.



references 219

[47] W. D. Christensen and C. A. Hooker. An interactivist-
constructivist approach to intelligence: self-directed an-
ticipative learning. Philosophical Psychology, 13(1):5–45,
2000.

[48] J. Stewart, O. Gapenne, and E. A. Di Paolo. Enaction:
Toward a New Paradigm for Cognitive Science. MIT Press,
2010.

[49] J. P. Crutchfield. Dynamical embodiment of computation
in cognitive processes. Behavioural and Brain Sciences,
21(5):635–637, 1998.

[50] D. A. Medler. A brief history of connectionism. Neural
Computing Surveys, 1:61–101, 1998.

[51] J. A. Anderson and E. Rosenfeld, editors. Neurocomputing
2: Directions for Research. MIT Press, Cambridge, MA, 1991.

[52] P. Smolensky. Computational, dynamical, and statistical
perspectives on the processing and learning problems in
neural network theory. In P. Smolensky, M. C. Mozer, and
D. E. Rumelhart, editors, Mathematical perspectives on neural
networks, pages 1–15. Erlbaum, Mahwah, NJ, 1996.

[53] P. Smolensky. Computational perspectives on neural net-
works. In P. Smolensky, M. C. Mozer, and D. E. Rumelhart,
editors, Mathematical perspectives on neural networks, pages
1–15. Erlbaum, 1996.

[54] P. Smolensky. Dynamical perspectives on neural networks.
In P. Smolensky, M. C. Mozer, and D. E. Rumelhart, ed-
itors, Mathematical perspectives on neural networks, pages
245–270. Erlbaum, 1996.

[55] P. Smolensky. Statistical perspectives on neural networks.
In P. Smolensky, M. C. Mozer, and D. E. Rumelhart, ed-
itors, Mathematical perspectives on neural networks, pages
453–496. Erlbaum, 1996.

[56] M. A. Arbib, editor. The Handbook of Brain Theory and
Neural Networks. MIT Press, Cambridge, MA, 1995.



220 artificial cognitive systems

[57] RJ. A. Feldman and D. H. Ballard. Connectionist models
and their properties. Cognitive Science, 6:205–254, 1982.

[58] E. L. Thorndike. The Fundamentals of Learning. Teachers
College, Columbia University, New York, 1932.

[59] E. L. Thorndike. Selected Writings from a Connectionist
Psychology. Greenwood Press, New York, 1949.

[60] W. James. The Principles of Psychology, volume 1. Harvard
University Press, Cambridge, MA, 1890.

[61] D. O. Hebb. The Organization of Behaviour. John Wiley &
Sons, New York, 1949.

[62] F. Rosenblatt. The perceptron: a probabilistic model for
information storage and organization in the brain. Psycho-
logical Review, 65:386–408, 1958.

[63] O. G. Selfridge. Pandemonium: A paradigm for learning.
In D. V. Blake and A. M. Uttley, editors, Proceedings of the
Symposium on Mechanization of Thought Processes, pages
511–529, London, 1959. H. M. Stationery Office.

[64] B. Widrow and M. E. Hoff. Adaptive switching circuits. In
1960 IRE WESCON Convention Record, pages 96–104, New
York, 1960.

[65] M. Minsky and S. Papert. Perceptrons: An Introduction to
Computational Geometry. MIT Press, Cambridge, MA, 1969.

[66] J. Pollack. No harm intended: Marvin L. Minsky and Sey-
mour A. Papert. Perceptrons: An introduction to computa-
tional geometry, expanded edition. Journal of Mathematical
Psychology, 33(3):358–365, 1989.

[67] G. E. Hinton and J. A. Anderson, editors. Parallel models
of associative memory. Lawrence Eralbaum Associates,
Hillsdale, N.J.:, 1981.

[68] G. A. Carpenter and S. Grossberg. Adaptive resonance
theory (ART). In M. A. Arbib, editor, The Handbook of
Brain Theory and Neural Networks, pages 79–82. MIT Press,
Cambridge, MA, 1995.



references 221

[69] T. Kohonen. Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43:59–69, 1982.

[70] D. E. Rumelhart, J. L. McClelland, and The PDP Research
Group, editors. Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. The MIT Press, Cam-
bridge, 1986.

[71] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing internal representations by error propagation. In
D. E. Rumelhart, J. L. McClelland, and The PDP Research
Group, editors, Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, pages 318–362. The MIT
Press, Cambridge, 1986.

[72] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing representations by back-propagating erros. Nature,
323:533–536, 1986.

[73] P. Werbos. Beyond regression: new tools for prediction and
analysis in the behaviourl sciences. Masters Thesis. Harvard
University, Boston, MA, 1974.

[74] J. J. Hopfield. Neural neural network and physical systems
with emergent collective computational abilities. Proceed-
ings of National Academy of Sciences, 79(8):2554 – 2588, 1982.

[75] J. Elman. Finding structure in time. Cognitive Science,
14:179–211, 1990.

[76] M. I. Jordan. Attractor dynamics and parallelism in a
connectionist sequential machine. In Proceedings of the
Eighth Conference of the Cognitive Science Society, pages 531–
546, 1986.

[77] G. E. Hinton and T. J. Sejnowski. Learning and relearning
in boltzmann machines. In D. E. Rumelhart, J. L. Mc-
Clelland, and The PDP Research Group, editors, Parallel
Distributed Processing: Explorations in the Microstructure of
Cognition, pages 282–317, Cambridge, 1986. The MIT Press.



222 artificial cognitive systems

[78] J. Moody and C. J. Darken. Fast learning in networks of
locally tuned processing units. Neural Computation, 1:281–
294, 1989.

[79] J. L. McClelland and T. T. Rogers. The parallel distributed
processing approach to semantic cognition. Nature, 4:310–
322, 2003.

[80] P. Smolensky and G. Legendre. The Harmonic Mind: From
Neural Computation To Optimality-Theoretic Grammar. MIT
Press, 2006.

[81] P. Smolensky. structure and explanation in an integrated
connectionist/symbolic cognitive architecture. In C. Mac-
donald and G. Macdonald, editors, Connectionism: Debates
on psychological explanation, volume 2, pages 221–290. Basil
Blackwell, 1995.

[82] T. van Gelder and R. F. Port. It’s about time: An overview
of the dynamical approach to cognition. In R. F. Port and
T. van Gelder, editors, Mind as Motion – Explorations in
the Dynamics of Cognition, pages 1–43, Cambridge, Mas-
sachusetts, 1995. Bradford Books, MIT Press.

[83] L. Shapiro. Embodied Cognition. Routledge, 2011.

[84] E. Thelen and L. B. Smith. A Dynamic Systems Approach
to the Development of Cognition and Action. MIT Press /
Bradford Books Series in Cognitive Psychology. MIT Press,
Cambridge, Massachusetts, 1994.

[85] S. Camazine. Self-organizing systems. In Encyclopedia of
Cognitive Science. Wiley, 2006.

[86] A. Kravchenko. Essential properties of language, or, why
language is not a code. Language Sciences, 5(29):650–671,
2007.

[87] T. Winograd and F. Flores. Understanding Computers and
Cognition – A New Foundation for Design. Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1986.



references 223

[88] J. P. Spencer, M. S. C. Thomas, and J. L. McClelland. To-
ward a New Grand Theory of Development? Connectionism and
Dynamic Systems Theory Re-Considered. Oxford University
Press, New York, 2009.

[89] G. Schöner. Development as change of dynamic sys-
tems: Stability, instability, and emergence. In J. P. Spencer,
M. S. C. Thomas, and J. L. McClelland, editors, Toward a
Unified Theory of Development: Connectionism and Dynamic
Systems Theory Re-Considered, New York, 2009. Oxford Uni-
versity Press.

[90] P. Smolensky, M. C. Mozer, and D. E. Rumelhart, editors.
Mathematical perspectives on neural networks. Erlbaum, 1996.

[91] J. J. Gibson. The theory of affordances. In R. Shaw and
J. Bransford, editors, Perceiving, acting and knowing: toward
an ecological psychology, pages 67–82. Lawrence Erlbaum,
1977.

[92] W. Köhler. Dynamics in Psychology. Liveright, New York,
1940.

[93] D. Vernon. Enaction as a conceptual framework for devel-
opment in cognitive robotics. Paladyn Journal of Behavioral
Robotics, 1(2):89–98, 2010.

[94] H. Maturana. Biology of cognition. Research Report BCL
9.0, University of Illinois, Urbana, Illinois, 1970.

[95] H. Maturana. The organization of the living: a theory of
the living organization. Int. Journal of Man-Machine Studies,
7(3):313–332, 1975.

[96] H. R. Maturana and F. J. Varela. Autopoiesis and Cognition
— The Realization of the Living. Boston Studies on the
Philosophy of Science. D. Reidel Publishing Company,
Dordrecht, Holland, 1980.

[97] F. Varela. Principles of Biological Autonomy. Elsevier North
Holland, New York, 1979.



224 artificial cognitive systems

[98] F. Varela, E. Thompson, and E. Rosch. The Embodied Mind.
MIT Press, Cambridge, MA, 1991.

[99] R. Grush. The emulation theory of representation: motor
control, imagery, and perception. Behavioral and Brain
Sciences, 27:377–442, 2004.

[100] G. Hesslow. Conscious thought as simulation of behaviour
and perception. Trends in Cognitive Sciences, 6(6):242–247,
2002.

[101] M. P. Shanahan. A cognitive architecture that combines
internal simulation with a global workspace. Consciousness
and Cognition, 15:433–449, 2006.

[102] H. H. Clark. Managing problems in speaking. Speech
Communication, 15:243–250, 1994.

[103] D. Vernon, G. Metta, and G. Sandini. A survey of artificial
cognitive systems: Implications for the autonomous de-
velopment of mental capabilities in computational agents.
IEEE Transactions on Evolutionary Computation, 11(2):151–
180, 2007.

[104] T. Froese and T. Ziemke. Enactive artificial intelligence:
Investigating the systemic organization of life and mind.
Artificial Intelligence, 173:466–500, 2009.

[105] D. Vernon and D. Furlong. Philosophical foundations of
enactive AI. In M. Lungarella, F. Iida, J. C. Bongard, and
R. Pfeifer, editors, 50 Years of AI, volume LNAI 4850, pages
53–62. Springer, Heidelberg, 2007.

[106] W. D. Christensen and C. A. Hooker. Representation and
the meaning of life. In H. Clapin, P. Staines, and P. Slezak,
editors, Representation in Mind: New Approaches to Mental
Representation, pages 41–70. Elsevier, Oxford, 2004.

[107] M. P. Shanahan and B. Baars. Applying global workspace
theory to the frame problem. Cognition, 98(2):157–176,
2005.



references 225

[108] G. Granlund. Organization of architectures for cognitive
vision systems. In H. I. Christensen and H.-H. Nagel,
editors, Cognitive Vision Systems: Sampling the Spectrum of
Approaches, volume 3948 of LNCS, pages 37–56, Heidel-
berg, 2006. Springer-Verlag.

[109] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass,
C. Lebiere, and Y. Qin. An integrated theory of the mind.
Psychological Review, 111(4):1036–1060, 2004.

[110] P. Rosenbloom, J. Laird, and A. Newell, editors. The Soar
Papers: Research on Integrated Intelligence. MIT Press, Cam-
bridge, Massachusetts, 1993.

[111] J. F. Lehman, J. E. Laird, and P. S. Rosenbloom. A gentle
introduction to soar, an architecture for human cognition.
In S. Sternberg and D. Scarborough, editors, Invitation to
Cognitive Science, Volume 4: Methods, Models, and Conceptual
Issues. MIT Press, Cambridge, MA, 1998.

[112] J. E. Laird. Extending the soar cognitive architecture.
In Proceedings of the First Conference on Artificial General
Intelligence, pages 224–235, Amsterdam, The Netherlands,
2008. IOS Press.

[113] J. E. Laird. Towards cognitive robotics. In G. R. Gerhart,
D. W. Gage, and C. M. Shoemaker, editors, Proceedings of
the SPIE — Unmanned Systems Technology XI, volume 7332,
pages 73320Z–73320Z–11, 2009.

[114] J. E. Laird. The Soar Cognitive Architecture. MIT Press,
Cambridge, MA, 2012.

[115] J. R. Anderson. Act: A simple theory of complex cognition.
American Psychologist, 51:355–365, 1996.

[116] R. Sun. A tutorial on CLARION 5.0. In Cognitive Sci-
ence Department. Rensselaer Polytechnic Institute, 2003.
http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf.

[117] R. Sun. Desiderata for cognitive architectures. Philosophical
Psychology, 17(3):341–373, 2004.



226 artificial cognitive systems

[118] W. D. Gray, R. M. Young, and S. S. Kirschenbaum. Intro-
duction to this special issue on cognitive architectures and
human-computer interaction. Human-Computer Interaction,
12:301–309, 1997.

[119] P. Langley. An adaptive architecture for physical agents. In
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, pages 18–25, Compiegne, France, 2005. IEEE
Computer Society Press.

[120] P. Langley, J. E. Laird, and S. Rogers. Cognitive architec-
tures: Research issues and challenges. Cognitive Systems
Research, 10(2):141–160, 2009.

[121] F. E. Ritter and R. M. Young. Introduction to this special is-
sue on using cognitive models to improve interface design.
International Journal of Human-Computer Studies, 55:1–14,
2001.

[122] H. von Foerster. Understanding Understanding: Essays on
Cybernetics and Cognition. Springer, New York, 2003.

[123] J. L. Krichmar and G. M. Edelman. Brain-based devices
for the study of nervous systems and the development of
intelligent machines. Artificial Life, 11:63–77, 2005.

[124] J. L. Krichmar and G. N. Reeke. The Darwin brain-based
automata: Synthetic neural models and real-world devices.
In G. N. Reeke, R. R. Poznanski, K. A. Lindsay, J. R. Rosen-
berg, and O. Sporns, editors, Modelling in the neurosciences:
from biological systems to neuromimetic robotics, pages 613–
638, Boca Raton, 2005. Taylor and Francis.

[125] J. L. Krichmar and G. M. Edelman. Principles underlying
the construction of brain-based devices. In T. Kovacs
and J. A. R. Marshall, editors, Proceedings of AISB ’06 -
Adaptation in Artificial and Biological Systems, volume 2 of
Symposium on Grand Challenge 5: Architecture of Brain and
Mind, pages 37–42, Bristol, 2006. University of Bristol.



references 227

[126] J. Weng. Developmental robotics: Theory and experiments.
International Journal of Humanoid Robotics, 1(2):199–236,
2004.

[127] K. E. Merrick. A comparative study of value systems for
self-motivated exploration and learning by robots. IEEE
Transactions on Autonomous Mental Development, 2(2):119–
131, June 2010.

[128] P.-Y. Oudeyer, F. Kaplan, and V. Hafner. Intrinsic motiva-
tion systems for autonomous mental development. IEEE
Transactions on Evolutionary Computation, 11(2):265–286,
2007.

[129] N. Hawes, J. Wyatt, and A. Sloman. An architecture
schema for embodied cognitive systems. In Technical Report
CSR-06-12. University of Birmingham, School of Computer
Science, 2006.

[130] N. Hawes and J. Wyatt. Developing intelligent robots
with CAST. In Proc. IROS Workshop on Current Software
Frameworks in Cognitive Robotics Integrating Different Compu-
tational Paradigms, 2008.

[131] S. C. Shapiro and J. P. Bona. The GLAIR cognitive archi-
tecture. In A. Samsonovich, editor, Biologically Inspired
Cognitive Architectures-II: Papers from the AAAI Fall Sympo-
sium, Technical Report FS-09-01, pages 141–152. AAAI Press,
Menlo Park, CA, 2009.

[132] P. Langley. Cognitive architectures and general intelligent
systems. AI Magazine, 27(2):33–44, 2006.

[133] P. Langley, D. Choi, and S. Rogers. Acquisition of hier-
archical reactive skills in a unified cognitive architecture.
Cognitive Systems Research, 10(4):316–332, 2009.

[134] A. Morse, R. Lowe, and T. Ziemke. Towards an enactive
cognitive architecture. In Proceedings of the First Interna-
tional Conference on Cognitive Systems, Karlsruhe, Germany,
2008.



228 artificial cognitive systems

[135] T. Ziemke and R. Lowe. On the role of emotion in em-
bodied cognitive architectures: From organisms to robots.
Cognition and Computation, 1:104–117, 2009.

[136] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon,
L. Fadiga, C. von Hofsten, J. Santos-Victor, A. Bernardino,
and L. Montesano. The iCub Humanoid Robot: An Open-
Systems Platform for Research in Cognitive Development.
Neural Networks, special issue on Social Cognition: From Babies
to Robots, 23:1125–1134, 2010.

[137] G. Sandini, G. Metta, and D. Vernon. The icub cognitive
humanoid robot: An open-system research platform for
enactive cognition. In M. Lungarella, F. Iida, J. C. Bongard,
and R. Pfeifer, editors, 50 Years of AI, volume LNAI 4850,
pages 359ñ–370. Springer, Heidelberg, 2007.

[138] J. Weng. A theory of developmental architecture. In
Proceedings of the 3rd International Conference on Development
and Learning (ICDL 2004), La Jolla, October 2004.

[139] C. Burghart, R. Mikut, R. Stiefelhagen, T. Asfour,
H. Holzapfel, P. Steinhaus, and R. Dillman. A cognitive
architecture for a humanoid robot: A first approach. In
IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids 2005), pages 357–362, 2005.

[140] S. Franklin. A foundational architecture for artificial gen-
eral intelligence. In B. Goertzel and P. Wang, editors,
Proceeding of the 2007 conference on Advances in Artificial
General Intelligence: Concepts, Architectures and Algorithms,
pages 36–54, Amsterdam, 2007. IOS Press.

[141] D. Friedlander and S. Franklin. LIDA and a theory of
mind. In Proceeding of the 2008 conference on Advances in
Artificial General Intelligence, pages 137–148, Amsterdam,
2008. IOS Press.
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